Quantifying the Protective Efficacy of Baffles Through Numerical Simulation with the MPM-DEM Method
Abstract
1. Introduction
2. Numerical Scheme
2.1. MPM Method for Soil Particles
2.2. Discrete Element Method
2.3. Coupling Scheme Between MPM and DEM
- Collision Detection: Potential contact pairs are identified by employing the MPM node-based linked-cell structure.
- Force Calculation: Contact forces are computed using the Hertz–Mindlin model, effectively treating the MPM points as discrete DEM particles for this step.
- MPM Process: The calculated coupled force is subsequently added as an external force term to the MPM governing equations (Equations (1) and (2)). The motion of the MPM points is then solved using the same computational procedures detailed in Section 2.1.
3. Numerical Simulations and Results
3.1. Impact Dynamics for Baffle’s Location
3.2. Impact Dynamics for Slope Angle
4. Discussion
4.1. Effects of Baffle Position on Impact Forces Acting on Structures
4.2. Effects of Slope Angle on Impact Forces Acting on Structures
4.3. Effects of Baffle Position on Impact Forces Acting on Baffle
4.4. Effects of Slopes Angle on Impact Forces Acting on Baffle
4.5. Effects of Baffle Position on Kinetic Energy
4.6. Effects of Slopes Angle on Kinetic Energy
5. Conclusions
- Baffle arrays significantly influence the flow behavior of soil–rock mixture. When placed closer to the structure, baffles dissipate more kinetic energy and reduce the impact force on the structure. This is due to the shortened run-out distance and increased energy absorption by the baffles themselves. However, this configuration also increases the stress concentration on the baffles, necessitating a trade-off in design between structural protection and baffle durability.
- Increasing the slope angle leads to higher impact velocities and forces due to the greater conversion of gravitational potential energy into kinetic energy. Steeper slopes cause more concentrated impact zones and sharper accumulation gradients, intensifying the structural demands on both the baffle and downstream infrastructure.
- By monitoring kinetic energy upstream and downstream of the baffle array, it was observed that energy loss through baffle interaction increases as the baffles are placed closer to the structure. This indicates a more efficient dissipation mechanism, but also implies greater mechanical demands on the baffle components, especially under high-slope conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pradeep, S.; Arratia, P.E.; Jerolmack, D.J. Origins of complexity in the rheology of Soft Earth suspensions. Nat. Commun. 2024, 15, 7432. [Google Scholar] [PubMed]
- Cui, K.F.; Zhou, G.G.; Man, T.; Huang, Y.; Zhang, Y.; Lu, X.; Zhao, T. Modeling the dense granular flow rheology of particles with different surface friction: Implications for geophysical mass flows. J. Geophys. Res. Earth Surf. 2025, 130, e2024JF008048. [Google Scholar] [CrossRef]
- Ma, Z.; Mei, G. Deep learning for geological hazards analysis: Data, models, applications, and opportunities. Earth-Sci. Rev. 2021, 223, 103858. [Google Scholar]
- Iverson, R.M. The physics of debris flows. Rev. Geophys. 1997, 35, 245–296. [Google Scholar] [CrossRef]
- Liu, C.; Yu, Z.; Zhao, S. A coupled SPH-DEM-FEM model for fluid-particle-structure interaction and a case study of Wenjia gully debris flow impact estimation. Landslides 2021, 18, 2403–2425. [Google Scholar] [CrossRef]
- Ng, C.W.W.; Jia, Z.; Poudyal, S.; Bhatta, A.; Liu, H. Two-phase MPM modelling of debris flow impact against dual rigid barriers. Géotechnique 2023, 74, 1390–1403. [Google Scholar] [CrossRef]
