Fatigue Testing in Asphalt Mixes: Emerging Trends and Findings from an Integrated Literature Review
Abstract
1. Introduction
2. Background
3. Methodology
3.1. Search Terms and Data Selection
3.2. Dataset Analysis
4. Results and Discussion
4.1. Bibliometric Analysis
- (i)
- Red (Iran, Vietnam, France, Italy, Australia, and Egypt): The dataset indicated that these countries have a well-defined relationship with the USA and with each other.
- (ii)
- Green (Iraq, Malaysia, Pakistan, Saudi Arabia, and Spain): The dataset indicated a strong relationship with China.
- (iii)
- Blue (Hong Kong, Turkey, and UK): The dataset indicated that, with mutual independence, these countries have cross-collaborations with China.
- (iv)
- Yellow (China, Germany, and India): The dataset indicated that these countries are very productive and work closely together.
- (v)
- Purple (Brazil and USA): This is the only cluster in the dataset which was formed by just two countries, highlighting the two collaborations carried out.
4.2. Textual Analysis
4.3. Systematic Review
5. Conclusions
- (i)
- Trends identified in the literature survey indicate that scientific production grew at a rate of per year (2020–2024), which presumably has been driven by technical and sustainable demands.
- (ii)
- The literature survey found that China leads the scientific field in volume and impact of publications. Highlighting that science does not operate in isolation, overall, there is a mismatch between scientific production, scientific impact, and the WEF road quality index.
- (iii)
- Five thematic clusters were identified in the textual analysis: pavement management and sustainable policies, mechanical characterization and test protocols, binder modification techniques, performance modeling and prediction, and functional and environmental evaluation of innovative mixes.
- (iv)
- Consistent with the 2030 Agenda, a trend was identified toward themes focusing on sustainable solutions such as reclaimed asphalt pavement (RAP), warm mix asphalt, and crumb rubber, among others.
- (v)
- Polymeric modifiers, such as styrene–butadiene–styrene (SBS), and modification with different fibers were highlighted in the dataset.
- (vi)
- The systematic review revealed a tendency to omit methodological information in the studies analyzed, in addition to confirming the existence of significant variability in the experimental procedures adopted.
- (vii)
- Despite known limitations, the indirect tensile (ITT) fatigue test was the most used in the dataset, followed by the four-point bending (4PB).
- (viii)
- Given the dispersion of results intrinsic to fatigue and asphalt mixes, rigorous statistical approaches should be further explored in future work, contributing to more robust fatigue performance predictions and optimized pavement design practices.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
2PB | Two-point bending |
3PB | Three-point bending |
4PB | Four-point bending |
5PB | Five-point bending |
AASHTO | American Association of State and Highway Transportation Officials |
AMPT | Asphalt Mixture Performance Tester |
CV | Coefficient of variation |
FCA | Factorial correspondence analysis |
IRaMuTeQ | Interface de R pour les Analyses Multidimensionnelles de Textes et de Questionnaires |
ITT | Indirect tensile |
JIF | Journal Impact Factor |
LVE | Linear viscoelasticity |
MCP | Multiple-country publications |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
RAP | Reclaimed asphalt pavement |
S-VECD | Simplified viscoelastic continuum damage |
SBR | Styrene–butadiene rubber |
SBS | Styrene–butadiene–styrene |
SCB | Semi-circular bending |
SCP | Single-country publications |
SDG | Sustainable Development Goals |
TC | Total of citations |
TS | Text segments |
UK | United Kingdom |
USA | United States of America |
VECD | Viscoelastic continuum damage |
WEF | World Economic Forum |
References
- Hveem, F.N. Pavement Deflections and Fatigue Failures; Technical Report 114; Highway Research Board: Washington, DC, USA, 1955. [Google Scholar]
- Huang, Y.H. Pavement Analysis and Design; Pearson Prentice Hall: Upper Saddle River, NJ, USA, 2004; Volume 2. [Google Scholar]
- Little, D.N.; Allen, D.H.; Bhasin, A. Failure mechanisms and methods to estimate material resistance to failure. In Modeling and Design of Flexible Pavements and Materials; Springer International Publishing: Cham, Switzerland, 2018; pp. 283–338. [Google Scholar] [CrossRef]
- Di Benedetto, H.; de La Roche, C.; Baaj, H.; Pronk, A.; Lundström, R. Fatigue of bituminous mixtures. Mater. Struct. 2004, 37, 202–216. [Google Scholar] [CrossRef]
- Bodin, D. Modele D’endommagement Cyclique: Application à la Fatigue des Enrobés Bitumineux. Doctoral Thesis, École Centrale de Nantes (ECN)/Université de Nantes, Nantes, France, 2002. [Google Scholar]
- Perraton, D.; Baaj, H.; Di Benedetto, H.; Paradis, M. Évaluation de la résistance à la fatigue des enrobés bitumineux fondée sur l’évolution de l’endommagement du matériau en cours d’essai: Aspects fondamentaux et application à l’enrobé à matrice de pierre. Can. J. Civ. Eng. 2003, 30, 902–913. [Google Scholar] [CrossRef]
- NF EN 12697-24:2018; Mélanges Bitumineux—Méthodes d’essai—Partie 24: Résistance à la fatigue. Association Française de Normalisation—AFNOR: Paris, France, 2018.
- Moreno-Navarro, F.; Rubio-Gámez, M. A review of fatigue damage in bituminous mixtures: Understanding the phenomenon from a new perspective. Constr. Build. Mater. 2016, 113, 927–938. [Google Scholar] [CrossRef]
- Wöhler, A. Über Die Festigkeitsversuche Mit Eisen Und Stahl; Ernst & Korn: Berlin, Germany, 1870. [Google Scholar]
- Tigdemir, M. Investigation of fatigue behaviour of asphalt concrete pavements with fuzzy-logic approach. Int. J. Fatigue 2002, 24, 903–910. [Google Scholar] [CrossRef]
- Lee, J.; Nam, B.; Abdel-Aty, M. Effects of pavement surface conditions on traffic crash severity. J. Transp. Eng. 2015, 141. [Google Scholar] [CrossRef]
- Tschegg, E.K.; Jamek, M.; Lugmayr, R. Fatigue crack growth in asphalt and asphalt-interfaces. Eng. Fract. Mech. 2011, 78, 1044–1054. [Google Scholar] [CrossRef]
- Moins, B.; France, C.; Van den bergh, W.; Audenaert, A. Implementing life cycle cost analysis in road engineering: A critical review on methodological framework choices. Renew. Sustain. Energy Rev. 2020, 133, 110284. [Google Scholar] [CrossRef]
- Conception et Dimensionnement des Structures de Chaussée; Laboratoire Central des Ponts et Chaussées—LCPC: Paris, France; Service d’études techniques des routes et autoroutes—SETRA: Paris, France, 1994.
- Barra, B.S.; Neckel, G.; Momm, L.; Guerrero, Y.; Mikowski, A.; Melo, J.V.S.d.; Nguyen, M.L.; Hughes, G.B. Design parameters and associated quantitative damage analyses of an asphalt concrete airfield runway. Constr. Build. Mater. 2020, 262, 120809. [Google Scholar] [CrossRef]
- Delorme, J.L.; De La Roche, C.; Wendling, L. LPC Bituminous Mixtures Design Guide; The RST Working Group “Design of Bituminous Mixtures”, Laboratoire Central des Ponts et Chaussées—LCPC: Paris, France, 2007. [Google Scholar]
- Tangella, S.C.S.R.; Craus, J.; Deacon, J.A.; Monismith, C.L. Summary Report on Fatigue Response of Asphalt Mixtures; Technical report, Strategic Highway Research Program: California; TRID: Paris, France, 1990. [Google Scholar]
- Cheng, H.; Sun, L.; Wang, Y.; Liu, L.; Chen, X. Fatigue test setups and analysis methods for asphalt mixture: A state-of-the-art review. J. Road Eng. 2022, 2, 279–308. [Google Scholar] [CrossRef]
- Sudarsanan, N.; Kim, Y.R. A critical review of the fatigue life prediction of asphalt mixtures and pavements. J. Traffic Transp. Eng. 2022, 9, 808–835. [Google Scholar] [CrossRef]
- Meng, Y.; Kong, W.; Gou, C.; Deng, S.; Hu, Y.; Chen, J.; Fan, L. A review on evaluation of crack resistance of asphalt mixture by semi-circular bending test. J. Road Eng. 2023, 3, 87–97. [Google Scholar] [CrossRef]
- Meng, Y.; Liu, D.; Rong, H.; Yang, X. Review and prospect of four-point bending fatigue test of asphalt mixture. J. Road Eng. 2024, 4, 446–467. [Google Scholar] [CrossRef]
- Cheng, H.; Sun, L.; Wang, Y.; Chen, X. Effects of actual loading waveforms on the fatigue behaviours of asphalt mixtures. Int. J. Fatigue 2021, 151, 106386. [Google Scholar] [CrossRef]
- Cheng, H.; Liu, J.; Sun, L.; Liu, L.; Zhang, Y. Fatigue behaviours of asphalt mixture at different temperatures in four-point bending and indirect tensile fatigue tests. Constr. Build. Mater. 2021, 273, 121675. [Google Scholar] [CrossRef]
- Poulikakos, L.D.; Pittet, M.; Dumont, A.G.; Partl, M.N. Comparison of the two point bending and four point bending test methods for aged asphalt concrete field samples. Mater. Struct. 2015, 48, 2901–2913. [Google Scholar] [CrossRef]
- Khalid, H.A. A comparison between bending and diametral fatigue tests for bituminous materials. Mater. Struct. 2000, 33, 457–465. [Google Scholar] [CrossRef]
- Di Benedetto, H.; Perraton, D.; Lamothe, S.; Boussabnia, M.M. Rational relationship between the fatigue curves of asphalt mixes obtained from tension/compression and 4-point bending tests. Road Mater. Pavement Des. 2023, 24, 192–208. [Google Scholar] [CrossRef]
- Pintarelli, M.G.; Melo, J.V.S.d. Evaluation of the effect of deflection waveform on fatigue performance of asphalt mixture in the four point bending beam test. Can. J. Civ. Eng. 2019, 46, 207–215. [Google Scholar] [CrossRef]
- Cheng, H.; Liu, J.; Sun, L.; Liu, L. Critical position of fatigue damage within asphalt pavement considering temperature and strain distribution. Int. J. Pavement Eng. 2020, 22, 1773–1784. [Google Scholar] [CrossRef]
- Barra, B.S.; Momm, L.; Guerrero, Y.; Al-Qureshi, H.A.; Mikowski, A.; Michels, R. Temperature implications on rheological-mechanical behavior and design of high modulus dense asphalt mix. Constr. Build. Mater. 2016, 125, 135–144. [Google Scholar] [CrossRef]
