Prevention of Electrolyte Degradation in Lithium–Oxygen Batteries Using Highly Concentrated Electrolytes
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. Characterization
2.3. Electrolyte Preparation
2.4. MWCNT Cathode Preparation
2.5. Cell Assembly
2.6. Electrochemical Characterization
3. Results and Discussion
3.1. Electrolyte Solvation Structure
3.2. Concentrated Electrolyte Characterization
3.3. Electrolyte Degradation
3.4. Concentrated Electrolyte Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Tripachev, O.V.; Panchenko, N.V.; Korchagin, O.V.; Radina, M.V.; Dolgopolov, S.V.; Grafov, O.Y.; Bogdanovskaya, V.A. A Novel Pt/MoS2/CNT Composite Catalyst for the Positive Electrode of a Li-O2 Battery. J. Electroanal. Chem. 2021, 897, 115554. [Google Scholar] [CrossRef]
- Fujigaya, T.; Kanamori, R.; Hirata, S.; Morita, J.; Matsumoto, M.; Eguchi, M.; Jang, I.-C.; Ishihara, T.; Nakashima, N. Effect of Nitrogen-Containing Polymer Wrapped around Carbon Nanotubes for Li–O2 Battery Cathode. Polym. J. 2019, 51, 921–927. [Google Scholar] [CrossRef]
- Kim, H.; Lee, H.; Kim, M.; Bae, Y.; Baek, W.; Park, K.; Park, S.; Kim, T.; Kwon, H.; Choi, W.; et al. Flexible Free-Standing Air Electrode with Bimodal Pore Architecture for Long-Cycling Li-O2 Batteries. Carbon 2017, 117, 454–461. [Google Scholar] [CrossRef]
- Lee, H.; Lee, D.J.; Kim, M.; Kim, H.; Cho, Y.S.; Kwon, H.J.; Lee, H.C.; Park, C.R.; Im, D. High-Energy Density Li–O2 Battery with a Polymer Electrolyte-Coated CNT Electrode via the Layer-by-Layer Method. Acs Appl. Mater. Inter. 2020, 12, 17385–17395. [Google Scholar] [CrossRef]
- Algethami, N.; Alkhammash, H.I.; Sultana, F.; Mushtaq, M.; Zaman, A.; Ali, A.; Althubeiti, K.; Yang, Q. Preparation of RuO2/CNTs by Atomic Layer Deposition and Its Application as Binder Free Cathode for Polymer Based Li-O2 Battery. Int. J. Electrochem. Sci. 2022, 17, 220967. [Google Scholar] [CrossRef]
- Levchenko, S.; Marangon, V.; Bellani, S.; Pasquale, L.; Bonaccorso, F.; Pellegrini, V.; Hassoun, J. Influence of Ion Diffusion on the Lithium–Oxygen Electrochemical Process and Battery Application Using Carbon Nanotubes–Graphene Substrate. ACS Appl. Mater. Interfaces 2023, 15, 39218–39233. [Google Scholar] [CrossRef]
- Chen, Y.; Freunberger, S.A.; Peng, Z.; Bardé, F.; Bruce, P.G. Li–O2 Battery with a Dimethylformamide Electrolyte. J. Am. Chem. Soc. 2012, 134, 7952–7957. [Google Scholar] [CrossRef]
- Sharon, D.; Afri, M.; Noked, M.; Garsuch, A.; Frimer, A.A.; Aurbach, D. Oxidation of Dimethyl Sulfoxide Solutions by Electrochemical Reduction of Oxygen. J. Phys. Chem. Lett. 2013, 4, 3115–3119. [Google Scholar] [CrossRef]
- Freunberger, S.A.; Chen, Y.; Peng, Z.; Griffin, J.M.; Hardwick, L.J.; Bardé, F.; Novák, P.; Bruce, P.G. Reactions in the Rechargeable Lithium–O2 Battery with Alkyl Carbonate Electrolytes. J. Am. Chem. Soc. 2011, 133, 8040–8047. [Google Scholar] [CrossRef]
- Guo, H.; Luo, W.; Chen, J.; Chou, S.; Liu, H.; Wang, J. Review of Electrolytes in Nonaqueous Lithium-Oxygen Batteries. Adv. Sustain. Syst. 2018, 2, 1700183. [Google Scholar] [CrossRef]
- Yao, X.; Dong, Q.; Cheng, Q.; Wang, D. Why Do Lithium–Oxygen Batteries Fail: Parasitic Chemical Reactions and Their Synergistic Effect. Angew. Chem. Int. Ed. 2016, 55, 11344–11353. [Google Scholar] [CrossRef]
- Borodin, O.; Self, J.; Persson, K.A.; Wang, C.; Xu, K. Uncharted Waters: Super-Concentrated Electrolytes. Joule 2020, 4, 69–100. [Google Scholar] [CrossRef]
- Li, M.; Wang, C.; Chen, Z.; Xu, K.; Lu, J. New Concepts in Electrolytes. Chem. Rev. 2020, 120, 6783–6819. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Yamada, A. Review—Superconcentrated Electrolytes for Lithium Batteries. J. Electrochem. Soc. 2015, 162, A2406–A2423. [Google Scholar] [CrossRef]
- McKinnon, W.R.; Dahn, J.R. How to Reduce the Cointercalation of Propylene Carbonate in Li x ZrS2 and Other Layered Compounds. J. Electrochem. Soc. 1985, 132, 364–366. [Google Scholar] [CrossRef]
