Unsaturated Fatty Acid Oil-Based Microdroplets: A Promising Novel Class of Microdroplets
Abstract
1. Introduction
2. Materials and Methods
2.1. Fluid Phases
2.2. Microfluidic Chip
2.3. Visualization and Analysis
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whitesides, G. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef]
- Hang, L.; Cheng, Y.; Zhao, Y. Emerging droplet microfluidics. Chem. Rev. 2017, 117, 7964–8040. [Google Scholar] [CrossRef]
- Fedorets, A.A.; Bormashenko, E.; Dombrovsky, L.A.; Nosonovsky, M. Droplet clusters: Nature-inspired biological reactors and aerosols. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2019, 377, 20190121. [Google Scholar] [CrossRef]
- Park, S.Y.; Kalim, S.; Callahan, C.; Teitell, M.A.; Chiou, E.P. A light-induced dielectrophoretic droplet manipulation platform. Lab Chip 2009, 9, 3228–3235. [Google Scholar] [CrossRef] [PubMed]
- Zaman, M.A.; Wu, M.; Ren, W.; Hesselink, L. Expanding medium compatibility with lateral-field optoelectronic tweezers. Appl. Phys. Lett. 2025, 127, 101101. [Google Scholar] [CrossRef]
- Zaman, M.A.; Padhy, P.; Wu, M.; Ren, W.; Jensen, M.A.; Davis, R.W.; Hesselink, L. Controlled transport of individual microparticles using dielectrophoresis. Langmuir 2023, 39, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Velve-Casquillas, G.; Le Berre, M.; Piel, M.; Tran, P.T. Microfluidic tools for cell biological research. Nano Today 2010, 5, 28–47. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Zhao, S.; Chen, W.; Zhang, Q.; Chai, Y. Self-assembly of nanoparticles with stimulated responses at liquid interfaces. Nano Today 2024, 54, 102073. [Google Scholar] [CrossRef]
- Saeki, D.; Sugiura, S.; Kanamori, T.; Sato, S.; Ichikawa, S. Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer. Lab Chip 2010, 10, 357–362. [Google Scholar] [CrossRef]
- Anna, S.L.; Bontoux, N.; Stone, H.A. Formation of dispersions using “flow focusing” in microchannels. Appl. Phys. Lett. 2003, 82, 364–366. [Google Scholar] [CrossRef]
- Guillot, P.; Colin, A. Stability of parallel flows in a microchannel after a T junction. Phys. Rev. E 2005, 72, 066301. [Google Scholar] [CrossRef]
- Teh, S.Y.; Lin, R.; Hung, L.H.; Lee, A.P. Droplet microfluidics. Lab Chip 2008, 8, 198–220. [Google Scholar] [CrossRef]
- Stone, H.A.; Stroock, A.D.; Ajdari, A. Engineering flows in small devices: Microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 2004, 36, 381–411. [Google Scholar] [CrossRef]
- Song, H.; Chen, D.L.; Ismagilov, R.F. Reactions in droplets in microfluidic channels. Angew. Chem. Int. Ed. 2006, 45, 7336–7356. [Google Scholar] [CrossRef] [PubMed]
- Theberge, A.B.; Courtois, F.; Schaerli, Y.; Fischlechner, M.; Abell, C.; Hollfelder, F.; Huck, W.T.S. Microdroplets in microfluidics: An evolving platform for discoveries in chemistry and biology. Angew. Chem. Int. Ed. 2010, 49, 5846–5868. [Google Scholar] [CrossRef] [PubMed]
- Macosko, E.Z.; Basu, A.; Satija, R.; Nemesh, J.; Shekhar, K.; Goldman, M.; Tirosh, I.; Bialas, A.R.; Kamitaki, N.; Martersteck, E.M.; et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 2015, 161, 1202–1214. [Google Scholar] [CrossRef]
- Zheng, F.Y.; Fu, F.F.; Cheng, Y.; Wang, C.; Zhao, Y.; Gu, Z.Z. Organ-on-a-chip systems: Microengineering to biomimic living systems. Small 2016, 12, 2253–2282. [Google Scholar] [CrossRef]
- Cerdeira, A.T.S.; Campos, J.B.L.M.; Miranda, J.M.; Araújo, J.D.P. Review on microbubbles and microdroplets flowing through microfluidic geometrical elements. Micromachines 2020, 11, 201. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, L. Experimental investigation of bubble formation in a microfluidic T-shaped junction. Nanoscale Microscale Thermophys. Eng. 2009, 13, 228–242. [Google Scholar] [CrossRef]
- Christopher, G.F.; Anna, S.L. Microfluidic flow phenomena. J. Phys. D Appl. Phys. 2007, 40, R319. [Google Scholar] [CrossRef]