- Quintero, C.F.Q.; Momm, L.; Leite, L.F.M.; Bernucci, L.L.B. Effect of asphalt binder hardness and temperature on fatigue life and complex modulus of hot mixes. Constr. Build. Mater. 2016, 114, 755–762. [Google Scholar] [CrossRef]
- Fakhri, M.; Hassani, K.; Ghanizadeh, A.R. Impact of loading frequency on the fatigue behavior of SBS modified asphalt mixtures. Procedia Soc. Behav. Sci. 2013, 104, 69–78. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.D.; Su, Y. Fatigue damage evolution model of asphalt mixture considering influence of loading frequency. Constr. Build. Mater. 2019, 218, 712–720. [Google Scholar] [CrossRef]
- Barra, B.S.; Momm, L.; Guerrero, Y.; Bernucci, L. Fatigue behavior of dense asphalt mixes in dry and environmental-conditioning states. Constr. Build. Mater. 2012, 29, 128–134. [Google Scholar] [CrossRef]
- Pais, J.C.; Amorim, S.I.R.; Minhoto, M.J.C. Impact of traffic overload on road pavement performance. J. Transp. Eng. 2013, 139, 873–879. [Google Scholar] [CrossRef]
- Titi, H.H.; Coley, N.J.; Latifi, V. Evaluation of pavement performance due to overload single-trip permit truck traffic in Wisconsin. Adv. Civ. Eng. 2018, 2018, 1070653. [Google Scholar] [CrossRef]
- Adigopula, V.K.; Kumar, A.J.B. Investigating the effect of overloaded vehicles on asphalt pavement: A case study in India. Discov. Civ. Eng. 2025, 2, 106. [Google Scholar] [CrossRef]
- Lucas Júnior, J.L.O.; Babadopulos, L.F.A.L.; Soares, J.B. Prediction of cracked area in asphalt pavements: What are the main variables to consider? J. Build. Pathol. Rehabil. 2025, 10, 110. [Google Scholar] [CrossRef]
- Carlesso, G.C.; Trichês, G.; Melo, J.V.S.d.; Marcon, M.F.; Thives, L.P.; Luz, L.C.d. Evaluation of rheological behavior, resistance to permanent deformation, and resistance to fatigue of asphalt mixtures modified with nanoclay and SBS polymer. Appl. Sci. 2019, 9, 2697. [Google Scholar] [CrossRef]
- Liu, C.; Lv, S.; Jin, D.; Qu, F. Laboratory investigation for the road performance of asphalt mixtures modified by rock asphalt-styrene butadiene rubber. J. Mater. Civ. Eng. 2021, 33, 04020504. [Google Scholar] [CrossRef]
- Enieb, M.; Diab, A.; Yang, X. Short- and long-term properties of glass fiber reinforced asphalt mixtures. Int. J. Pavement Eng. 2021, 22, 64–76. [Google Scholar] [CrossRef]
- Clara, E.; Barra, B.S.; Teixeira, L.H.; Mikowski, A.; Hughes, G.B.; Nguyen, M.L. Influence of polymeric molecular chain structure on the rheological-mechanical behavior of asphalt binders and porous asphalt mixes. Constr. Build. Mater. 2023, 369, 130575. [Google Scholar] [CrossRef]
- Demchuk, Y.; Gunka, V.; Sidun, I.; Korchak, B.; Donchenko, M.; Drapak, I.; Poliuzhyn, I.; Pyshyev, S. Study of Road Bitumen Operational Properties Modified with Phenol–Cresol–Formaldehyde Resin. Resources 2025, 14, 91. [Google Scholar] [CrossRef]
- Daryaee, D.; Ameri, M.; Mansourkhaki, A. Utilizing of waste polymer modified bitumen in combination with rejuvenator in high reclaimed asphalt pavement mixtures. Constr. Build. Mater. 2020, 235. [Google Scholar] [CrossRef]
- Yi, X.; Chen, H.; Wang, H.; Shi, C.; Yang, J. The feasibility of using epoxy asphalt to recycle a mixture containing 100% reclaimed asphalt pavement (RAP). Constr. Build. Mater. 2022, 319, 126122. [Google Scholar] [CrossRef]
- Hu, W.; Shu, X.; Huang, B. Sustainability innovations in transportation infrastructure: An overview of the special volume on sustainable road paving. J. Clean. Prod. 2019, 235, 369–377. [Google Scholar] [CrossRef]
- Alsheyab, M.A.; Khasawneh, M.A.; Abualia, A.; Sawalha, A. A critical review of fatigue cracking in asphalt concrete pavement: A challenge to pavement durability. Innov. Infrastruct. Solut. 2024, 9, 386. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 10 July 2025).
- Thacker, S.; Adshead, D.; Fay, M.; Hallegatte, S.; Harvey, M.; Meller, H.; O’Regan, N.; Rozenberg, J.; Watkins, G.; Hall, J.W. Infrastructure for sustainable development. Nat. Sustain. 2019, 2, 324–331. [Google Scholar] [CrossRef]
- Lahlou, S. L’analyse lexicale. Variances 1994, 13–24. [Google Scholar]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Norouzi, M.; Chàfer, M.; Cabeza, L.F.; Jiménez, L.; Boer, D. Circular economy in the building and construction sector: A scientific evolution analysis. J. Build. Eng. 2021, 44, 102704. [Google Scholar] [CrossRef]
- Soto-Paz, J.; Arroyo, O.; Torres-Guevara, L.E.; Parra-Orobio, B.A.; Casallas-Ojeda, M. The circular economy in the construction and demolition waste management: A comparative analysis in emerging and developed countries. J. Build. Eng. 2023, 78, 107724. [Google Scholar] [CrossRef]
- Zhang, Y.; Lu, Y.; Huang, Z.; Chen, D.; Cheng, B.; Wang, D.; Lu, C. Insight from review articles of life cycle assessment for buildings. Appl. Sci. 2025, 15, 7751. [Google Scholar] [CrossRef]
- Abejón, R. Self-healing asphalt: A systematic bibliometric analysis for identification of hot research topics during the 2003–2018 period. Materials 2021, 14, 565. [Google Scholar] [CrossRef]
- Jwaida, Z.; Dulaimi, A.; Mydin, M.A.O.; Özkılıç, Y.O.; Jaya, R.P.; Ameen, A. The use of waste polymers in asphalt mixtures: Bibliometric analysis and systematic review. J. Compos. Sci. 2023, 7, 415. [Google Scholar] [CrossRef]
- Chang, X.; Zhang, R.; Xiao, Y.; Chen, X.; Zhang, X.; Liu, G. Mapping of publications on asphalt pavement and bitumen materials: A bibliometric review. Constr. Build. Mater. 2020, 234, 117370. [Google Scholar] [CrossRef]
- Nalbandian, K.M.; Carpio, M.; González, A. Analysis of the scientific evolution of self-healing asphalt pavements: Toward sustainable road materials. J. Clean. Prod. 2021, 293, 126107. [Google Scholar] [CrossRef]
- Pérez-Acebo, H.; Linares-Unamunzaga, A.; Abejón, R.; Rojí, E. Research trends in pavement management during the first years of the 21st century: A bibliometric analysis during the 2000–2013 period. Appl. Sci. 2018, 8, 1041. [Google Scholar] [CrossRef]
- Lavissière, A.; Sohier, R.; Lavissière, M.C. Transportation systems in the Arctic: A systematic literature review using textometry. Transp. Res. Part A Policy Pract. 2020, 141, 130–146. [Google Scholar] [CrossRef]
- Bueno, S.; Bañuls, V.A.; Gallego, M.D. Is urban resilience a phenomenon on the rise? A systematic literature review for the years 2019 and 2020 using textometry. Int. J. Disaster Risk Reduct. 2021, 66, 102588. [Google Scholar] [CrossRef]
- Trigo, A.; Marta-Costa, A.; Fragoso, R. Principles of sustainable agriculture: Defining standardized reference points. Sustainability 2021, 13, 4086. [Google Scholar] [CrossRef]
- Aversa, D.; Adamashvili, N.; Fiore, M.; Spada, A. Scoping review (SR) via text data mining on water scarcity and climate change. Sustainability 2022, 15, 70. [Google Scholar] [CrossRef]
- Frankowska, M.; Błoński, K.; Mańkowska, M.; Rzeczycki, A. Research on the concept of hydrogen supply chains and power grids powered by renewable energy sources: A scoping review with the use of text mining. Energies 2022, 15, 866. [Google Scholar] [CrossRef]
- Avelar, A.B.A.; Silva-Oliveira, K.D.d.; Pereira, R.d.S. Education for advancing the implementation of the Sustainable Development Goals: A systematic approach. Int. J. Manag. Educ. 2019, 17, 100322. [Google Scholar] [CrossRef]
- Camargo, B.V.; Justo, A.M. IRAMUTEQ: Um software gratuito para análise de dados textuais. Temas Psicol. 2013, 21, 513–518. [Google Scholar] [CrossRef]
- Souza, M.A.R.d.; Wall, M.L.; Thuler, A.C.d.M.C.; Lowen, I.M.V.; Peres, A.M. The use of IRAMUTEQ software for data analysis in qualitative research. Rev. Esc. Enferm. Usp 2018, 52, e03353. [Google Scholar] [CrossRef]
- Lahmar, H.; Chaouki, F.; Rodhain, F. Spiritual leadership and organizational commitment: A 21-year systematic literature review. J. Hum. Values 2023, 29, 177–199. [Google Scholar] [CrossRef]
- Mandják, T.; Lavissière, A.; Hofmann, J.; Bouchery, Y.; Lavissière, M.C.; Faury, O.; Sohier, R. Port marketing from a multidisciplinary perspective: A systematic literature review and lexicometric analysis. Transp. Policy 2019, 84, 50–72. [Google Scholar] [CrossRef]
- Rejeb, H.B.; Roussel, B. Perspectives on the evolution of a fabrication laboratory in an emerging country: A comparative lexicometric study of European FabLabs. J. Manuf. Technol. Manag. 2021, 33, 399–422. [Google Scholar] [CrossRef]
- Herrera, R.F.; Sánchez, O.; Castañeda, K.; Porras, H. Cost overrun causative factors in road infrastructure projects: A frequency and importance analysis. Appl. Sci. 2020, 10, 5506. [Google Scholar] [CrossRef]
- Panda, R.; Biswal, D.R. A systematic review of geo-polymer stabilised reclaimed asphalt pavement (RAP) as a base layer of pavement. Road Mater. Pavement Des. 2024, 26, 231–253. [Google Scholar] [CrossRef]
- Kang, J.; Tavassoti, P.; Chaudhry, M.N.A.R.; Baaj, H.; Ghafurian, M. Artificial intelligence techniques for pavement performance prediction: A systematic review. Road Mater. Pavement Des. 2024, 26, 497–522. [Google Scholar] [CrossRef]
- Cardoso, J.; Ferreira, A.; Almeida, A.; Santos, J. Incorporation of plastic waste into road pavements: A systematic literature review on the fatigue and rutting performances. Constr. Build. Mater. 2023, 407, 133441. [Google Scholar] [CrossRef]
- Di Benedetto, H.; Mondher, N.; Sauzéat, C.; Olard, F. Three-dimensional thermo-viscoplastic behaviour of bituminous materials: The DBN model. Road Mater. Pavement Des. 2007, 8, 285–315. [Google Scholar] [CrossRef]
- De La Roche, C.; Charrier, J.; Marsac, P.; Moliard, J.M. Evaluation de l’endommagement par fatigue des enrobes bitumineux. Apports de la thermographie infrarouge. Bull. Lab. Ponts Chaussees 2001, 19–28. Available online: https://hal.science/hal-05163844/ (accessed on 13 May 2025).
