High-Entropy Perovskite La(Co0.2Mn0.2Fe0.2Ni0.2Cu0.2)O3 as a Material for Lithium-Ion Batteries
Abstract
1. Introduction
2. Materials and Methods
2.1. Material
2.2. Material Characterization
2.3. Coin Cell Preparation
2.4. Electrochemical Characterization
3. Results
3.1. Material Characterization
3.2. Electrochemical Characterization
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.; Liu, G.; Tang, C.; Tang, H.; Zhang, W.; Ju, Z.; Jiang, J.; Zhuang, Q.; Cui, Y. A novel high entropy perovskite fluoride anode with 3D cubic framework for advanced lithium-ion battery. J. Alloys Compd. 2023, 934, 167889. [Google Scholar] [CrossRef]
- European Commission. Critical Raw Materials. Available online: https://single-market-economy.ec.europa.eu/sectors/raw-materials/areas-specific-interest/critical-raw-materials_en (accessed on 24 May 2025).
- Zhao, W.; Zhao, C.; Wu, H.; Li, L.; Zhang, C. Progress, challenge and perspective of graphite-based anode materials for lithium batteries: A review. J. Energy Storage 2024, 81, 110409. [Google Scholar] [CrossRef]
- Li, H.; Sun, X.; Huang, H. The concept of high entropy for rechargeable batteries. Prog. Mater. Sci. 2025, 148, 101382. [Google Scholar] [CrossRef]
- Amiri, A.; Shahbazian-Yassar, R. Recent progress of high-entropy materials for energy storage and conversion. J. Mater. Chem. A 2021, 9, 782–823. [Google Scholar] [CrossRef]
- Ma, J.; Liu, T.; Ye, W.; He, Q.; Chen, K. High-entropy perovskite oxides for energy materials: A review. J. Energy Storage 2024, 90, 111890. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, J.; Song, Y.; Yu, J.; Tian, Y.; Robson, M.J.; Wang, J.; Zhang, Z.; Lin, X.; Zhou, G.; et al. High-Entropy Perovskites for Energy Conversion and Storage: Design, Synthesis, and Potential Applications. Small Methods 2023, 7, 2201138. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Robson, M.J.; Manzotti, A.; Ciucci, F. High-entropy perovskites materials for next-generation energy applications. Joule 2023, 7, 848–854. [Google Scholar] [CrossRef]
- Han, X.; Yang, Y.; Fan, Y.; Ni, H.; Guo, Y.; Chen, Y.; Ou, X.; Ling, Y. New approach to enhance Sr-free cathode performance by high-entropy multi-component transition metal coupling. Ceram. Int. 2021, 47, 17383–17390. [Google Scholar] [CrossRef]
- Nie, S.; Wu, L.; Zhao, L.; Zhang, P.F. Enthalpy-change driven synthesis of high-entropy perovskite nanoparticles. Nano Res. 2022, 15, 4867–4872. [Google Scholar] [CrossRef]
- Meng, Z.; Gong, X.; Xu, J.; Sun, X.; Zeng, F.; Du, Z.; Hao, Z.; Shi, W.; Yu, S.; Hu, X.; et al. A General Strategy for Preparing Hollow Spherical Multilayer Structures of Oxygen-Rich Vacancy Transition Metal Oxides, Especially High Entropy Perovskite Oxides. Chem. Eng. J. 2023, 457, 141242. [Google Scholar] [CrossRef]
- Liu, X.; Ding, L.; Li, K.; Lv, J.; Wen, J.; Zhang, H.; Wang, Y.; Yao, Y.; Lei, W. The role of oxygen defects in high entropy perovskite for lithium-ion batteries. Acta Mater. 2025, 287, 120812. [Google Scholar] [CrossRef]
- Jia, Y.; Chen, S.; Shao, X.; Cheng, J.; Lin, N.; Fang, D.; Mao, A.; Li, C. Preparation and High-Performance Lithium-Ion Storage of Cobalt-Free Perovskite High-Entropy Oxide Anode Materials. Acta Chim. Sin. 2023, 81, 486–495. [Google Scholar]
- Jia, Y.; Chen, S.; Shao, X.; Chen, J.; Fang, D.-L.; Li, S.; Mao, A.; Li, C. Synergetic Effect of Lattice Distortion and Oxygen Vacancies on High-Rate Lithium-Ion Storage in High-Entropy Perovskite Oxides. J. Adv. Ceram. 2023, 12, 1214–1227. [Google Scholar] [CrossRef]