- Goodwin, S.R.; Choi, C.E.; Yune, C.Y. Towards rational use of baffle arrays on sloped and horizontal terrain for filtering boulders. Can. Geotech. J. 2021, 58, 1571–1589. [Google Scholar] [CrossRef]
- Du, J.; Chang, D.; Lee, C.; Su, Y.; Choi, C.E.; Zhang, J. Mitigation of rockfall geohazards: Full-scale investigation of the performance of a practical baffle design for direct use in the field. Eng. Geol. 2024, 337, 107586. [Google Scholar] [CrossRef]
- Zhou, G.G.; Hu, H.; Song, D.; Zhao, T.; Chen, X. Experimental study on the regulation function of slit dam against debris flows. Landslides 2019, 16, 75–90. [Google Scholar] [CrossRef]
- Yang, H.; Haque, E.; Song, K. Experimental study on the effects of physical conditions on the interaction between debris flow and baffles. Phys. Fluids 2021, 33, 056601. [Google Scholar] [CrossRef]
- Kim, B.J.; Yune, C.Y. Flume investigation of debris flow entrained boulders with cylindrical baffles and a rigid barrier. Eng. Geol. 2025, 344, 107836. [Google Scholar] [CrossRef]
- Ng, C.W.W.; Choi, C.; Song, D.; Kwan, J.; Koo, R.; Shiu, H.; Ho, K. Physical modeling of baffles influence on landslide debris mobility. Landslides 2015, 12, 1–18. [Google Scholar] [CrossRef]
- Bi, Y.Z.; Wang, D.P.; Yan, S.X.; Li, Q.Z.; He, S.M. Research on the blocking effect of baffle-net structure on rock avalanches: Consider the influence of particle splashing. Bull. Eng. Geol. Environ. 2023, 82, 277. [Google Scholar] [CrossRef]
- Kim, B.J.; Yune, C.Y. Flume investigation of cylindrical baffles on landslide debris energy dissipation. Landslides 2022, 19, 3043–3060. [Google Scholar] [CrossRef]
- Man, T.; Huppert, H.E.; Galindo-Torres, S.A. Run-out scaling of granular column collapses on inclined planes. J. Fluid Mech. 2025, 1002, A50. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, B.; Zhu, C. Computational assessment of baffle performance against rapid granular flows. Landslides 2021, 18, 485–501. [Google Scholar] [CrossRef]
- Marveggio, P.; Zerbi, M.; Redaelli, I.; di Prisco, C. Granular material regime transitions during high energy impacts of dry flowing masses: MPM simulations with a multi-regime constitutive model. Int. J. Numer. Anal. Methods Geomech. 2024, 48, 3699–3724. [Google Scholar] [CrossRef]
- Gong, S.; Zhao, T.; Zhao, J.; Dai, F.; Zhou, G.G. Discrete element analysis of dry granular flow impact on slit dams. Landslides 2021, 18, 1143–1152. [Google Scholar] [CrossRef]
- Ozbay, A.; Cabalar, A. FEM and LEM stability analyses of the fatal landslides at Çöllolar open-cast lignite mine in Elbistan, Turkey. Landslides 2015, 12, 155–163. [Google Scholar] [CrossRef]
- Soga, K.; Alonso, E.; Yerro, A.; Kumar, K.; Bandara, S. Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method. Géotechnique 2016, 66, 248–273. [Google Scholar] [CrossRef]
- Carbonell, J.M.; Monforte, L.; Ciantia, M.O.; Arroyo, M.; Gens, A. Geotechnical particle finite element method for modeling of soil-structure interaction under large deformation conditions. J. Rock Mech. Geotech. Eng. 2022, 14, 967–983. [Google Scholar] [CrossRef]
- Zhang, X.; Krabbenhoft, K.; Sheng, D.; Li, W. Numerical simulation of a flow-like landslide using the particle finite element method. Comput. Mech. 2015, 55, 167–177. [Google Scholar] [CrossRef]
- Peng, C.; Li, S.; Wu, W.; An, H.; Chen, X.; Ouyang, C.; Tang, H. On three-dimensional SPH modelling of large-scale landslides. Can. Geotech. J. 2022, 59, 24–39. [Google Scholar]
- Bui, H.H.; Nguyen, G.D. Smoothed particle hydrodynamics (SPH) and its applications in geomechanics: From solid fracture to granular behaviour and multiphase flows in porous media. Comput. Geotech. 2021, 138, 104315. [Google Scholar] [CrossRef]