- Di Benedetto, H. Nouvelle approche du comportement des enrobés bitumineux: Résultats expérimentaux et formulation rhéologique. RILEM Ensáyos Mec. Mezclas Asf. 1990, 387–401. Available online: https://www.scirp.org/reference/referencespapers?referenceid=3520478 (accessed on 10 July 2025).
- Anderson, T.L. Fracture Mechanics: Fundamentals and Applications; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Doan, T.H. Les études de fatigue des enrobés bitumineux au LCPC. Bull. Liaison Lab. Ponts Chaussées 1976. Available online: https://trid.trb.org/view/1068631 (accessed on 10 July 2025).
- Huet, C. Étude Par Une méThode D’impédance du Comportement viscoéLastique des Materiaux Hydrocarbonés. Ph.D. Thesis, Faculté des Sciences de l’Université de Paris, Paris, France, 1963. [Google Scholar]
- Sayegh, G. Contribution à L’étude des Propriétés Viscoélastiques des Bitumes Purs et des béTons Bitumineux. Ph.D. Thesis, Faculté des Sciences de Paris, Paris, France, 1965. [Google Scholar]
- Di Benedetto, H.; de La Roche, C. State of the art on stiffness modulus and fatigue of bituminous mixtures. Rilem Rep. 1998, 137–180. Available online: https://www.scirp.org/reference/referencespapers?referenceid=1543347 (accessed on 10 July 2025).
- De La Roche, C. Module de Rigidité et Comportement en Fatigue des Enrobés Bitumineux: Expérimentations et Nouvelles Perspectives D’analyse. Ph.D. Thesis, Châtenay-Malabry, École centrale de Paris, Paris, France, 1996. [Google Scholar]
- Chehab, G.R.; Kim, Y.R.; Schapery, R.A.; Witczak, M.W.; Bonaquist, R. Time-temperature superposition principle for asphalt concrete with growing damage in tension state. J. Assoc. Asph. Paving Technol. 2002, 71, 559–593. [Google Scholar]
- Domec, V. Endommagement par Fatigue des Enrobés Bitumineux en Condition de Trafic Simulé et de Température. Ph.D. Thesis, University of Bordeaux 1, Talence, France, 2005. [Google Scholar]
- Si, Z.; Little, D.N.; Lytton, R.L. Characterization of microdamage and healing of asphalt concrete mixtures. J. Mater. Civ. Eng. 2002, 14, 461–470. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y.; Liu, Q.; Wang, Y.; Ago, C.; Oeser, M. Investigation on mechanical performance of porous asphalt mixtures treated with laboratory aging and moisture actions. Constr. Build. Mater. 2020, 238, 117694. [Google Scholar] [CrossRef]
- Yao, X.; Xu, H.; Xu, T. Void distribution, interfacial adhesion and anti-cracking mechanisms of cold recycled asphalt mixture based on AFM and X-ray CT. Appl. Surf. Sci. 2022, 606, 155012. [Google Scholar] [CrossRef]
- Wang, F.; Xiao, Y.; Cui, P.; Ma, T.; Kuang, D. Effect of aggregate morphologies and compaction methods on the skeleton structures in asphalt mixtures. Constr. Build. Mater. 2020, 263, 117694. [Google Scholar] [CrossRef]
- Huang, B.; Shu, X.; Zuo, G. Using notched semi circular bending fatigue test to characterize fracture resistance of asphalt mixtures. Eng. Fract. Mech. 2013, 109, 78–88. [Google Scholar] [CrossRef]
- Braham, A.; Underwood, B.S. State of the Art and Practice in Fatigue Cracking Evaluation of Asphalt Concrete Pavements; Association of Asphalt Paving Technologists: Reno, NV, USA, 2016. [Google Scholar]
- Liang, R.Y.; Zhou, J. Prediction of fatigue life of asphalt concrete beams. Int. J. Fatigue 1997, 19, 117–124. [Google Scholar] [CrossRef]
- Soares, J.B.; Freitas, F.A.C.; Allen, D.H. Considering material heterogeneity in crack modeling of asphaltic mixtures. Transp. Res. Rec. 2003, 1832, 113–120. [Google Scholar] [CrossRef]
- Kim, H.; Wagoner, M.P.; Buttlar, W.G. Simulation of fracture behavior in asphalt concrete using a heterogeneous cohesive zone discrete element model. J. Mater. Civ. Eng. 2008, 20, 552–563. [Google Scholar] [CrossRef]
- Thyagarajan, S.; Tashman, L.; Masad, E.; Bayomy, F. The heterogeneity and mechanical response of hot mix asphalt laboratory specimens. Int. J. Pavement Eng. 2010, 11, 107–121. [Google Scholar] [CrossRef]
- Ying, H.; Elseifi, M.A.; Mohammad, L.N.; Hassan, M.M. Heterogeneous finite-element modeling of the dynamic complex modulus test of asphalt mixture using X-ray computed tomography. J. Mater. Civ. Eng. 2014, 26, 04014052. [Google Scholar] [CrossRef]
- Santagata, E.; Baglieri, O.; Tsantilis, L.; Chiappinelli, G. Fatigue and healing properties of nano-reinforced bituminous binders. Int. J. Fatigue 2015, 80, 30–39. [Google Scholar] [CrossRef]
- Castillo, D.; Caro, S.; Darabi, M.; Masad, E. Studying the effect of microstructural properties on the mechanical degradation of asphalt mixtures. Constr. Build. Mater. 2015, 93, 70–83. [Google Scholar] [CrossRef]
- Castillo, D.; Caro, S.; Darabi, M.; Masad, E. Modelling moisture-mechanical damage in asphalt mixtures using random microstructures and a continuum damage formulation. Road Mater. Pavement Des. 2017, 18, 1–21. [Google Scholar] [CrossRef]
- Singh, P.; Swamy, A.K. Probabilistic characterisation of damage characteristic curve of asphalt concrete mixtures. Int. J. Pavement Eng. 2017, 20, 659–668. [Google Scholar] [CrossRef]
- Wills, J.; Caro, S.; Braham, A. Influence of material heterogeneity in the fracture of asphalt mixtures. Int. J. Pavement Eng. 2019, 20, 747–760. [Google Scholar] [CrossRef]
- Cardona, D.R.; Pouget, S.; Di Benedetto, H.; Olard, F. Influence of air void content and loading frequency on fatigue test results of bituminous mixtures. J. Transp. Eng. Part B Pavements 2021, 147. [Google Scholar] [CrossRef]
- JCGM 100:2008; Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement. Joint Committee for Guides in Metrology—JCGM: Sèvres, France, 2008.
- Liz, J.V.d.; Michél, M.D.; Casali, R.M.; Hughes, G.B.; Serbena, F.C.; Barra, B.S.; Mikowski, A. Methodology for analyzing the propagation of uncertainty in the mechanical properties of rectangular cross-section specimens under three-point bending tests. Constr. Build. Mater. 2025, 471, 140608. [Google Scholar] [CrossRef]
- Mikowski, A.; Casali, R.M.; Soares, P.; Silva, W.B.; Barra, B.S. Methodology for error propagation analysis of the complex stiffness modulus of asphalt mixes. Constr. Build. Mater. 2021, 290, 123156. [Google Scholar] [CrossRef]
- Gontarski, T.d.L.; Leal, A.P.; Casali, R.M.; Braun, S.E.; Soares, P.; Fujarra, A.L.C.; Mikowski, A. Weightings on the propagation of errors in the Vickers hardness parameters. Braz. J. Phys. 2022, 52, 107. [Google Scholar] [CrossRef]
- Baas, J.; Schotten, M.; Plume, A.; Côté, G.; Karimi, R. Scopus as a curated, high-quality bibliometric data source for academic research in quantitative science studies. Quant. Sci. Stud. 2020, 1, 377–386. [Google Scholar] [CrossRef]
- Pranckutė, R. Web of Science (WoS) and Scopus: The titans of bibliographic information in today’s academic world. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- Tamagusko, T.; Ferreira, A. Machine learning for prediction of the international roughness index on flexible pavements: A review, challenges, and future directions. Infrastructures 2023, 8, 170. [Google Scholar] [CrossRef]
- Elsevier. Scopus Content Coverage Guide. Available online: https://www.elsevier.com/products/scopus/content#0-content-coverage (accessed on 5 May 2025).