- Li, X.-B.; Li, F.-C.; Yang, J.-C.; Kinoshita, H.; Oishi, M.; Oshima, M. Study on the mechanism of droplet formation in T-junction microchannel. Chem. Eng. Sci. 2012, 69, 340–351. [Google Scholar] [CrossRef]
- Sivasamy, J.; Wong, T.-N.; Nguyen, N.-T.; Kao, L.T.-H. An investigation on the mechanism of droplet formation in a microfluidic T-junction. Microfluid. Nanofluidics 2011, 11, 1–10. [Google Scholar] [CrossRef]
- Wacker, V.K.; Parashar, M.A.M.; Gijs, M. Influence of oil type and viscosity on droplet size in a flow focusing microfluidic device. Procedia Chem. 2009, 1, 1083–1086. [Google Scholar] [CrossRef]
- Mazutis, L.; Griffiths, A.D. Selective droplet coalescence using microfluidic systems. Lab Chip 2012, 12, 1800–1806. [Google Scholar] [CrossRef]
- Gerecsei, T.; Ungai-Salánki, R.; Saftics, A.; Derényi, I.; Horvath, R.; Szabó, B. Characterization of the dissolution of water microdroplets in oil. Colloids Interfaces 2022, 6, 14. [Google Scholar] [CrossRef]
- Mohamadzade Sani, H.; Falahi, M.; Aieneh, K.; Hosseinalipour, S.M.; Salehi, S.; Asiaei, S. Performance optimization of droplet formation and break up within a microfluidic device—Numerical and experimental evaluation. Int. J. Heat Fluid Flow 2024, 106, 109266. [Google Scholar] [CrossRef]
- Zhu, B.; Du, Z.; Dai, Y.; Kitaguchi, T.; Behrens, S.; Seelig, B. Nanodroplet-based reagent delivery into water-in-fluorinated-oil droplets. Biosensors 2023, 13, 768. [Google Scholar] [CrossRef]
- Chowdhury, M.S.; Zheng, W.; Kumari, S.; Heyman, J.; Zhang, X.; Dey, P.; Weitz, D.A.; Haag, R. Dendronized fluorosurfactant for highly stable water-in-fluorinated-oil emulsions. Nat. Commun. 2019, 10, 4546. [Google Scholar] [CrossRef] [PubMed]
- Holtze, C.; Rowat, A.C.; Agresti, J.J.; Hutchison, J.B.; Angilè, F.E.; Schmitz, C.H.J.; Köster, S.; Duan, H.; Humphry, K.J.; Scanga, R.A.; et al. Biocompatible surfactants for water-in-fluorocarbon emulsions. Lab Chip 2008, 8, 1632–1639. [Google Scholar] [CrossRef] [PubMed]
- Scanga, R.; Chrastecka, L.; Mohammad, R.; Meadows, A.; Quan, P.-L.; Brouzes, E. Click-chemistry approaches to expand PEG-based fluorinated surfactants for droplet microfluidics. RSC Adv. 2018, 8, 12960–12974, Erratum in RSC Adv. 2019, 9, 27625–27639. [Google Scholar] [CrossRef]
- Laos, R.; Benner, S. Fluorinated oil–surfactant mixtures with the density of water. PLoS ONE 2022, 17, e0252361. [Google Scholar] [CrossRef]
- DeJournette, C.J.; Kim, J.; Medlen, H.; Li, X.; Vincent, L.J.; Easley, C.J. Creating biocompatible oil-water interfaces without synthesis: Direct interactions between primary amines and carboxylated perfluorocarbon surfactants. Anal. Chem. 2013, 85, 10556–10564. [Google Scholar] [CrossRef]
- Chiu, Y.-L.; Chan, H.F.; Phua, K.K.L.; Zhang, Y.; Juul, S.; Knudsen, B.R.; Ho, Y.-P.; Leong, K.W. Synthesis of fluorosurfactants for emulsion-based biological applications. ACS Nano 2014, 8, 3913–3920. [Google Scholar] [CrossRef]
- Prastowo, A.; Feuerborn, A.; Cook, P.R.; Walsh, E.J. Biocompatibility of fluids for multiphase drops-in-drops microfluidics. Biomed. Microdevices 2016, 18, 114. [Google Scholar] [CrossRef]
- Bucław, M.; Majewska, D.; Szczerbińska, D.; Ligocki, M. The influence of age and gender on emu (Dromaius novaehollandiae) fat. Sci. Rep. 2020, 10, 11082. [Google Scholar] [CrossRef] [PubMed]
- Lan, M.; Li, L.; Luo, S.; Chen, J.; Yi, X.; Zhang, X.; Li, B.; Chen, Z. Chemical characterization and in vivo toxicological safety evaluation of emu oil. Nutrients 2022, 14, 2238. [Google Scholar] [CrossRef]
- Han, Y.; Cao, X. Research progress of perfluoroalkyl substances in edible oil: A review. Foods 2023, 12, 2624. [Google Scholar] [CrossRef] [PubMed]
- United States Environmental Protection Agency. Our Current Understanding of the Human Health and Environmental Risks of PFAS. 2024. Available online: https://www.epa.gov/pfas/our-current-understanding-human-health-and-environmental-risks-pfas (accessed on 1 September 2025).