- Yang, E.; Bui, H.H.; Nguyen, G.D.; Choi, C.E.; Ng, C.W.; De Sterck, H.; Bouazza, A. Numerical investigation of the mechanism of granular flow impact on rigid control structures. Acta Geotech. 2021, 16, 2505–2527. [Google Scholar] [CrossRef]
- Ren, S.; Zhang, P.; Zhao, Y.; Tian, X.; Galindo-Torres, S. A coupled metaball discrete element material point method for fluid–particle interactions with free surface flows and irregular shape particles. Comput. Methods Appl. Mech. Eng. 2023, 417, 116440. [Google Scholar] [CrossRef]
- Pan, S.; Nomura, R.; Ling, G.; Takase, S.; Moriguchi, S.; Terada, K. Variable passing method for combining 3D MPM–FEM hybrid and 2D shallow water simulations of landslide-induced tsunamis. Int. J. Numer. Methods Fluids 2024, 96, 17–43. [Google Scholar] [CrossRef]
- Li, X.; Yan, Q.; Zhao, S.; Luo, Y.; Wu, Y.; Wang, D. Investigation of influence of baffles on landslide debris mobility by 3D material point method. Landslides 2020, 17, 1129–1143. [Google Scholar] [CrossRef]
- Hu, Y.; Zhu, Y.; Li, H.; Li, C.; Zhou, J. Numerical estimation of landslide-generated waves at Kaiding Slopes, Houziyan Reservoir, China, using a coupled DEM-SPH method. Landslides 2021, 18, 3435–3448. [Google Scholar]
- Bi, Y.; Huang, Y.; Zhang, B.; Pu, J. CFD-DEM numerical investigation of the effects of water content and inclination angle on interactions between debris flows and slit dam. Comput. Geotech. 2024, 170, 106273. [Google Scholar] [CrossRef]
- Peng, C.; Zhan, L.; Wu, W.; Zhang, B. A fully resolved SPH-DEM method for heterogeneous suspensions with arbitrary particle shape. Powder Technol. 2021, 387, 509–526. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhao, Y.; Choi, C.E.; Choo, J. Hybrid continuum–discrete simulation of granular impact dynamics. Acta Geotech. 2022, 17, 5597–5612. [Google Scholar] [CrossRef]
- Liang, W.; Zhao, J.; Wu, H.; Soga, K. Multiscale modeling of anchor pullout in sand. J. Geotech. Geoenviron. Eng. 2021, 147, 04021091. [Google Scholar] [CrossRef]
- Liang, W.; Zhao, S.; Wu, H.; Zhao, J. Bearing capacity and failure of footing on anisotropic soil: A multiscale perspective. Comput. Geotech. 2021, 137, 104279. [Google Scholar] [CrossRef]
- Ren, S.; Zhang, P.; Man, T.; Galindo-Torres, S. Numerical assessments of the influences of soil–boulder mixed flow impact on downstream facilities. Comput. Geotech. 2023, 153, 105055. [Google Scholar] [CrossRef]
- Li, J.; Wang, B.; Zhang, J.; Zhang, X. Investigation of the protective effect of baffles against soil-rock mixture disasters using the MPM-DEM method. Comput. Geotech. 2025, 180, 107107. [Google Scholar] [CrossRef]
- Gogolik, S.; Kopras, M.; Szymczak-Graczyk, A.; Tschuschke, W. Experimental evaluation of the size and distribution of lateral pressure on the walls of the excavation support. J. Build. Eng. 2023, 73, 106831. [Google Scholar] [CrossRef]
- Kopras, M.; Buczkowski, W.; Szymczak-Graczyk, A.; Walczak, Z.; Gogolik, S. Experimental validation of deflections of temporary excavation support plates with the use of 3D modelling. Materials 2022, 15, 4856. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Z.; Liu, Y. The Material Point Method: A Continuum-Based Particle Method for Extreme Loading Cases; Academic Press: New York, NY, USA, 2016. [Google Scholar]
- Ren, S.; Liu, Z.; Trujillo-Vela, M.; Galindo-Torres, S.; Tian, X.; Zhang, P. Simulation of solitary wave generation and wave-structure interactions using an MPM-SDEM coupling scheme. Ocean. Eng. 2025, 340, 122195. [Google Scholar] [CrossRef]