- Tamagusko, T.; Correia, M.G.; Ferreira, A. Machine learning applications in road pavement management: A review, challenges and future directions. Infrastructures 2024, 9, 213. [Google Scholar] [CrossRef]
- Vaz, I.C.M.; Antunes, L.N.; Ghisi, E.; Thives, L.P. Life cycle assessment of pervious pavements: Integrative review and novel ideas of analysis. Water 2024, 16, 1403. [Google Scholar] [CrossRef]
- Passas, I. Bibliometric analysis: The main steps. Encyclopedia 2024, 4, 1014–1025. [Google Scholar] [CrossRef]
- Chigbu, U.E.; Atiku, S.O.; Du Plessis, C.C. The science of literature reviews: Searching, identifying, selecting, and synthesising. Publications 2023, 11, 2. [Google Scholar] [CrossRef]
- Aksnes, D.W. Characteristics of highly cited papers. Res. Eval. 2003, 12, 159–170. [Google Scholar] [CrossRef]
- Ahmed, Q.; Raza, S.A.; Al-Anazi, D.M. Reliability-based fault analysis models with industrial applications: A systematic literature review. Qual. Reliab. Eng. Int. 2020, 37, 1307–1333. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, Y.; Wang, K.; Zhang, N.; Pang, Y.; Wang, R.; Qi, C.; Yuan, Z.; Xu, J.; Nite, S.B.; et al. A systematic review of high impact empirical studies in STEM education. Int. J. Stem Educ. 2022, 9, 72. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Inf. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Van Eck, N.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Lim, W.M.; Kumar, S.; Donthu, N. How to combine and clean bibliometric data and use bibliometric tools synergistically: Guidelines using metaverse research. J. Bus. Res. 2024, 182, 114760. [Google Scholar] [CrossRef]
- Lahna, T.; Kamsu-Foguem, B.; Abanda, H.F. Maintenance in airport infrastructure: A bibliometric analysis and future research directions. J. Build. Eng. 2023, 76, 106876. [Google Scholar] [CrossRef]
- Ikudayisi, A.E.; Chan, A.P.C.; Darko, A.; Adedeji, Y.M.D. Integrated practices in the architecture, engineering, and construction industry: Current scope and pathway towards Industry 5.0. J. Build. Eng. 2023, 73, 106788. [Google Scholar] [CrossRef]
- Marathe, S.; Sadowski, L.; Shree, N. Geopolymer and alkali-activated permeable concrete pavements: Bibliometrics and systematic current state of the art review, applications, and perspectives. Constr. Build. Mater. 2024, 421, 135586. [Google Scholar] [CrossRef]
- Aliyu Yaro, N.S.; Sutanto, M.H.; Habib, N.Z.; Napiah, M.; Usman, A.; Jagaba, A.H.; Al-Sabaeei, A.M. Application and circular economy prospects of palm oil waste for eco-friendly asphalt pavement industry: A review. J. Road Eng. 2022, 2, 309–331. [Google Scholar] [CrossRef]
- Pinheiro, C.; Landi, S.; Lima, O.; Ribas, L.; Hammes, N.; Segundo, I.R.; Homem, N.C.; Branco, V.C.; Freitas, E.; Costa, M.F.; et al. Advancements in phase change materials in asphalt pavements for mitigation of urban heat island effect: Bibliometric analysis and systematic review. Sensors 2023, 23, 7741. [Google Scholar] [CrossRef]
- Ratinaud, P. IRaMuTeQ: Interface de R pour les Analyses Multidimensionnelles de Textes et de Questionnaires. Available online: http://www.iramuteq.org/ (accessed on 10 July 2025).
- Camargo, B.V.; Justo, A.M. Tutorial para uso do software de análise textual IRAMUTEQ. Florianópolis: Univ. Fed. Santa Catarina 2021, 1–73. Available online: http://www.iramuteq.org/documentation/fichiers/Tutorial%20IRaMuTeQ%20em%20portugues_22.11.2021.pdf (accessed on 20 February 2025).
- Reinert, M. Alceste une méthodologie d’analyse des données textuelles et une application: Aurelia De Gerard De Nerval. Bull. Sociol. Methodol. Methodol. Sociol. 1990, 26, 24–54. [Google Scholar] [CrossRef]
- Reinert, M. Quelques aspects du choix des unités d’analyse et de leur contrôle dans la méthode “Alceste”. In Proceedings of the JADT 1995: 3. Giornate Internazionali di Analisi Statistica dei Dati Testuali: Consiglio Nazionale Delle Ricerche, Roma, Italy, 11–13 December 1995. [Google Scholar]
- Hassan, W.; Duarte, A.E. Bibliometric analysis: A few suggestions. Curr. Probl. Cardiol. 2024, 49, 102640. [Google Scholar] [CrossRef]
- Brookes, B.C. Bradford’s Law and the bibliography of science. Nature 1969, 224, 953–956. [Google Scholar] [CrossRef]
- Tague-Sutcliffe, J. An introduction to informetrics. Inf. Process. Manag. 1992, 28, 1–3. [Google Scholar] [CrossRef]
- Silva, J.A.T.d. CiteScore: Advances, evolution, applications, and limitations. Publ. Res. Q. 2020, 36, 459–468. [Google Scholar] [CrossRef]
- Okagbue, H.I.; Silva, J.A.T.d. Correlation between the CiteScore and Journal Impact Factor of top-ranked library and information science journals. Scientometrics 2020, 124, 797–801. [Google Scholar] [CrossRef]
- Devore, J.L. Probability and Statistics for Engineering and the Sciences, 8th ed.; Brooks/Cole, Cengage Learning: Boston, MA, USA, 2011. [Google Scholar]
- Xia, C.; Lv, S.; Cabrera, M.; Wang, X.; Zhang, C.; You, L. Unified characterizing fatigue performance of rubberized asphalt mixtures subjected to different loading modes. J. Clean. Prod. 2021, 279, 123740. [Google Scholar] [CrossRef]
- Dong, S.; Wang, D.; Hao, P.; Zhang, Q.; Bi, J.; Chen, W. Quantitative assessment and mechanism analysis of modification approaches for cold recycled mixtures with asphalt emulsion. J. Clean. Prod. 2021, 323, 129163. [Google Scholar] [CrossRef]
- Liu, H.; Kuang, A.; Wang, Z.; Chu, C.; Yu, H.; Lv, S. Investigation on fracture and fatigue performance of cold recycling emulsified asphalt mixture based on acoustic emission parameters. J. Clean. Prod. 2023, 428, 139285. [Google Scholar] [CrossRef]
- Yang, H.; Shan, L.; Li, L.; Li, Z.; Yan, J. Mechanical and internal structural damage evolution in cold recycled mixture under fatigue loading. J. Clean. Prod. 2023, 423, 138776. [Google Scholar] [CrossRef]
- Song, S.; Li, Q.; Wang, J.; Wang, N.; Shang, J.; Zhang, S. Utilization of thermoplastic resin as foamed asphalt modifier in cold recycled mixtures. J. Clean. Prod. 2024, 478, 143973. [Google Scholar] [CrossRef]
- Ye, X.; Li, X.; Chen, Y.; Yang, H.; Xiang, Y.; Ye, Z.; Hu, C. Optimum moment to heal cracks in asphalt pavement by means of waste carbon fiber-enhanced electromagnetic induction heating during multiple damage-healing cycles. J. Clean. Prod. 2024, 470, 143265. [Google Scholar] [CrossRef]
- Jia, H.; Chen, H.; Sheng, Y.; Meng, J.; Cui, S.; Kim, Y.R.; Huang, S.; Qin, H. Effect of laboratory aging on the stiffness and fatigue cracking of asphalt mixture containing bamboo fiber. J. Clean. Prod. 2022, 333, 130120. [Google Scholar] [CrossRef]
- Lotka, A.J. The frequency distribution of scientific productivity. J. Wash. Acad. Sci. 1926, 16, 317–323. [Google Scholar]
- World Economic Forum. The Global Competitiveness Report; World Economic Forum: Geneva, Switzerland, 2019. [Google Scholar]
- Wang, J.; Frietsch, R.; Neuhäusler, P.; Hooi, R. International collaboration leading to high citations: Global impact or home country effect? J. Inf. 2024, 18, 101565. [Google Scholar] [CrossRef]
- Acedo, F.J.; Barroso, C.; Casanueva, C.; Galán, J.L. Co-Authorship in management and organizational studies: An empirical and network analysis*. J. Manag. Stud. 2006, 43, 957–983. [Google Scholar] [CrossRef]
- Soares, J.B. Reflexões sobre um programa de pesquisa científica para a infraestrutura viária do Brasil. Transportes 2020, 28, 154–168. [Google Scholar] [CrossRef]
- Santana, V.R.; Almeida, M.S.d.S.; Bressanin, H.W.; Brito, J.A.; Costa, W.G.S.; Mateus, M.d.S.d.C.S. Effects of overload and layer interface condition on estimated flexible pavement lifespan: Case study from BR-116/BA. Transp. Geotech. 2022, 34, 100762. [Google Scholar] [CrossRef]
