Impacts of Conventional and Agri-Food Waste-Derived Fertilizers on Durum Wheat Yield, Grain Quality, and Soil Health: A Two-Year Field Study in Greece and Southern Italy
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites and Experimental Design
2.2. Soil Analysis
2.3. Yield Measurements
2.4. Grain Quality Analysis
2.5. Statistical Analysis
3. Results
3.1. Experiments in Central Macedonia Greece
3.1.1. Soil Properties
3.1.2. Plant Growth and Yield
3.1.3. Grain Biochemical Quality
3.1.4. Soil and Grain Parameters: The Correlation
3.2. Experiments in Italy (Apulia)
3.2.1. Soil Properties
3.2.2. Plant Growth and Yield
3.2.3. Grain Biochemical Quality
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CTR | Control, soil without fertilizer |
NPK | Nitrogen–phosphorus–potassium |
HM | Horse manure |
WC | Water content |
EC | Electrical conductivity |
OC | Organic carbon |
TotN | Total nitrogen |
C/N | Carbon–nitrogen ratio |
OM | Organic matter |
CEC | Cation exchange capacity |
TP | Total phenols |
TF | Total flavonoids |
DPPH | 2,2-difenil-1-picrilidrazile |
ABTS+ | 2,2′-azino-bis-3-etilbenzotiazolin-6-solfonato |
References
- FAO FAOSTAT Statistical Database. Available online: https://www.fao.org/faostat/en/#home (accessed on 22 July 2025).
- Zhang, Y.-J.; Gan, R.-Y.; Li, S.; Zhou, Y.; Li, A.-N.; Xu, D.-P.; Li, H.-B. Antioxidant Phytochemicals for the Prevention and Treatment of Chronic Diseases. Molecules 2015, 20, 21138–21156. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhao, Z.; Jiang, B.; Baoyin, B.; Cui, Z.; Wang, H.; Li, Q.; Cui, J. Effects of Long-Term Application of Nitrogen Fertilizer on Soil Acidification and Biological Properties in China: A Meta-Analysis. Microorganisms 2024, 12, 1683. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Jabeen, N.; Farruhbek, R.; Chachar, Z.; Laghari, A.A.; Chachar, S.; Ahmed, N.; Ahmed, S.; Yang, Z. Enhancing Nitrogen Use Efficiency in Agriculture by Integrating Agronomic Practices and Genetic Advances. Front. Plant Sci. 2025, 16, 1543714. [Google Scholar] [CrossRef] [PubMed]
- Diacono, M.; Montemurro, F. Long-Term Effects of Organic Amendments on Soil Fertility. In Sustainable Agriculture Volume 2; Lichtfouse, E., Hamelin, M., Navarrete, M., Debaeke, P., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 761–786. ISBN 978-94-007-0394-0. [Google Scholar]
- Badagliacca, G.; Testa, G.; La Malfa, S.G.; Cafaro, V.; Lo Presti, E.; Monti, M. Organic Fertilizers and Bio-Waste for Sustainable Soil Management to Support Crops and Control Greenhouse Gas Emissions in Mediterranean Agroecosystems: A Review. Horticulturae 2024, 10, 427. [Google Scholar] [CrossRef]
- Mulatu, G.; Bayata, A. Vermicompost as Organic Amendment: Effects on Some Soil Physical, Biological Properties and Crops Performance on Acidic Soil: A Review. FEM 2024, 10, 66–73. [Google Scholar] [CrossRef]
- Lazcano, C.; Boyd, E.; Holmes, G.; Hewavitharana, S.; Pasulka, A.; Ivors, K. The Rhizosphere Microbiome Plays a Role in the Resistance to Soil-Borne Pathogens and Nutrient Uptake of Strawberry Cultivars under Field Conditions. Sci. Rep. 2021, 11, 3188. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: A New Circular Economy Action Plan—For a Cleaner and More Competitive Europe; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Montemurro, F.; Maiorana, M.; Convertini, G.; Ferri, D. Compost Organic Amendments in Fodder Crops: Effects on Yield, Nitrogen Utilization and Soil Characteristics. Compost Sci. Util. 2006, 14, 114–123. [Google Scholar] [CrossRef]
- Pelman, A.; Vries, J.W.D.; Tepper, S.; Eshel, G.; Carmel, Y.; Shepon, A. A Life-Cycle Approach Highlights the Nutritional and Environmental Superiority of Agroecology over Conventional Farming: A Case Study of a Mediterranean Farm. PLoS Sustain. Transform. 2024, 3, e0000066. [Google Scholar] [CrossRef]
- Fiorentini, M.; Schillaci, C.; Denora, M.; Zenobi, S.; Deligios, P.A.; Santilocchi, R.; Perniola, M.; Ledda, L.; Orsini, R. Fertilization and Soil Management Machine Learning Based Sustainable Agronomic Prescriptions for Durum Wheat in Italy. Precis. Agric. 2024, 25, 2853–2880. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Kjeldahl, J. New Method for the Determination of Nitrogen. Sci. Am. 1883, 48, 101–102. [Google Scholar] [CrossRef]
- Kaminsky, R.; Muller, W.H. The Extraction of Soil Phytotoxins Using a Neutral EDTA Solution. Soil Sci. 1977, 124, 205. [Google Scholar] [CrossRef]
- Kaminsky, R.; Müller, W.H. A Recommendation against the Use of Alkaline Soil Extractions in the Study of Allelopathy. Plant Soil 1978, 49, 641–645. [Google Scholar] [CrossRef]
- ISO 10390; Soil, Treated Biowaste and Sludge. Determination of pH ISO (International Organization for Standardization): Geneva, Switzerland, 2021.