- Shao, X.; Jia, Y.; Cheng, J.; Fang, D.; Mao, A.; Tan, J. Preparation and Electrochemical Properties of Perovskite-Type La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 High-Entropy Oxide. J. Process Eng. 2023, 23, 771–780. [Google Scholar]
- Bao, M.; Chen, S.; Shao, X.; Deng, H.; Mao, A.; Tan, J. Preparation and High-Rate Lithium-Ion Storage of Hollow Sphere Perovskite High-Entropy Oxides Assisted by Deep Eutectic Solvents. Acta Chim. Sin. 2024, 82, 303–313. [Google Scholar] [CrossRef]
- Wei, J.; Rong, K.; Li, X.; Wang, Y.; Qiao, Z.-A.; Fang, Y.; Dong, S. Deep Eutectic Solvent Assisted Facile Synthesis of Low-Dimensional Hierarchical Porous High-Entropy Oxides. Mater. Horiz. 2022, 15, 2756–2763. [Google Scholar] [CrossRef]
- Jia, Y.; Shao, X.; Cheng, J.; Wang, P.; Mao, A. Preparation and Lithium Storage Performance of Pseudocapacitance-Controlled Chalcogenide High-Entropy Oxide La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3 Anode Materials. Chem. J. Chin. Univ. 2022, 43, 20220157. [Google Scholar]
- Rivas-Murias, B.; Fagnard, J.-F.; Vanderbemden, P.; Traianidis, M.; Henrist, C.; Cloots, R.; Vertruyen, B. Spray Drying: An Alternative Synthesis Method for Polycationic Oxide Compounds. J. Phys. Chem. Solids 2011, 72, 158–163. [Google Scholar] [CrossRef]
- Toby, B.H.; Von Dreele, R.B. GSAS-II: The Genesis of a Modern Open-Source All Purpose Crystallography Software Package. J. Appl. Crystallogr. 2013, 46, 544–549. [Google Scholar] [CrossRef]
- Altomare, A.; Corriero, N.; Cuocci, C.; Falcicchio, A.; Moliterni, A.; Rizzi, R. QUALX2.0: A qualitative phase analysis software using the freely available database POW_COD. J. Appl. Cryst. 2015, 48, 598–603. [Google Scholar] [CrossRef]
- Luc, P.-M.; Bauer, S.; Kowal, J. Reproducible Production of Lithium-Ion Coin Cells. Energies 2022, 15, 7949. [Google Scholar] [CrossRef]
- Guerreiro, H.M.; Melnikov, P.; Arkhangelsky, I.; de Oliveira, L.C.S.; Wandekoken, G.A.; do Nascimento, V.A. Thermal decomposition of lanthanum nitrate hexahydrate La(NO3)3∙6H2O. Int. J. Dev. Res. 2021, 11, 43318–43321. [Google Scholar]
- Yan, J.; Wang, D.; Zhang, X.; Li, J.; Du, Q.; Liu, X.; Zhang, J.; Qi, X. A high-entropy perovskite titanate lithium-ion battery anode. J. Mater. Sci. 2020, 55, 6942–6951. [Google Scholar] [CrossRef]
- Wen, S.; Li, G.; Ren, R.; Li, C. Preparation of Spherical Li4Ti5O12 Anode Materials by Spray Drying. Mater. Lett. 2015, 148, 130–133. [Google Scholar] [CrossRef]
- Liu, L.; Li, Z.; Wang, Y.; Li, Z.; Larring, Y.; Cai, N. Industry-Scale Production of a Perovskite Oxide as Oxygen Carrier Material in Chemical Looping. Chem. Eng. J. 2022, 431, 134006. [Google Scholar] [CrossRef]
- Stunda-Zujeva, A.; Irbe, Z.; Berzina-Cimdina, L. Controlling the Morphology of Ceramic and Composite Powders Obtained via Spray Drying—A Review. Ceram. Int. 2017, 43, 11543–11551. [Google Scholar] [CrossRef]
- Zhou, S.; Pu, Y.; Zhang, Q.; Shi, R.; Guo, X.; Wang, W.; Ji, J.; Wei, T.; Ouyang, T. Microstructure and Dielectric Properties of High Entropy Ba(Zr0.2Ti0.2Sn0.2Hf0.2Me0.2)O3 Perovskite Oxides. Ceram. Int. 2020, 46, 7430–7437. [Google Scholar] [CrossRef]
- Sharma, Y.; Zheng, Q.; Mazza, A.R.; Skoropata, E.; Heitmann, T.; Gai, Z.; Musico, B.; Miceli, P.F.; Sales, B.C.; Keppens, V.; et al. Magnetic anisotropy in single-crystal high-entropy perovskite oxide La(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3 films. Phys. Rev. Mater. 2020, 4, 014410. [Google Scholar] [CrossRef]
- Jiang, S.; Hu, T.; Gild, J.; Zhou, N.; Nie, J.; Qin, M.; Harrington, T.; Vecchio, K.; Luo, J. A New Class of High-Entropy Perovskite Oxides. Scr. Mater. 2018, 142, 116–120. [Google Scholar] [CrossRef]