- Melo Neto, O.M.; Azam, A.; Silva, J.L.M.d.; Diniz, M.I.L.; Youssef, A. Impact of sustainable additives on the thickness of the wearing course in flexible pavements: A comparison between design methodologies in Brazil. Innov. Infrastruct. Solut. 2024, 9, 36. [Google Scholar] [CrossRef]
- Liz, J.V.d.; Barra, B.S.; Mikowski, A.; Hughes, G.B.; Melo, J.V.S.d. National Pavement Design Method (MeDiNa) applied to rehabilitation and restoration: A literature review. Cad. PedagóGico 2024, 21, e4191. [Google Scholar] [CrossRef]
- Fritzen, M.A.; da Motta, L.M.G.; Ubaldo, M.d.O.; Aragão, F.T.S.; Nascimento, L.A.H.d.; Franco, F.A.C.d.P. Validation of a transfer function adopted in the Brazilian mechanistic-empirical pavement design guide based on accelerated HVS and real traffic loads. Road Mater. Pavement Des. 2025, 1–19. [Google Scholar] [CrossRef]
- Crescenzi, R.; Di Cataldo, M.; Rodríguez-Pose, A. Government quality and the economic returns of transport infrastructure investment in European regions. J. Reg. Sci. 2016, 56, 555–582. [Google Scholar] [CrossRef]
- Fan, Z.; Xu, H.; Xiao, J.; Tan, Y. Effects of freeze-thaw cycles on fatigue performance of asphalt mixture and development of fatigue-freeze-thaw (FFT) uniform equation. Constr. Build. Mater. 2020, 242, 118043. [Google Scholar] [CrossRef]
- Tarsi, G.; Tataranni, P.; Sangiorgi, C. The challenges of using reclaimed asphalt pavement for new asphalt mixtures: A review. Materials 2020, 13, 4052. [Google Scholar] [CrossRef]
- DePaolo, C.A.; Wilkinson, K. Get your head into the clouds: Using word clouds for analyzing qualitative assessment data. TechTrends 2014, 58, 38–44. [Google Scholar] [CrossRef]
- Mannan, U.A.; Islam, M.R.; Tarefder, R.A. Effects of recycled asphalt pavements on the fatigue life of asphalt under different strain levels and loading frequencies. Int. J. Fatigue 2015, 78, 72–80. [Google Scholar] [CrossRef]
- Lv, S.; Liu, C.; Chen, D.; Zheng, J.; You, Z.; You, L. Normalization of fatigue characteristics for asphalt mixtures under different stress states. Constr. Build. Mater. 2018, 177, 33–42. [Google Scholar] [CrossRef]
- Al-Khateeb, G.G.; Ghuzlan, K.A. The combined effect of loading frequency, temperature, and stress level on the fatigue life of asphalt paving mixtures using the IDT test configuration. Int. J. Fatigue 2014, 59, 254–261. [Google Scholar] [CrossRef]
- Ozer, H.; Al-Qadi, I.L.; Lambros, J.; El-Khatib, A.; Singhvi, P.; Doll, B. Development of the fracture-based flexibility index for asphalt concrete cracking potential using modified semi-circle bending test parameters. Constr. Build. Mater. 2016, 115, 390–401. [Google Scholar] [CrossRef]
- Zhu, J.; Birgisson, B.; Kringos, N. Polymer modification of bitumen: Advances and challenges. Eur. Polym. J. 2014, 54, 18–38. [Google Scholar] [CrossRef]
- Zhang, F.; Li, X.; Wang, L.; Xue, Z.; Guo, Z. Effects of freeze-thaw cycles on fatigue performance of asphalt mixture and a fatigue-freeze-thaw damage evolution model. Constr. Build. Mater. 2024, 449, 138427. [Google Scholar] [CrossRef]
- Steineder, M.; Donev, V.; Hofko, B.; Eberhardsteiner, L. Correlation between stiffness and fatigue behavior at asphalt mastic and asphalt mixture level. J. Test. Eval. 2021, 50, 803–817. [Google Scholar] [CrossRef]
- Sá, T.S.W.; Oda, S.; Balthar, V.K.C.B.L.M.; Toledo Filho, R.D. Use of iron ore tailings and sediments on pavement structure. Constr. Build. Mater. 2022, 342, 128072. [Google Scholar] [CrossRef]
- Yang, S.; Zhou, Z.; Li, K. Influence of fiber type and dosage on tensile property of asphalt mixture using direct tensile test. Materials 2023, 16, 822. [Google Scholar] [CrossRef]
- Ziari, H.; Orouei, M.; Divandari, H.; Yousefi, A. Mechanical characterization of warm mix asphalt mixtures made with RAP and Para-fiber additive. Constr. Build. Mater. 2021, 279, 122456. [Google Scholar] [CrossRef]
- Pattanaik, M.L.; Choudhary, R.; Kumar, B.; Kumar, A. Mechanical properties of open graded friction course mixtures with different contents of electric arc furnace steel slag as an alternative aggregate from steel industries. Road Mater. Pavement Des. 2019, 22, 268–292. [Google Scholar] [CrossRef]
- Liu, H.; Yang, X.; Jiang, L.; Lv, S.; Huang, T.; Yang, Y. Fatigue-creep damage interaction model of asphalt mixture under the semi-sine cycle loading. Constr. Build. Mater. 2020, 251, 119070. [Google Scholar] [CrossRef]
- Fang, C.; Guo, N.; You, Z.; Tan, Y. Investigating fatigue life prediction of rubber asphalt mixture based on damage evolution using residual strain analysis approach. Constr. Build. Mater. 2020, 257, 119476. [Google Scholar] [CrossRef]
- Lv, S.; Peng, X.; Liu, C.; Ge, D.; Tang, M.; Zheng, J. Laboratory investigation of fatigue parameters characteristics of aging asphalt mixtures: A dissipated energy approach. Constr. Build. Mater. 2020, 230, 116972. [Google Scholar] [CrossRef]
- Lou, K.; Kang, A.; Xiao, P.; Wu, Z.; Li, B.; Wang, X. Effects of basalt fiber coated with different sizing agents on performance and microstructures of asphalt mixture. Constr. Build. Mater. 2021, 266, 121155. [Google Scholar] [CrossRef]
- Lou, K.; Xiao, P.; Kang, A.; Wu, Z.; Li, B.; Lu, P. Performance evaluation and adaptability optimization of hot mix asphalt reinforced by mixed lengths basalt fibers. Constr. Build. Mater. 2021, 292, 123373. [Google Scholar] [CrossRef]
- Xia, C.; Wu, C.; Liu, K.; Jiang, K. Study on the durability of bamboo fiber asphalt mixture. Materials 2021, 14, 1667. [Google Scholar] [CrossRef]
- Zhang, K.; Luo, Y.; Chen, F.; Han, F. Performance evaluation of new warm mix asphalt and water stability of its mixture based on laboratory tests. Constr. Build. Mater. 2020, 241, 118017. [Google Scholar] [CrossRef]
- Sun, M.; Bi, Y.; Zheng, M.; Wang, J.; Wang, L. Performance of polyurethane mixtures with skeleton-interlocking structure. J. Mater. Civ. Eng. 2020, 32, 04019358. [Google Scholar] [CrossRef]
- Hoang, V.H.; Nguyen, Q.T.; Tran, A.T.; Tran, T.C.H.; Do, T.A. Mechanical behavior of the asphalt wearing surface on an orthotropic steel bridge deck under cyclic loading. Case Stud. Constr. Mater. 2022, 16, e00836. [Google Scholar] [CrossRef]
- Peng, Y.; Gao, H.; Lu, X.; Sun, L. Micromechanical discrete element modeling of asphalt mixture shear fatigue performance. J. Mater. Civ. Eng. 2020, 32, 04020183. [Google Scholar] [CrossRef]
- Yang, K.; Li, R.; Yu, Y.; Pei, J.; Liu, T. Evaluation of interlayer stability in asphalt pavements based on shear fatigue property. Constr. Build. Mater. 2020, 258, 119628. [Google Scholar] [CrossRef]
- Ragni, D.; Takarli, M.; Petit, C.; Graziani, A.; Canestrari, F. Use of acoustic techniques to analyse interlayer shear-torque fatigue test in asphalt mixtures. Int. J. Fatigue 2020, 131, 105356. [Google Scholar] [CrossRef]
- Nian, T.; Ge, J.; Li, P.; Guo, R.; Liu, W. Influence of multiple factors on the shear fatigue resistance of asphalt pavement interlayer adhesive materials. J. Mater. Civ. Eng. 2020, 32, 04020251. [Google Scholar] [CrossRef]
- Lv, S.; Hu, L.; Xia, C.; Wang, X.; Cabrera, M.B.; Guo, S.; Chen, J. Development of fatigue damage model of asphalt mixtures based on small-scale accelerated pavement test. Constr. Build. Mater. 2020, 260, 119930. [Google Scholar] [CrossRef]
- Read, J.M. Practical fatigue characterisation of bituminous paving mixtures. In The Asphalt Yearbook 1997; Institute of Asphalt Technology: Bathgate, UK, 1997. [Google Scholar]