- ISO 14240; Soil Quality—Determination of Soil Microbial Biomass—Part 1: Substrate-Induced Respiration Method. ISO: Geneva, Switzerland, 1997.
- AACC. Approved Methods of the American Association of Cereal Chemists; American Association of Cereal Chemists: St. Paul, MN, USA, 2000. [Google Scholar]
- Dowell, F.E.; Maghirang, E.B.; Xie, F.; Lookhart, G.L.; Pierce, R.O.; Seabourn, B.W.; Bean, S.R.; Wilson, J.D.; Chung, O.K. Predicting Wheat Quality Characteristics and Functionality Using Near-Infrared Spectroscopy. Cereal Chem. 2006, 83, 529–536. [Google Scholar] [CrossRef]
- Weegels, P.L.; Hamer, R.J.; Schofield, J.D. Functional Properties of Wheat Glutenin. J. Cereal Sci. 1996, 23, 1–17. [Google Scholar] [CrossRef]
- Saini, R.K.; Prasad, P.; Lokesh, V.; Shang, X.; Shin, J.; Keum, Y.-S.; Lee, J.-H. Carotenoids: Dietary Sources, Extraction, Encapsulation, Bioavailability, and Health Benefits—A Review of Recent Advancements. Antioxidants 2022, 11, 795. [Google Scholar] [CrossRef] [PubMed]
- Box, J.D. Investigation of the Folin-Ciocalteau Phenol Reagent for the Determination of Polyphenolic Substances in Natural Waters. Water Res. 1983, 17, 511–525. [Google Scholar] [CrossRef]
- Velioglu, Y.S.; Mazza, G.; Gao, L.; Oomah, B.D. Antioxidant Activity and Total Phenolics in Selected Fruits, Vegetables, and Grain Products. J. Agric. Food Chem. 1998, 46, 4113–4117. [Google Scholar] [CrossRef]
- Djeridane, A.; Yousfi, M.; Nadjemi, B.; Boutassouna, D.; Stocker, P.; Vidal, N. Antioxidant Activity of Some Algerian Medicinal Plants Extracts Containing Phenolic Compounds. Food Chem. 2006, 97, 654–660. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Barreca, D.; Bellocco, E.; Caristi, C.; Leuzzi, U.; Gattuso, G. Flavonoid Composition and Antioxidant Activity of Juices from Chinotto (Citrus × Myrtifolia Raf.) Fruits at Different Ripening Stages. J. Agric. Food Chem. 2010, 58, 3031–3036. [Google Scholar] [CrossRef] [PubMed]
- Castellari, M.P.; Poffenbarger, H.J.; Van Sanford, D.A. Sulfur Fertilization Effects on Protein Concentration and Yield of Wheat: A Meta-Analysis. Field Crops Res. 2023, 302, 109061. [Google Scholar] [CrossRef]
- Narayan, O.P.; Kumar, P.; Yadav, B.; Dua, M.; Johri, A.K. Sulfur Nutrition and Its Role in Plant Growth and Development. Plant Signal. Behav. 2023, 18, 2030082. [Google Scholar] [CrossRef]
- Bustamante, M.A.; Moral, R.; Paredes, C.; Pérez-Espinosa, A.; Moreno-Caselles, J.; Pérez-Murcia, M.D. Agrochemical Characterisation of the Solid By-Products and Residues from the Winery and Distillery Industry. Waste Manag. 2008, 28, 372–380. [Google Scholar] [CrossRef]