- Yamada, Y.; Furukawa, K.; Sodeyama, K.; Kikuchi, K.; Yaegashi, M.; Tateyama, Y.; Yamada, A. Unusual Stability of Acetonitrile-Based Superconcentrated Electrolytes for Fast-Charging Lithium-Ion Batteries. J. Am. Chem. Soc. 2014, 136, 5039–5046. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Henderson, W.A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J.-G. High Rate and Stable Cycling of Lithium Metal Anode. Nat. Commun. 2015, 6, 6362. [Google Scholar] [CrossRef]
- Suo, L.; Hu, Y.-S.; Li, H.; Armand, M.; Chen, L. A New Class of Solvent-in-Salt Electrolyte for High-Energy Rechargeable Metallic Lithium Batteries. Nat. Commun. 2013, 4, 1481. [Google Scholar] [CrossRef]
- Tatara, R.; Kwabi, D.G.; Batcho, T.P.; Tulodziecki, M.; Watanabe, K.; Kwon, H.-M.; Thomas, M.L.; Ueno, K.; Thompson, C.V.; Dokko, K.; et al. Oxygen Reduction Reaction in Highly Concentrated Electrolyte Solutions of Lithium Bis(Trifluoromethanesulfonyl)Amide/Dimethyl Sulfoxide. J. Phys. Chem. C 2017, 121, 9162–9172. [Google Scholar] [CrossRef]
- Liu, B.; Xu, W.; Yan, P.; Kim, S.T.; Engelhard, M.H.; Sun, X.; Mei, D.; Cho, J.; Wang, C.; Zhang, J. Stabilization of Li Metal Anode in DMSO-Based Electrolytes via Optimization of Salt–Solvent Coordination for Li–O2 Batteries. Adv. Energy Mater. 2017, 7, 1602605. [Google Scholar] [CrossRef]
- Womble, M.D.; McKenzie, K.R.; Wagner, M.J. Thick Film Formation on Li-O2 Cathodes—Breaking the True Capacity Barrier. Sci. Rep. 2025, 15, 5868. [Google Scholar] [CrossRef] [PubMed]
- Womble, M.D.; Adebayo, C.; Cascio, S.; Wagner, M.J. Synergistic Enhancement of Li-O2 Battery Capacity and Cycle Life Using Carbon Nanochain/Multiwall Carbon Nanotube Composites. Materials 2025, 18, 3897. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Takazawa, Y.; Miyazaki, K.; Abe, T. Electrochemical Lithium Intercalation into Graphite in Dimethyl Sulfoxide-Based Electrolytes: Effect of Solvation Structure of Lithium Ion. J. Phys. Chem. C 2010, 114, 11680–11685. [Google Scholar] [CrossRef]
- Alía, J.M.; Edwards, H.G.M. Ion Solvation and Ion Association in Lithium Trifluoromethanesulfonate Solutions in Three Aprotic Solvents. An FT-Raman Spectroscopic Study. Vib. Spectrosc. 2000, 24, 185–200. [Google Scholar] [CrossRef]
- Mahne, N.; Fontaine, O.; Thotiyl, M.O.; Wilkening, M.; Freunberger, S.A. Mechanism and Performance of Lithium–Oxygen Batteries—A Perspective. Chem. Sci. 2017, 8, 6716–6729. [Google Scholar] [CrossRef]
- Burke, C.M.; Pande, V.; Khetan, A.; Viswanathan, V.; McCloskey, B.D. Enhancing Electrochemical Intermediate Solvation through Electrolyte Anion Selection to Increase Nonaqueous Li–O2 Battery Capacity. Proc. Natl. Acad. Sci. USA 2015, 112, 9293–9298. [Google Scholar] [CrossRef]
- Itkis, D.M.; Semenenko, D.A.; Kataev, E.Y.; Belova, A.I.; Neudachina, V.S.; Sirotina, A.P.; Hävecker, M.; Teschner, D.; Knop-Gericke, A.; Dudin, P.; et al. Reactivity of Carbon in Lithium–Oxygen Battery Positive Electrodes. Nano Lett. 2013, 13, 4697–4701. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Womble, M.D.; Cascio, S.; Wagner, M.J. Prevention of Electrolyte Degradation in Lithium–Oxygen Batteries Using Highly Concentrated Electrolytes. Appl. Sci. 2025, 15, 10233. https://doi.org/10.3390/app151810233
Womble MD, Cascio S, Wagner MJ. Prevention of Electrolyte Degradation in Lithium–Oxygen Batteries Using Highly Concentrated Electrolytes. Applied Sciences. 2025; 15(18):10233. https://doi.org/10.3390/app151810233
Chicago/Turabian StyleWomble, Michael D., Silas Cascio, and Michael J. Wagner. 2025. "Prevention of Electrolyte Degradation in Lithium–Oxygen Batteries Using Highly Concentrated Electrolytes" Applied Sciences 15, no. 18: 10233. https://doi.org/10.3390/app151810233
APA StyleWomble, M. D., Cascio, S., & Wagner, M. J. (2025). Prevention of Electrolyte Degradation in Lithium–Oxygen Batteries Using Highly Concentrated Electrolytes. Applied Sciences, 15(18), 10233. https://doi.org/10.3390/app151810233