- Lv, S.; Yuan, J.; Peng, X.; Cabrera, M.B.; Liu, H.; Luo, X.; You, L. Standardization to evaluate the lasting capacity of rubberized asphalt mixtures with different testing approaches. Constr. Build. Mater. 2021, 269, 121341. [Google Scholar] [CrossRef]
- Busang, S.; Maina, J. Influence of aggregates properties on microstructural properties and mechanical performance of asphalt mixtures. Constr. Build. Mater. 2022, 318, 126002. [Google Scholar] [CrossRef]
- Jia, H.; Sheng, Y.; Lv, H.; Kim, Y.R.; Zhao, X.; Meng, J.; Xiong, R. Effects of bamboo fiber on the mechanical properties of asphalt mixtures. Constr. Build. Mater. 2021, 289, 123196. [Google Scholar] [CrossRef]
- Queiroz, R.F.R.; Rodrigues, J.K.G.; Patricio, J.D.; Silva, P.H.d.; Carvalho, J.R.; Melo Neto, O.d.M.; Rodrigues, L.G.; Lima, R.K.B.d. Linear viscoelastic properties and fatigue S-VECD based evaluation of polymer-modified asphalt mixtures. J. Build. Eng. 2023, 75, 106916. [Google Scholar] [CrossRef]
- Keshavarzi, B.; Kim, Y.R. A dissipated pseudo strain energy-based failure criterion for thermal cracking and its verification using thermal stress restrained specimen tests. Constr. Build. Mater. 2020, 233, 117199. [Google Scholar] [CrossRef]
- Bueno, L.D.; Schuster, S.L.; Specht, L.P.; Pereira, D.d.S.; Nascimento, L.A.H.d.; Kim, Y.R.; Brenner, M.G.B. Asphalt pavement design optimisation: A case study using viscoelastic continuum damage theory. Int. J. Pavement Eng. 2020, 23, 1070–1082. [Google Scholar] [CrossRef]
- Nguyen, Q.T.; Di Benedetto, H.; Nguyen, Q.P.; Hoang, T.T.N.; Bui, V.P. Effect of time–temperature, strain level and cyclic loading on the complex Poisson’s ratio of asphalt mixtures. Constr. Build. Mater. 2021, 294, 123564. [Google Scholar] [CrossRef]
- Lee, K.; Pape, S.; Castorena, C.; Kim, Y.R. Evaluation of Small Specimen Geometries for Asphalt Mixture Performance Testing and Pavement Performance Prediction. Transp. Res. Rec. J. Transp. Res. Board 2017, 2631, 74–82. [Google Scholar] [CrossRef]
- Pape, S.; Lee, K.; Castorena, C.; Kim, Y.R. Optimization of the Laboratory Fabrication of Small Specimens for Asphalt Mixture Performance Testing. Transp. Res. Rec. J. Transp. Res. Board 2018, 2672, 438–450. [Google Scholar] [CrossRef]
- Underwood, B.S.; Baek, C.; Kim, Y.R. Simplified Viscoelastic Continuum Damage Model as Platform for Asphalt Concrete Fatigue Analysis. Transp. Res. Rec. J. Transp. Res. Board 2012, 2296, 36–45. [Google Scholar] [CrossRef]
- Keshavarzi, B.; Kim, Y.R. A viscoelastic-based model for predicting the strength of asphalt concrete in direct tension. Constr. Build. Mater. 2016, 122, 721–727. [Google Scholar] [CrossRef]
- Wang, Y.D.; Keshavarzi, B.; Kim, Y.R. Fatigue Performance Prediction of Asphalt Pavements with FlexPAVETM, the S-VECD Model, and DR Failure Criterion. Transp. Res. Rec. J. Transp. Res. Board 2018, 2672, 217–227. [Google Scholar] [CrossRef]
- Saha, G.; Biligiri, K.P. Fracture properties of asphalt mixtures using semi-circular bending test: A state-of-the-art review and future research. Constr. Build. Mater. 2016, 105, 103–112. [Google Scholar] [CrossRef]
- Falchetto, A.C.; Moon, K.H.; Wang, D.; Riccardi, C.; Wistuba, M.P. Comparison of low-temperature fracture and strength properties of asphalt mixture obtained from IDT and SCB under different testing configurations. Road Mater. Pavement Des. 2018, 19, 591–604. [Google Scholar] [CrossRef]
- Gao, L.; Li, H.; Xie, J.; Yu, Z.; Charmot, S. Evaluation of pavement performance for reclaimed asphalt materials in different layers. Constr. Build. Mater. 2018, 159, 561–566. [Google Scholar] [CrossRef]
- Jiang, J.; Ni, F.; Dong, Q.; Wu, F.; Dai, Y. Research on the fatigue equation of asphalt mixtures based on actual stress ratio using semi-circular bending test. Constr. Build. Mater. 2018, 158, 996–1002. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, L.; Feng, L.; Guo, Y. Research on fatigue performance of composite crumb rubber modified asphalt mixture under freeze thaw cycles. Constr. Build. Mater. 2022, 323, 126603. [Google Scholar] [CrossRef]
- Cui, S.; Guo, N.; Wang, L.; You, Z.; Tan, Y.; Guo, Z.; Luo, X.; Chen, Z. Effect of freeze-thaw cycles on the pavement performance of SBS modified and composite crumb rubber modified asphalt mixtures. Constr. Build. Mater. 2022, 342, 127799. [Google Scholar] [CrossRef]
- Radeef, H.R.; Abdul Hassan, N.; Mahmud, M.Z.H.; Zainal Abidin, A.R.; Ismail, C.R.; Abbas, H.F.; Al-Saffar, Z.H. Characterisation of cracking resistance in modified hot mix asphalt under repeated loading using digital image analysis. Theor. Appl. Fract. Mech. 2021, 116, 103130. [Google Scholar] [CrossRef]
- Wang, F.; Zhu, H.; Shu, B.; Li, Y.; Gu, D.; Gao, Y.; Chen, A.; Feng, J.; Wu, S.; Liu, Q.; et al. Microwave heating mechanism and self-healing performance of asphalt mixture with basalt and limestone aggregates. Constr. Build. Mater. 2022, 342, 127973. [Google Scholar] [CrossRef]
- Wan, J.; Wu, S.; Hu, X.; Li, Y.; Pan, P.; Gan, W. Assessment on steel slag–based SMA-5 and AC-5 asphalt mixtures for maintenance and induction heating. J. Mater. Civ. Eng. 2022, 34, 117370. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, H.; Chen, X.; Gong, M.; Hong, J.; Shi, X. Fatigue resistance and cracking mechanism of semi-flexible pavement mixture. Materials 2021, 14, 5277. [Google Scholar] [CrossRef]
- Xu, J.; Luo, X.; Qiu, X.; Hu, G. Wavelet and fractal analysis of acoustic emission characteristic of fatigue damage of asphalt mixtures. Constr. Build. Mater. 2022, 349, 128643. [Google Scholar] [CrossRef]
- Bai, T.; Liang, Y.; Li, C.; Jiang, X.; Li, Y.; Chen, A.; Wang, H.; Xu, F.; Peng, C. Application and validation of fly ash based geopolymer mortar as grouting material in porous asphalt concrete. Constr. Build. Mater. 2022, 332, 127154. [Google Scholar] [CrossRef]
- Pereira, P.; Pais, J. Main flexible pavement and mix design methods in Europe and challenges for the development of an European method. J. Traffic Transp. Eng. 2017, 4, 316–346. [Google Scholar] [CrossRef]
- Hughes, G.B. Frequency-Domain Analysis with DFTs; Society of Photo-Optical Instrumentation Engineers: Washington, DC, USA, 2017. [Google Scholar] [CrossRef]
- Barra, B.S.; Momm, L.; Pérez, Y.A.G.; Mikowski, A.; Nierwinski, H.P.; Siroma, R.S.; Nguyen, M.L.; Hughes, G.; Momm, G.G. A new dynamic apparatus for asphalt mix fatigue and stiffness modulus: Development, validation and numerical simulations. Matéria 2022, 27, e13130. [Google Scholar] [CrossRef]
- Margaritis, A.; Jacobs, G.; Pipintakos, G.; Blom, J.; Van den bergh, W. Fatigue resistance of bituminous mixtures and mortars containing high reclaimed asphalt content. Materials 2020, 13, 5680. [Google Scholar] [CrossRef]
- Zou, X.; Ding, B.; Peng, Z.; Li, H. Damage analysis four-point bending fatigue tests on stone matrix asphalt using dissipated energy approaches. Int. J. Fatigue 2020, 133, 105453. [Google Scholar] [CrossRef]
- Shan, L.; Yang, H.; Guo, F.; Li, Z. Fatigue damage evolution in asphalt mixture based on X-ray CT images. Constr. Build. Mater. 2022, 358, 129242. [Google Scholar] [CrossRef]
- Porter, B.W.; Kennedy, T.W. Comparison of Fatique Test Methods for Asphalt Materials; Technical report; University of Texas at Austin: Austin, TX, USA, 1975. [Google Scholar]
- AASHTO T 321-17; Standard Method of Test for Determining the Fatigue Life of Compacted Asphalt Mixtures Subjected to Repeated Flexural Bending. American Association of State and Highway Transportation Officials—AASHTO: Washington, DC, USA, 2017.