- Shu, X.; He, J.; Zhou, Z.; Xia, L.; Hu, Y.; Zhang, Y.; Zhang, Y.; Luo, Y.; Chu, H.; Liu, W.; et al. Organic Amendments Enhance Soil Microbial Diversity, Microbial Functionality and Crop Yields: A Meta-Analysis. Sci. Total Environ. 2022, 829, 154627. [Google Scholar] [CrossRef]
- Dincă, L.C.; Grenni, P.; Onet, C.; Onet, A. Fertilization and Soil Microbial Community: A Review. Appl. Sci. 2022, 12, 1198. [Google Scholar] [CrossRef]
- Zhang, Z.; He, P.; Hao, X.; Li, L.-J. Long-Term Mineral Combined with Organic Fertilizer Supports Crop Production by Increasing Microbial Community Complexity. Appl. Soil Ecol. 2023, 188, 104930. [Google Scholar] [CrossRef]
- Pei, B.; Liu, T.; Xue, Z.; Cao, J.; Zhang, Y.; Yu, M.; Liu, E.; Xing, J.; Wang, F.; Ren, X.; et al. Effects of Biofertilizer on Yield and Quality of Crops and Properties of Soil Under Field Conditions in China: A Meta-Analysis. Agriculture 2025, 15, 1066. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Q.; Li, C. Organic Fertilizer Has a Greater Effect on Soil Microbial Community Structure and Carbon and Nitrogen Mineralization than Planting Pattern in Rainfed Farmland of the Loess Plateau. Front. Environ. Sci. 2023, 11, 1232527. [Google Scholar] [CrossRef]
- Basharat, Z.; Basharat, B.; Noor, M.; Batool, Z. Citrus Waste in Agriculture: Fertilizers and Soil Amendments. In Valorization of Citrus Food Waste; Chauhan, A., Islam, F., Imran, A., Singh Aswal, J., Eds.; Springer Nature: Cham, Switzerland, 2025; pp. 335–349. ISBN 978-3-031-77999-2. [Google Scholar]
- Ma, Y.; Zhang, S.; Feng, D.; Duan, N.; Rong, L.; Wu, Z.; Shen, Y. Effect of Different Doses of Nitrogen Fertilization on Bioactive Compounds and Antioxidant Activity of Brown Rice. Front. Nutr. 2023, 10, 1071874. [Google Scholar] [CrossRef] [PubMed]
- Nowak, R.; Szczepanek, M.; Kobus-Cisowska, J.; Stuper-Szablewska, K.; Dziedziński, M.; Błaszczyk, K. Profile of Phenolic Compounds and Antioxidant Activity of Organically and Conventionally Grown Black-Grain Barley Genotypes Treated with Biostimulant. PLoS ONE 2023, 18, e0288428. [Google Scholar] [CrossRef] [PubMed]
CTR | NPK | HM | RecOrgFert | |
---|---|---|---|---|
2023 | ||||
pH | 8.0 aA ± 0.1 | 7.9 bA ± 0.1 | 7.9 bA ± 0.1 | 7.9 bA ± 0.1 |
OC | 2.32 cA ± 0.15 | 4.00 aA ± 0.20 | 3.44 bA ± 0.18 | 2.34 cB ± 0.15 |
OM | 4.0 cA ± 0.25 | 6.90 aA ± 0.30 | 5.93 bA ± 0.28 | 4.03 cB ± 0.25 |