- Microfluidic Chipshop. Droplet Generator Chips. Available online: https://www.microfluidic-chipshop.com/catalogue/microfluidic-chips/polymer-chips/droplet-generator-chips/droplet-generator-chips-multi-channel-design-fluidic-285/ (accessed on 1 September 2025).
- Nunes, J.K.; Tsai, S.S.H.; Wan, J.; Stone, H.A. Dripping and jetting in microfluidic multiphase flows applied to particle and fibre synthesis. J. Phys. D Appl. Phys. 2013, 46, 114002. [Google Scholar] [CrossRef] [PubMed]
- Chumpitaz, L.D.D.; Coutinho, L.F.; Meirelles, A.J.A. Surface tension of fatty acids and triglycerides. J. Am. Oil Chem. Soc. 1999, 76, 379–382. [Google Scholar] [CrossRef]
(A) Emu Oil | ||||
Flow Rate (µL/h) Continuous | Flow Rate (µL/h) Disperse | Capillary Number | Qc/Qd | Droplet Size (mm) [Mean +/− SD] |
30 | 900 | 0.001 | 0.03 | 0.621 ± 0.075 (n = 100) |
50 | 900 | 0.002 | 0.05 | 0.302 ± 0.012 (n = 100) |
100 | 900 | 0.004 | 0.11 | 0.216 ± 0.018 (n = 100) |
200 | 900 | 0.008 | 0.22 | 0.178 ± 0.005 (n = 73) |
200 | 600 | 0.008 | 0.33 | Jetting regime |
(B) Olive Oil | ||||
Flow Rate (µL/h) Continuous | Flow Rate (µL/h) Disperse | Capillary Number | Qc/Qd | Droplet Size (mm) [Mean +/− SD] |
300 | 200 | 0.017 | 1.50 | 0.271 ± 0.072 (n = 100) |
400 | 200 | 0.022 | 2.00 | 0.216 ± 0.018 (n = 100) |
500 | 200 | 0.028 | 2.50 | 0.193 ± 0.010 (n = 100) |
600 | 200 | 0.034 | 3.00 | Jetting regime |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shojania Feizabadi, M.; Alejilat, R.; Ataalla, A. Unsaturated Fatty Acid Oil-Based Microdroplets: A Promising Novel Class of Microdroplets. Appl. Sci. 2025, 15, 10290. https://doi.org/10.3390/app151810290
Shojania Feizabadi M, Alejilat R, Ataalla A. Unsaturated Fatty Acid Oil-Based Microdroplets: A Promising Novel Class of Microdroplets. Applied Sciences. 2025; 15(18):10290. https://doi.org/10.3390/app151810290
Chicago/Turabian StyleShojania Feizabadi, Mitra, Ramiz Alejilat, and Amy Ataalla. 2025. "Unsaturated Fatty Acid Oil-Based Microdroplets: A Promising Novel Class of Microdroplets" Applied Sciences 15, no. 18: 10290. https://doi.org/10.3390/app151810290
APA StyleShojania Feizabadi, M., Alejilat, R., & Ataalla, A. (2025). Unsaturated Fatty Acid Oil-Based Microdroplets: A Promising Novel Class of Microdroplets. Applied Sciences, 15(18), 10290. https://doi.org/10.3390/app151810290