- Bala, N.; Napiah, M. Fatigue life and rutting performance modelling of nanosilica/polymer composite modified asphalt mixtures using Weibull distribution. Int. J. Pavement Eng. 2018, 21, 497–506. [Google Scholar] [CrossRef]
- Jamal; Hafeez, I.; Yaseen, G.; Aziz, A. Influence of Cereclor on the performance of aged asphalt binder. Int. J. Pavement Eng. 2018, 21, 1309–1320. [Google Scholar] [CrossRef]
- Bodin, D.; Terrier, J.; Perroteau, C.; Hornych, P.; Marsac, P. Effect of temperature on fatigue performances of asphalt mixes. In Proceedings of the 11th International Conference on Asphalt Pavements, Aichi, Japan, 1–6 August 2010; Volume 1. [Google Scholar]
- Spiegel, M.R.; Stephens, L.J. Schaum’s Outline of Theory and Problems of Statistics, 4th ed.; McGraw-Hill: New York, NY, USA, 2008. [Google Scholar]
- Ameri, M.; Mohammadi, R.; Mousavinezhad, M.; Ameri, A.; Shaker, H.; Fasihpour, A. Evaluating properties of asphalt mixtures containing polymers of styrene butadiene rubber (SBR) and recycled polyethylene terephthalate (rPET) against failures caused by rutting, moisture and fatigue. Frat. Integrità Strutt. 2020, 14, 177–186. [Google Scholar] [CrossRef]
- Chen, A.; Airey, G.D.; Thom, N.; Li, Y.; Wan, L. Simulation of micro-crack initiation and propagation under repeated load in asphalt concrete using zero-thickness cohesive elements. Constr. Build. Mater. 2022, 342, 127934. [Google Scholar] [CrossRef]
- Clark, B.R.; Gallage, C. Superior performance benefits of multigrade bitumen asphalt with recycled asphalt pavement additive. Constr. Build. Mater. 2020, 230, 116963. [Google Scholar] [CrossRef]
- Hamedi, G.H.; Shamami, K.G.; Pakenari, M.M. Effect of ultra-high-molecular-weight polyethylene on the performance characteristics of hot mix asphalt. Constr. Build. Mater. 2020, 258, 119729. [Google Scholar] [CrossRef]
- Daniel, J.S.; Kim, Y.R. Laboratory evaluation of fatigue damage and healing of asphalt mixtures. J. Mater. Civ. Eng. 2001, 13, 434–440. [Google Scholar] [CrossRef]
- Preston, D.W.; Dietz, E.R. The Art of Experimental Physics; John Wiley & Sons Inc.: New York, NY, USA, 1991. [Google Scholar]
- Box, G.E.P.; Hunter, J.S.; Hunter, W.G. Statistics for experimenters. In Wiley Series in Probability and Statistics, 2nd ed.; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Badin, G.; Ahmad, N.; Ali, H.M.; Ahmad, T.; Jameel, M.S. Effect of addition of pigments on thermal characteristics and the resulting performance enhancement of asphalt. Constr. Build. Mater. 2021, 302, 124212. [Google Scholar] [CrossRef]
- Kumar, A.; Choudhary, R.; Kandhal, P.S.; Julaganti, A.; Behera, O.P.; Singh, A.; Kumar, R. Fatigue characterisation of modified asphalt binders containing warm mix asphalt additives. Road Mater. Pavement Des. 2018, 21, 519–541. [Google Scholar] [CrossRef]
- Liz, J.V.d.; Barra, B.S.; Mikowski, A.; Casali, R.M.; Hughes, G.B.; Pérez, Y.A.G.; Melo, J.V.S.d.; Nguyen, M.L. Influence of sample size and outlier values on estimation of fatigue test parameters for asphalt mixes. Constr. Build. Mater. 2025, 494, 143240. [Google Scholar] [CrossRef]
- Jiao, L.; Elkashef, M.; Harvey, J.T.; Rahman, M.A.; Jones, D. Investigation of fatigue performance of asphalt mixtures and FAM mixes with high recycled asphalt material contents. Constr. Build. Mater. 2022, 314, 125607. [Google Scholar] [CrossRef]
- Ren, J.; Xu, Y.; Zhao, Z.; Chen, J.; Cheng, Y.; Huang, J.; Yang, C.; Wang, J. Fatigue prediction of semi-flexible composite mixture based on damage evolution. Constr. Build. Mater. 2022, 318, 126004. [Google Scholar] [CrossRef]
- Xiang, H.; Zhang, W.; Liu, P.; He, Z. Fatigue-healing performance evaluation of asphalt mixture using four-point bending test. Mater. Struct. 2020, 53, 47. [Google Scholar] [CrossRef]
- Li, X.; Shen, J.; Ling, T.; Yuan, F. Fatigue properties of aged porous asphalt mixtures with an epoxy asphalt binder. J. Mater. Civ. Eng. 2022, 34, 04021488. [Google Scholar] [CrossRef]
- Weibull, W. A statistical theory of the strength of materials. R. Swed. Inst. Eng. Res. 1939, 15, 1. [Google Scholar]
- Weibull, W. A statistical distribution function of wide applicability. J. Appl. Mech. 1951, 18, 293–297. [Google Scholar] [CrossRef]
- Mikowski, A.; Serbena, F.C.; Foerster, C.E.; Lepienski, C.M. Statistical analysis of threshold load for radial crack nucleation by Vickers indentation in commercial soda-lime silica glass. J. Non-Cryst. Solids 2006, 352, 3544–3549. [Google Scholar] [CrossRef]
- Mikowski, A.; Soares, P.; Wypych, F.; Lepienski, C.M. Fracture toughness, hardness, and elastic modulus of kyanite investigated by a depth-sensing indentation technique. Am. Mineral. 2008, 93, 844–852. [Google Scholar] [CrossRef]
- Mikowski, A.; Serbena, F.C.; Foerster, C.E.; Jurelo, A.R.; Lepienski, C.M. A method to measure fracture toughness using indentation in REBa2Cu3O7-δ superconductor single crystals. J. Appl. Phys. 2011, 110, 103–504. [Google Scholar] [CrossRef]
- Dias, F.T.; Pinheiro, L.B.L.G.; Souza, G.B.d.; Serbena, F.C.; da Silva, S.A.; Jurelo, A.R.; Bud’ko, S.L.; Thaler, A.; Canfield, P.C. Nanoscratch and indentation fracture toughness in superconductor Ba−Fe−As single crystals with lamellar structure. Tribol. Int. 2014, 79, 84–91. [Google Scholar] [CrossRef]
- Liz, J.V.d.; Casali, R.M.; Barra, B.S.; Mikowski, A. O uso da lei de propagação de incertezas e da estatística de Weibull no tratamento de dados experimentais de ensaios mecânicos: Uma revisão sistemática da literatura. Coneões Ciênc. Tecnol. 2023, 17, 022024. [Google Scholar] [CrossRef]
- Weibull, W. Fatigue Testing and Analysis of Results; Pergamon Press: Oxford, UK, 1961. [Google Scholar]
- Schijve, J. A normal or Weibull distribution for fatigue lives. Fatigue Fract. Eng. Mater. Struct. 1993, 16, 851–859. [Google Scholar] [CrossRef]
- Sakin, R.; Ay, I. Statistical analysis of bending fatigue life data using Weibull distribution in glass-fiber reinforced polyester composites. Mater. Des. 2008, 29, 1170–1181. [Google Scholar] [CrossRef]
- Tsai, B.W.; Harvey, J.T.; Monismith, C.L. Application of Weibull theory in prediction of asphalt concrete fatigue performance. Transp. Res. Rec. J. Transp. Res. Board 2003, 1832, 121–130. [Google Scholar] [CrossRef]
- Zou, X.; Sha, A.; Jiang, W.; Liu, Z. Effects of modifier content on high-modulus asphalt mixture and prediction of fatigue property using Weibull theory. Road Mater. Pavement Des. 2017, 18, 88–96. [Google Scholar] [CrossRef]
- Jiang, Y.; Deng, C.; Xue, J.; Liu, H.; Chen, Z. Investigation of the fatigue properties of asphalt mixture designed using vertical vibration method. Road Mater. Pavement Des. 2018, 21, 1454–1469. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Liu, H.B. Weibull modeling of the probabilistic S-N curves for rolling contact fatigue. Int. J. Fatigue 2014, 66, 47–54. [Google Scholar] [CrossRef]
- Montgomery, D.C.; Runger, G.C. Applied Statistics and Probability for Engineers, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
Search Keywords | Field | Filters |
---|---|---|
“Asphalt mix*” | Article title | Year range: 2020–2025 |
“Fatigue test*” | Abstract | Document type: article |
Keywords | Language: English |
ID | Source | Articles | Share of Total Articles (%) | CiteScore 2023 | Journal Impact Factor 2023 |
---|---|---|---|---|---|
S1 | Construction and Building Materials | 100 | 27.2 | 13.8 | 7.4 |
S2 | Journal of Materials in Civil Engineering | 36 | 9.8 | 5.8 | 3.1 |
S3 | International Journal of Pavement Engineering | 26 | 7.1 | 7.1 | 3.4 |
S4 | Materials | 25 | 6.8 | 5.8 | 3.1 |
S5 | Road Materials and Pavement Design | 22 | 6.0 | 8.1 | 3.4 |
S6 | Case Studies in Construction Materials | 14 | 3.8 | 7.6 | 6.5 |
S7 | International Journal of Pavement Research and Technology | 12 | 3.3 | 4.9 | 3.0 |
S8 | Transportation Research Record | 10 | 2.7 | 3.2 | 1.6 |
S9 | Journal of Cleaner Production | 7 | 1.9 | 20.4 | 9.8 |
S10 | Journal of Transportation Engineering Part B: Pavements | 7 | 1.9 | 4.5 | 1.9 |
Country | Articles | Share of Total Articles (%) | SCP 1 | MCP 2 | MCP (%) | TC 3 | Quality of Roads [144] | |
---|---|---|---|---|---|---|---|---|
Value | Ranking | |||||||
China | 166 | 45.1 | 126 | 40 | 24.1 | 2041 | 4.6 | 45th |
USA | 29 | 7.9 | 28 | 1 | 3.4 | 138 | 5.5 | 17th |
Iran | 28 | 7.6 | 23 | 5 | 17.9 | 408 | 3.9 | 79th |
India | 19 | 5.2 | 17 | 2 | 10.5 | 238 | 4.5 | 48th |
Brazil | 13 | 3.5 | 11 | 2 | 15.4 | 141 | 3.0 | 116th |
Australia | 7 | 1.9 | 6 | 1 | 14.3 | 101 | 4.9 | 34th |
Italy | 7 | 1.9 | 3 | 4 | 57.1 | 59 | 4.4 | 53rd |
France | 6 | 1.6 | 5 | 1 | 16.7 | 46 | 5.4 | 18th |
UK | 6 | 1.6 | 1 | 5 | 83.3 | 55 | 4.9 | 36th |
Pakistan | 5 | 1.4 | 3 | 2 | 40.0 | 75 | 4.0 | 67th |
Turkey | 5 | 1.4 | 4 | 1 | 20.0 | 18 | 5.0 | 31st |
Ord. | Cluster | Authors | Title | Year | Source | TC 1 | Ref. |
---|---|---|---|---|---|---|---|