C/N | 19.33 bA ± 1.2 | 25.00 aB ± 1.5 | 22.93 aA ± 1.4 | 18.00 bB ± 1.0 |
CEC | 12.73 bB ± 1.0 | 10.72 bB ± 1.1 | 13.60 aB ± 1.2 | 10.71 bB ± 1.0 |
Tot N | 0.12 bB ± 0.01 | 0.16 aA± 0.01 | 0.15 aA ± 0.01 | 0.13 bA ± 0.01 |
EC | 0.37 bB ± 0.03 | 0.40 bB ± 0.02 | 0.40 bB ± 0.02 | 0.43 aA ± 0.02 |
WC | 13.10 abA ± 1.5 | 11.10 bA ± 1.3 | 12.00 abA ± 1.4 | 16.40 aA ± 1.8 |
2024 | ||||
pH | 8.0 aA ± 0.1 | 7.9 bA ± 0.1 | 7.7 cA ± 0.1 | 7.6 cB ± 0.1 |
OC | 2.5 cA ± 0.16 | 4.10 aA ± 0.20 | 3.0 bB ± 0.16 | 3.2 bA ± 0.18 |
OM | 4.4 cA ± 0.28 | 7.1 aA ± 0.35 | 5.2 bB ± 0.28 | 5.5 bA ± 0.30 |
C/N | 14.2 cB ± 1.2 | 29.3 aA ± 1.6 | 23.4 bA ± 1.3 | 29.0 aA ± 1.5 |
CEC | 22.8 cA ± 2.0 | 23.4 bcA ± 2.1 | 28.9 aA ± 2.3 | 24.1 abA ± 2.2 |
Tot N | 0.18 aA ± 0.02 | 0.14 bA ± 0.01 | 0.13 bA ± 0.01 | 0.11 cA ± 0.01 |
EC | 0.82 aA ± 0.05 | 0.50 bA ± 0.03 | 0.57 bA ± 0.03 | 0.44 bA ± 0.02 |
WC | 13.9 bA ± 1.5 | 12.0 bA ± 1.4 | 14.2 abA ± 1.5 | 14.9 aA ± 1.6 |
CTR | NPK | HM | RecOrgFert | |
---|---|---|---|---|
2023 | ||||
Plant height | 176.0 bA ± 4.5 | 202.0 aA ± 5.0 | 203.0 aA ± 4.8 | 181.0 abA ± 4.3 |
Seed/ear | 35 bA ± 3 | 41 aB ± 3 | 37 bA ± 3 | 42 aB ± 2 |
Yield | 0.177 abA ± 0.018 | 0.198 aA ± 0.015 | 0.175 abA ± 0.017 | 0.157 bA ± 0.016 |
Dry Seed | 0.7 bA ± 0.1 | 1.0 abA ± 0.1 | 2.2 aA ± 0.2 | 1.1 abA ± 0.1 |
Proteins | 12.0 bA ± 0.8 | 12.3 abB ± 0.9 | 10.5 cB ± 0.8 | 15.1 aA ± 1.0 |
Dry gluten | 14.1 bB ± 1.0 | 21.6 aA ± 1.2 | 18.9 aA ± 1.1 | 20.0 aB ± 1.1 |
β-carotene | 0.50 b B ± 0.05 | 0.61 abB ± 0.06 | 0.66 aB ± 0.07 | 0.62 abB ± 0.06 |
TP | 19.87 cA ± 0.85 | 21.76 bA ± 0.92 | 22.31 abA ± 0.97 | 23.02 aA ± 1.04 |
TF | 10.02 cB ± 0.47 | 18.89 a B ± 0.76 | 16.94 bA ± 0.73 | 17.62 aB ± 0.81 |
DPPH | 32.85 bA ± 1.22 | 35.01 abA ± 1.35 | 35.89 aA ± 1.33 | 36.45 aA ± 1.41 |
ABTS+ | 23.67 cB ± 1.03 | 24.02 cA ± 1.18 | 24.88 bB ± 1.15 | 25.91 aA ± 1.26 |
2024 | ||||
Plant height | 161.0 cB ± 4.0 | 190.2 aB ± 4.5 | 186.8 aB ± 4.2 | 173.0 bA ± 4.1 |
Seed/ear | 36 bA ± 3 | 53 aA ± 4 | 36 bA ± 3 | 50 aA ± 3 |
Yield | 0.165 abA ± 0.06 | 0.175 aB ± 0.07 | 0.139 bB ± 0.013 | 0.152 aA ± 0.05 |
Dry Seed | 0.5 abA ± 0.1 | 0.4 b B ± 0.1 | 1.1 aB ± 0.1 | 0.6 abB ± 0.1 |
Proteins | 12.8 bA ± 0.9 | 14.7 abA ± 1.1 | 14.9 aA ± 1.0 | 16.6 aA ± 1.2 |
Dry gluten | 18.0 bA ± 1.2 | 20.0 aA ± 1.1 | 17.8 bA ± 1.0 | 23.4 aA ± 1.3 |
β-carotene | 2.20 bA ± 0.20 | 2.32 abA ± 0.21 | 2.35 aA ± 0.22 | 2.29 abA ± 0.20 |
TP | 12.03 bB ± 0.56 | 11.37 bB ± 0.61 | 20.92 aB ± 1.02 | 19.65 aB ± 0.94 |