- Mena, M.F.; Vasquez, F.A.; Florentin, O.; Mosa, J.; Aparicio, M.; Calderon, J.A.; Rosero-Navarro, N.C. Electrochemical performance enhancement of perovskite-type Li0.3La0.57TiO3 ceramic electrolyte by controlling synthesis parameters. J. Eur. Ceram. Soc. 2025, 45, 116972. [Google Scholar] [CrossRef]
- Cao, J.; Wu, S.; He, J.; Zhou, Y.; Ma, P. Research progress of high-entropy perovskite oxides in energy and environmental applications: A review. Particuology 2024, 95, 62–81. [Google Scholar] [CrossRef]
- Nan, H.-S.; Hu, X.-Y.; Tian, H.-W. Recent Advances in Perovskite Oxides for Anion-Intercalation Supercapacitor: A Review. Mater. Sci. Semicond. Process. 2019, 94, 35–50. [Google Scholar] [CrossRef]
- Yazhou, K.; Zhiren, Y. Synthesis, Structure and Electrochemical Properties of Al Doped High Entropy Perovskite Lix(LiLaCaSrBa)Ti1−xAlxO3. Ceram. Int. 2022, 48, 5035–5039. [Google Scholar] [CrossRef]
- Palacín, M.R. Recent Advances in Rechargeable Battery Materials: A Chemist’s Perspective. Chem. Soc. Rev. 2009, 38, 2565–2575. [Google Scholar] [CrossRef] [PubMed]
- Chintha, S.; Atif, S.; Chaupatnaik, A.; Golubnichiy, A.; Abakumov, A.M.; Barpanda, P. Na0.5Bi0.5TiO3 perovskite anode for lithium-ion batteries. Sustain. Energy Fuels 2024, 8, 5058–5064. [Google Scholar] [CrossRef]
- Wang, D.; Jiang, S.; Duan, C.; Mao, J.; Dong, Y.; Dong, K.; Wang, Z.; Luo, S.; Liu, Y.; Qi, X. Spinel-Structured High Entropy Oxide (FeCoNiCrMn)\3O4 as Anode towards Superior Lithium Storage Performance. J. Alloys Compd. 2020, 844, 156158. [Google Scholar] [CrossRef]
- Xiao, B.; Wu, G.; Wang, T.; Wei, Z.; Sui, Y.; Shen, B.; Qi, J.; Wei, F.; Zheng, J. High-Entropy Oxides as Advanced Anode Materials for Long-Life Lithium-Ion Batteries. Nano Energy 2022, 95, 106962. [Google Scholar] [CrossRef]
- Marques, O.J.B.J.; Walter, M.D.; Timofeeva, E.V.; Segre, C.U. Effect of Initial Structure on Performance of High-Entropy Oxide Anodes for Li-Ion Batteries. Batteries 2023, 9, 115. [Google Scholar] [CrossRef]
- Kim, H.; Choi, W.; Yoon, J.; Um, J.H.; Lee, W.; Kim, J.; Cabana, J.; Yoon, W.-S. Exploring Anomalous Charge Storage in Anode Materials for Next-Generation Li Rechargeable Batteries. Chem. Rev. 2020, 120, 6934–6976. [Google Scholar] [CrossRef]
- Ran, B.; Li, H.; Cheng, R.; Yang, Z.; Zhong, Y.; Qin, Y.; Yang, C.; Fu, C. High-Entropy Oxides for Rechargeable Batteries. Adv. Sci. 2024, 11, 2401034. [Google Scholar] [CrossRef]
- Schweidler, S.; Tang, Y.; Lin, L.; Karkera, G.; Alsawaf, A.; Bernadet, L.; Breitung, B.; Hahn, H.; Fichtner, M.; Tarancón, A.; et al. Synthesis of Perovskite-Type High-Entropy Oxides as Potential Candidates for Oxygen Evolution. Front. Energy Res. 2022, 10, 983979. [Google Scholar] [CrossRef]
- Krawczyk, P.A.; Wyrwa, J.; Kubiak, W.W. Synthesis and Catalytic Performance of High-Entropy Rare-Earth Perovskite Nanofibers: (Y0.2La0.2Nd0.2Gd0.2Sm0.2)CoO3 in Low-Temperature Carbon Monoxide Oxidation. Materials 2024, 17, 1883. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Deng, C.; Niu, S.; Wang, C.; Sun, Y.; Su, W.; Liu, M.; Deng, Z.; Zhang, X. Effect of Calcination Temperature on the Microstructure, Composition and Properties of Nanometer Agglomerated 8YSZ Powders for Plasma Spray-Physical Vapor Deposition (PS-PVD) and Coatings Thereof. Ceram. Int. 2021, 47, 16632–16640. [Google Scholar] [CrossRef]
- Panchal, J. Cost-Benefit Analysis: Investing in a Spray Dryer. SprayDryer.com. [Online]. 2025. Available online: https://spraydryer.com/cost-benefit-analysis-investing-in-spray-dryer/ (accessed on 10 September 2025).