1 | 4 | Cheng, H.; Sun, L.; Wang, Y.; Chen, X. | Effects of actual loading waveforms on the fatigue behaviours of asphalt mixtures | 2021 | International Journal of Fatigue | 104 | [22] |
2 | 3 | Daryaee, D.; Ameri, M.; Mansourkhaki, A. | Utilizing of waste polymer modified bitumen in combination with rejuvenator in high reclaimed asphalt pavement mixtures | 2020 | Construction and Building Materials | 69 | [43] |
3 | 5 | Wang, F.; Xiao, Y.; Cui, P.; Ma, T.; Kuang, D. | Effect of aggregate morphologies and compaction methods on the skeleton structures in asphalt mixtures | 2020 | Construction and Building Materials | 61 | [89] |
4 | 3 | Liu, C.; Lv, S.; Jin, D.; Qu, F. | Laboratory investigation for the road performance of asphalt mixtures modified by rock asphalt-styrene butadiene rubber | 2021 | Journal of Materials in Civil Engineering | 58 | [39] |
5 | 4 | Xia, C.; Lv, S.; Cabrera, M.B.; Wang, X.; Zhang, C.; You, L. | Unified characterizing fatigue performance of rubberized asphalt mixtures subjected to different loading modes | 2021 | Journal of Cleaner Production | 50 | [136] |
6 | 2 | Cheng, H.; Liu, J.; Sun, L.; Liu, L.; Zhang, Y. | Fatigue behaviours of asphalt mixture at different temperatures in four-point bending and indirect tensile fatigue tests | 2021 | Construction and Building Materials | 48 | [23] |
7 | 5 | Enieb, M.; Diab, A.; Yang, X. | Short- and long-term properties of glass fiber reinforced asphalt mixtures | 2021 | International Journal of Pavement Engineering | 48 | [40] |
8 | 4 | Fan, Z.; Xu, H.; Xiao, J.; Tan, Y. | Effects of freeze-thaw cycles on fatigue performance of asphalt mixture and development of fatigue-freeze-thaw (FFT) uniform equation | 2020 | Construction and Building Materials | 48 | [153] |
9 | 5 | Yi, X.; Chen, H.; Wang, H.; Shi, C.; Yang, J. | The feasibility of using epoxy asphalt to recycle a mixture containing 100% reclaimed asphalt pavement (RAP) | 2022 | Construction and Building Materials | 47 | [44] |
10 | 5 | Wu, J.; Wang, Y.; Liu, Q.; Wang, Y.; Ago, C.; Oeser, M. | Investigation on mechanical performance of porous asphalt mixtures treated with laboratory aging and moisture actions | 2020 | Construction and Building Materials | 44 | [87] |
Parameter | Total Number |
---|---|
Number of texts (abstracts) | 368 |
Number of occurrences | 88,688 |
Mean of occurrences by text | 241 |
Number of lexical forms (words) | 3988 |
Number of hapax legomenon 1 | 1357 ( of occurrences and of forms) |
Active forms | 3415 |
Supplementary forms | 348 |
Ord. | Active Forms | Freq. | Ord. | Active Forms | Freq. | Ord. | Active Forms | Freq. | Ord. | Active Forms | Freq. |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | asphalt | 1950 | 26 | strength | 259 | 51 | indirect | 157 | 76 | layer | 107 |
2 | fatigue | 1891 | 27 | evaluate | 256 | 52 | time | 157 | 77 | sample | 106 |
3 | mixture | 1611 | 28 | fiber | 255 | 53 | analysis | 150 | 78 | include | 105 |
4 | test | 1485 | 29 | low | 254 | 54 | investigate | 147 | 79 | find | 105 |
5 | performance | 735 | 30 | stress | 245 | 55 | failure | 147 | 80 | beam | 104 |
6 | pavement | 561 | 31 | material | 244 | 56 | mechanical | 146 | 81 | characteristic | 104 |
7 | temperature | 525 | 32 | content | 244 | 57 | cycle | 145 | 82 | shear | 102 |
8 | result | 521 | 33 | rap | 239 | 58 | laboratory | 140 | 83 | road | 102 |
9 | binder | 471 | 34 | bend | 237 | 59 | dynamic | 139 | 84 | frequency | 101 |
10 | life | 466 | 35 | heal | 233 | 60 | rate | 137 | 85 | index | 100 |
11 | crack | 434 | 36 | method | 232 | 61 | reduce | 137 | 86 | additive | 100 |
12 | resistance | 430 | 37 | strain | 230 | 62 | moisture | 133 | 87 | analyze | 99 |
13 | study | 423 | 38 | modulus | 230 | 63 | specimen | 132 | 88 | freeze | 99 |
14 | load | 414 | 39 | improve | 222 | 64 | stability | 132 | 89 | prediction | 98 |
15 | damage | 406 | 40 | design | 216 | 65 | type | 130 | 90 | creep | 98 |
16 | high | 399 | 41 | age | 213 | 66 | decrease | 129 | 91 | long | 98 |
17 | mix | 385 | 42 | level | 204 | 67 | term | 127 | 92 | propose | 98 |
18 | modify | 384 | 43 | aggregate | 195 | 68 | parameter | 125 | 93 | obtain | 97 |
19 | increase | 311 | 44 | rut | 182 | 69 | conduct | 124 | 94 | surface | 96 |
20 | base | 310 | 45 | recycle | 179 | 70 | energy | 121 | 95 | paper | 95 |
21 | property | 305 | 46 | point | 173 | 71 | addition | 120 | 96 | significant | 95 |
22 | show | 294 | 47 | ratio | 172 | 72 | influence | 116 | 97 | rubber | 94 |
23 | effect | 263 | 48 | condition | 163 | 73 | research | 115 | 98 | structure | 93 |
24 | tensile | 263 | 49 | compare | 161 | 74 | control | 115 | 99 | perform | 93 |
25 | model | 263 | 50 | stiffness | 159 | 75 | bitumen | 110 | 100 | fracture | 93 |
Cluster 1 | Cluster 2 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ord. | Fr. TS | Total fr. | % | Forms | Ord. | Fr. TS | Total fr. | % | Forms | ||||
1 | 193 | 355 | 54.37 | 400.55 | pavement | <0.0001 | 1 | 88 | 131 | 67.18 | 367.49 | indirect | <0.0001 |
2 | 49 | 61 | 80.33 | 172.11 | environmental | <0.0001 | 2 | 241 | 777 | 31.02 | 355.53 | test | <0.0001 |
3 | 94 | 181 | 51.93 | 162.74 | material | <0.0001 | 3 | 103 | 204 | 50.49 | 284.87 | tensile | <0.0001 |
4 | 37 | 44 | 84.09 | 138.34 | construction | <0.0001 | 4 | 99 | 191 | 51.83 | 284.21 | bend | <0.0001 |
5 | 35 | 42 | 83.33 | 128.95 | cost | <0.0001 | 5 | 26 | 28 | 92.86 | 162.23 | uniaxial | <0.0001 |
6 | 56 | 93 | 60.22 | 123.21 | road | <0.0001 | 6 | 58 | 114 | 50.88 | 155.43 | conduct | <0.0001 |
7 | 23 | 23 | 100.00 | 109.89 | sustainable | <0.0001 | 7 | 67 | 146 | 45.89 | 152.64 | point | <0.0001 |
8 | 24 | 25 | 96.00 | 108.25 | maintenance | <0.0001 | 8 | 61 | 126 | 48.41 | 151.12 | dynamic | <0.0001 |
9 | 33 | 52 | 63.46 | 78.22 | application | <0.0001 | 9 | 38 | 58 | 65.52 | 147.68 | carry | <0.0001 |
10 | 27 | 38 | 71.05 | 77.08 | engineer | <0.0001 | 10 | 74 | 183 | 40.44 | 135.85 | modulus | <0.0001 |
Cluster 3 | Cluster 4 | ||||||||||||
Ord. | Fr. TS | Total fr. | % | Forms | Ord. | Fr. TS | Total fr. | % | Forms | ||||
1 | 129 | 293 | 44.03 | 306.52 | modify | <0.0001 | 1 | 142 | 168 | 84.52 | 319.50 | model | <0.0001 |
2 | 127 | 330 | 38.48 | 239.11 | binder | <0.0001 | 2 | 182 | 289 | 62.98 | 232.28 | load | <0.0001 |
3 | 48 | 69 | 69.57 | 211.62 | sbs | <0.0001 | 3 | 125 | 184 | 67.93 | 180.52 | stress | <0.0001 |
4 | 46 | 66 | 69.70 | 203.07 | grade | <0.0001 | 4 | 71 | 80 | 88.75 | 167.70 | establish | <0.0001 |
5 | 31 | 33 | 93.94 | 202.74 | styrene | <0.0001 | 5 | 112 | 163 | 68.71 | 164.21 | strain | <0.0001 |
6 | 29 | 30 | 96.67 | 196.59 | butadiene | <0.0001 | 6 | 66 | 75 | 88.00 | 153.10 | prediction | <0.0001 |
7 | 37 | 52 | 71.15 | 167.15 | polymer | <0.0001 | 7 | 182 | 355 | 51.27 | 137.23 | life | <0.0001 |
8 | 45 | 73 | 61.64 | 166.34 | rubber | <0.0001 | 8 | 53 | 57 | 92.98 | 134.74 | equation | <0.0001 |
9 | 31 | 41 | 75.61 | 151.80 | modifier | <0.0001 | 9 | 138 | 243 | 56.79 | 131.89 | damage | <0.0001 |
10 | 45 | 79 | 56.96 | 147.75 | bitumen | <0.0001 | 10 | 393 | 1097 | 35.82 | 104.58 | fatigue | <0.0001 |
Cluster 5 | |||||||||||||
Ord. | Fr. TS | Total fr. | % | Forms | |||||||||
1 | 108 | 153 | 70.59 | 121.01 | fiber | <0.0001 | |||||||
2 | 178 | 333 | 53.45 | 93.16 | resistance | <0.0001 | |||||||
3 | 260 | 572 | 45.45 | 76.34 | performance | <0.0001 | |||||||
4 | 87 | 138 | 63.04 | 71.04 | aggregate | <0.0001 | |||||||
5 | 92 | 154 | 59.74 | 64.30 | rut | <0.0001 | |||||||
6 | 106 | 189 | 56.08 | 61.20 | content | <0.0001 | |||||||
7 | 178 | 384 | 46.35 | 51.78 | temperature | <0.0001 | |||||||
8 | 64 | 103 | 62.14 | 49.224 | addition | <0.0001 | |||||||
9 | 67 | 110 | 60.91 | 48.68 | stability | <0.0001 | |||||||
10 | 70 | 120 | 58.33 | 44.58 | moisture | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valente de Liz, J.; Salgado Barra, B.; Mikowski, A.; Hughes, G.B.; Ferreira, A. Fatigue Testing in Asphalt Mixes: Emerging Trends and Findings from an Integrated Literature Review. Appl. Sci. 2025, 15, 10220. https://doi.org/10.3390/app151810220
Valente de Liz J, Salgado Barra B, Mikowski A, Hughes GB, Ferreira A. Fatigue Testing in Asphalt Mixes: Emerging Trends and Findings from an Integrated Literature Review. Applied Sciences. 2025; 15(18):10220. https://doi.org/10.3390/app151810220
Chicago/Turabian StyleValente de Liz, Jessé, Breno Salgado Barra, Alexandre Mikowski, Gary B. Hughes, and Adelino Ferreira. 2025. "Fatigue Testing in Asphalt Mixes: Emerging Trends and Findings from an Integrated Literature Review" Applied Sciences 15, no. 18: 10220. https://doi.org/10.3390/app151810220
APA StyleValente de Liz, J., Salgado Barra, B., Mikowski, A., Hughes, G. B., & Ferreira, A. (2025). Fatigue Testing in Asphalt Mixes: Emerging Trends and Findings from an Integrated Literature Review. Applied Sciences, 15(18), 10220. https://doi.org/10.3390/app151810220