TF | 11.12 cA ± 0.49 | 19.91 aA ± 0.92 | 17.41 bA ± 0.87 | 22.74 aA ± 1.03 |
DPPH | 15.88 cB ± 0.88 | 23.45 bB ± 1.21 | 29.87 aB ± 1.38 | 26.12 abB ± 1.30 |
ABTS+ | 25.33 bA ± 1.11 | 26.12 abA ± 1.25 | 28.15 aA ± 1.33 | 27.03 aA ± 1.19 |
CTR | NPK | HM | RecOrgFert | |
---|---|---|---|---|
2023 | ||||
pH | 7.60 bA ± 0.12 | 7.80 aA ± 0.09 | 7.70 abA ± 0.08 | 7.80 aA ± 0.11 |
OC | 1.24 aA ± 0.18 | 0.95 bB ± 0.22 | 0.94 bA ± 0.19 | 0.97 bB ± 0.26 |
OM | 2.14 aA ± 0.31 | 1.64 bB ± 0.28 | 1.62 bA ± 0.24 | 1.67 bB ± 0.35 |
C/N | 0.12 aA ± 0.015 | 0.12 aA ± 0.018 | 0.13 aB ± 0.020 | 0.09 bA ± 0.012 |
CEC | 29.50 aA ± 3.20 | 27.90 bA ± 2.90 | 26.20 bA ± 3.40 | 19.30 cB ± 2.60 |
Tot N | 0.15 aA ± 0.025 | 0.11 bA ± 0.032 | 0.12 bA ± 0.035 | 0.09 cB ± 0.028 |
EC | 0.36 aB ± 0.08 | 0.34 aB ± 0.12 | 0.34 aB ± 0.11 | 0.33 aB ± 0.09 |
WC | 12.93 bA ± 2.10 | 11.21 bA ± 1.95 | 12.29 bA ± 2.25 | 15.98 aA ± 2.80 |
2024 | ||||
pH | 7.80 aA ± 0.14 | 7.80 aA ± 0.10 | 7.80 aA ± 0.11 | 7.80 aA ± 0.13 |
OC | 1.34 cA ± 0.31 | 1.87 aA ± 0.42 | 0.95 dA ± 0.24 | 1.64 aA ± 0.38 |
OM | 2.31 bA ± 0.12 | 3.22 aA ± 0.58 | 1.64 dA ± 0.12 | 2.93 aA ± 0.41 |
C/N | 0.14 bA ± 0.022 | 0.10 cA ± 0.016 | 0.20 aA ± 0.028 | 0.12 bA ± 0.019 |
CEC | 29.50 aA ± 2.10 | 27.10 aA ± 1.60 | 16.50 cB ± 1.40 | 26.1 aA ± 1.80 |
Tot N | 0.19 aA ± 0.045 | 0.18 aA ± 0.038 | 0.19 aA ± 0.042 | 0.20 aA ± 0.048 |
EC | 0.71 bA ± 0.15 | 0.69 bA ± 0.13 | 0.70 bA ± 0.14 | 0.91 aA ± 0.18 |
WC | 14.01 aA ± 1.40 | 12.12 aA ± 1.15 | 13.89 aA ± 2.50 | 13.97 aA ± 2.65 |
CTR | NPK | HM | RecOrgFert | |
---|---|---|---|---|
2023 | ||||
Plant height | 78.0 cA ± 4.50 | 105.00 aA ± 8.30 | 84.0 bA ± 4.20 | 101.0 aA ± 7 |
seed/ear | 36.0 bB ± 4.20 | 43.0 aA ± 5.80 | 37.0 bA ± 4.90 | 43.0 aA ± 6.10 |
Yield | 0.22 dA ± 0.31 | 0.32 aA ± 0.45 | 0.24 cA ± 0.36 | 0.29 bA ± 0.38 |
Dry See | 0.80 aA ± 0.045 | 0.80 aA ± 0.038 | 0.80 aA ± 0.041 | 0.80 aA ± 0.042 |
Proteins | 10.50 aB ± 1.80 | 11.30 aA ± 2.20 | 10.80 aA ± 2.10 | 10.60 aA ± 1.95 |
Dry Gluten | 7.00 aB ± 1.20 | 7.40 aB ± 1.45 | 6.80 aB ± 1.25 | 6.90 aB ± 1.30 |
β-carotene | 0.52 aB ± 0.085 | 0.63 aB ± 0.12 | 0.65 aB ± 0.11 | 0.64 aB ± 0.095 |
TP | 20.50 cA ± 0.88 | 22.41 abA ± 0.95 | 22.25 bA ± 0.93 | 22.54 aA ± 1.02 |
TF | 9.48 cB ± 0.41 | 19.76 aB ± 0.82 | 17.55 bA ± 0.73 | 18.31 aB ± 0.77 |
DPPH | 33.99 bA ± 1.25 | 34.95 bA ± 1.29 | 36.54 aA ± 1.31 | 37.09 aA ± 1.34 |
ABTS+ | 24.13 bA ± 1.08 | 23.88 bA ± 1.15 | 25.08 abA ± 1.17 | 26.29 aA ± 1.21 |