- KROHNE Group. 3 Ways in Which KROHNE Can Significantly Improve the Efficiency of Your Drying Process. KROHNE.com. [Online]. 2025. Available online: https://www.krohne.com/en-kg/trends/sustainability/saving-energy-in-spray-drying-applications (accessed on 10 September 2025).
- Ai, S.; Wang, B.; Li, X.; Shi, W. Analysis of a Heat Recovery System of the Spray-Drying Process in a Soy Protein Powder Plant. Appl. Therm. Eng. 2016, 103, 1022–1030. [Google Scholar] [CrossRef]
- Baker, C.G.J.; McKenzie, K.A. Energy Consumption of Industrial Spray Dryers. Drying Technol. 2005, 23, 365–386. [Google Scholar] [CrossRef]
- Fuzhou Xing Shun Da Refrigeration Facility Project Co., Ltd. The Ultimate Guide to Understanding Industrial Freeze Dryer Prices. GoodFreezeDryer.com. [Online]. 2025. Available online: https://goodfreezedryer.com/the-ultimate-guide-to-understanding-industrial-freeze-dryer-prices/ (accessed on 10 September 2025).
- KEMOLO. FD Industrial Freeze-Dryer. KEMOLO.com. [Online]. 2025. Available online: https://www.kemolo.com/products/industrial-freeze-dryer?srsltid=AfmBOoreJRVadTKnpNx3R4fp7lDvHZ3SFhUax2WX1MydjzK0G7RZzwNO&utm (accessed on 10 September 2025).
Element | wt.% | σ wt.% | at.% | σ at.% |
---|---|---|---|---|
Copper | 6.40 | 1.01 | 4.83 | 1.44 |
Manganese | 5.59 | 0.73 | 4.88 | 1.40 |
Iron | 4.57 | 0.65 | 3.92 | 1.15 |
Cobalt | 6.31 | 0.88 | 5.14 | 1.49 |
Nickel | 7.13 | 1.01 | 5.83 | 1.69 |
Lanthanum | 50.70 | 5.18 | 17.51 | 4.75 |
Oxygen | 19.30 | 8.58 | 57.89 | 10.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hodorová, M.; Csík, D.; Fedoročková, A.; Gáborová, K.; Džunda, R.; Sučik, G.; Kromka, F.; Saksl, K. High-Entropy Perovskite La(Co0.2Mn0.2Fe0.2Ni0.2Cu0.2)O3 as a Material for Lithium-Ion Batteries. Appl. Sci. 2025, 15, 10171. https://doi.org/10.3390/app151810171
Hodorová M, Csík D, Fedoročková A, Gáborová K, Džunda R, Sučik G, Kromka F, Saksl K. High-Entropy Perovskite La(Co0.2Mn0.2Fe0.2Ni0.2Cu0.2)O3 as a Material for Lithium-Ion Batteries. Applied Sciences. 2025; 15(18):10171. https://doi.org/10.3390/app151810171
Chicago/Turabian StyleHodorová, Marianna, Dávid Csík, Alena Fedoročková, Katarína Gáborová, Róbert Džunda, Gabriel Sučik, František Kromka, and Karel Saksl. 2025. "High-Entropy Perovskite La(Co0.2Mn0.2Fe0.2Ni0.2Cu0.2)O3 as a Material for Lithium-Ion Batteries" Applied Sciences 15, no. 18: 10171. https://doi.org/10.3390/app151810171
APA StyleHodorová, M., Csík, D., Fedoročková, A., Gáborová, K., Džunda, R., Sučik, G., Kromka, F., & Saksl, K. (2025). High-Entropy Perovskite La(Co0.2Mn0.2Fe0.2Ni0.2Cu0.2)O3 as a Material for Lithium-Ion Batteries. Applied Sciences, 15(18), 10171. https://doi.org/10.3390/app151810171