2024 | ||||
Plant height | 60.3 cB ± 7.80 | 89.6 aB ± 7.40 | 72.5 bB ± 5.30 | 87.7 aA ± 6.80 |
seed/ear | 38.0 bA ± 5.20 | 53.0 aA ± 7.30 | 35.0 bA ± 4.60 | 51.0 aA ± 6.90 |
Yield | 0.20 bA ± 0.19 | 0.33 aA ± 0.47 | 0.26 aA ± 0.27 | 0.30 aA ± 0.22 |
Dry Seed | 0.80 aA ± 0.052 | 0.80 aA ± 0.046 | 0.80 aA ± 0.044 | 0.80 aA ± 0.049 |
Proteins | 14.50 aA ± 2.60 | 14.80 aA ± 2.85 | 14.80 aA ± 2.75 | 15.20 aA ± 3.10 |
Dry Gluten | 12.10 aA ± 2.20 | 12.00 aA ± 2.35 | 11.70 aA ± 2.00 | 11.80 aA ± 2.10 |
β-carotene | 2.23 aA ± 0.28 | 2.31 aA ± 0.32 | 2.30 aA ± 0.29 | 2.34 aA ± 0.35 |
TP | 11.47 cB ± 0.52 | 11.09 cB ± 0.58 | 21.19 aA ± 1.01 | 20.53 aB ± 0.96 |
TF | 10.55 cA ± 0.46 | 20.80 aA ± 0.94 | 16.87 bA ± 0.88 | 23.17 aA ± 1.01 |
DPPH | 14.95 cB ± 0.85 | 22.93 bB ± 1.17 | 35.21 aA ± 1.39 | 35.25 aA ± 1.26 |
ABTS+ | 24.82 bA ± 1.10 | 25.80 bA ± 1.13 | 27.44 aA ± 1.24 | 28.55 aA ± 1.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muscolo, A.; Zoukidis, K.; Vergos, E.; Marra, F.A.; Santoro, L.; Oliva, M.; Battaglia, S.; Maffia, A.; Mallamaci, C. Impacts of Conventional and Agri-Food Waste-Derived Fertilizers on Durum Wheat Yield, Grain Quality, and Soil Health: A Two-Year Field Study in Greece and Southern Italy. Appl. Sci. 2025, 15, 10292. https://doi.org/10.3390/app151810292
Muscolo A, Zoukidis K, Vergos E, Marra FA, Santoro L, Oliva M, Battaglia S, Maffia A, Mallamaci C. Impacts of Conventional and Agri-Food Waste-Derived Fertilizers on Durum Wheat Yield, Grain Quality, and Soil Health: A Two-Year Field Study in Greece and Southern Italy. Applied Sciences. 2025; 15(18):10292. https://doi.org/10.3390/app151810292
Chicago/Turabian StyleMuscolo, Adele, Kostantinos Zoukidis, Evangelous Vergos, Federica Alessia Marra, Ludovica Santoro, Mariateresa Oliva, Santo Battaglia, Angela Maffia, and Carmelo Mallamaci. 2025. "Impacts of Conventional and Agri-Food Waste-Derived Fertilizers on Durum Wheat Yield, Grain Quality, and Soil Health: A Two-Year Field Study in Greece and Southern Italy" Applied Sciences 15, no. 18: 10292. https://doi.org/10.3390/app151810292
APA StyleMuscolo, A., Zoukidis, K., Vergos, E., Marra, F. A., Santoro, L., Oliva, M., Battaglia, S., Maffia, A., & Mallamaci, C. (2025). Impacts of Conventional and Agri-Food Waste-Derived Fertilizers on Durum Wheat Yield, Grain Quality, and Soil Health: A Two-Year Field Study in Greece and Southern Italy. Applied Sciences, 15(18), 10292. https://doi.org/10.3390/app151810292