- Bardenhagen, S.; Brackbill, J.; Sulsky, D. The material-point method for granular materials. Comput. Methods Appl. Mech. Eng. 2000, 187, 529–541. [Google Scholar] [CrossRef]
- Shi, Y.; Guo, N.; Yang, Z. GeoTaichi: A Taichi-powered high-performance numerical simulator for multiscale geophysical problems. Comput. Phys. Commun. 2024, 301, 109219. [Google Scholar] [CrossRef]
- Clausen, J.; Damkilde, L.; Andersen, L.V. Robust and efficient handling of yield surface discontinuities in elasto-plastic finite element calculations. Eng. Comput. 2015, 32, 1722–1752. [Google Scholar] [CrossRef]
- Galindo-Torres, S.; Pedroso, D. Molecular dynamics simulations of complex-shaped particles using Voronoi-based spheropolyhedra. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 2010, 81, 061303. [Google Scholar]
- Zhang, X.; Huang, T.; Ge, Z.; Man, T.; Huppert, H.E. Infiltration characteristics of slurries in porous media based on the coupled Lattice-Boltzmann discrete element method. Comput. Geotech. 2025, 177, 106865. [Google Scholar]
- Zhang, P.; Qiu, L.; Chen, Y.; Zhao, Y.; Kong, L.; Scheuermann, A.; Li, L.; Galindo-Torres, S.A. Coupled metaball discrete element lattice Boltzmann method for fluid-particle systems with non-spherical particle shapes: A sharp interface coupling scheme. J. Comput. Phys. 2023, 479, 112005. [Google Scholar] [CrossRef]
- Zhang, P.; Dong, Y.; Galindo-Torres, S.; Scheuermann, A.; Li, L. Metaball based discrete element method for general shaped particles with round features. Comput. Mech. 2021, 67, 1243–1254. [Google Scholar] [CrossRef]
- Luding, S. Introduction to discrete element methods: Basic of contact force models and how to perform the micro-macro transition to continuum theory. Eur. J. Environ. Civ. Eng. 2008, 12, 785–826. [Google Scholar] [CrossRef]
- Ren, S.; Zhang, P.; Galindo-Torres, S. A coupled discrete element material point method for fluid–solid–particle interactions with large deformations. Comput. Methods Appl. Mech. Eng. 2022, 395, 115023. [Google Scholar] [CrossRef]
- Moriguchi, S.; Borja, R.I.; Yashima, A.; Sawada, K. Estimating the impact force generated by granular flow on a rigid obstruction. Acta Geotech. 2009, 4, 57–71. [Google Scholar] [CrossRef]
- Ciamarra, M.P.; Lara, A.H.; Lee, A.T.; Goldman, D.I.; Vishik, I.; Swinney, H.L. Dynamics of drag and force distributions for projectile impact in a granular medium. Phys. Rev. Lett. 2004, 92, 194301. [Google Scholar] [CrossRef] [PubMed]
- Bardenhagen, S.G.; Kober, E.M. The generalized interpolation material point method. Comput. Model. Eng. Sci. 2004, 5, 477–496. [Google Scholar]
- Terzaghi, K.; Peck, R.B.; Mesri, G. Soil Mechanics in Engineering Practice; John Wiley & Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- Luo, H.; Zhang, L.; He, J.; Zhou, J. Performance of debris flow barriers: An energy perspective. Acta Geotech. 2025, 20, 987–1000. [Google Scholar] [CrossRef]
Parameter | Units | Value |
---|---|---|
MPM | ||
Young’s modulus, | Pa | |
Poisson’s ratio, | – | 0.3 |
Density, | kg/m3 | 2000 |
Friction angle, | ° | 35 |
Cohesion, | Pa | |
Damping coefficient, | – | 0.02 |
DEM | ||
Young’s modulus, | Pa | |
Poisson’s ratio, | – | 0.2 |
Density, | kg/m3 | 2650 |
Young’s modulus, | Pa | |
Poisson’s ratio, | – | 0.25 |
Density, | kg/m3 | 2500 |
Sphero-radius, | m | 0.1 |
Coupling | ||
Coefficient of restitution, | – | 0.2 |
Friction coefficient, | – |
Case ID | Slope Angle, (°) | Baffle Location, (m) |
---|---|---|
Case 1 | 45 | 50 |
Case 2 | 45 | 55 |
Case 3 | 45 | 60 |
Case 4 | 45 | 65 |
Case 5 | 45 | 70 |
Case 6 | 46 | 50 |
Case 7 | 46 | 55 |
Case 8 | 46 | 60 |
Case 9 | 46 | 65 |
Case 10 | 46 | 70 |
Case 11 | 47 | 50 |
Case 12 | 47 | 55 |
Case 13 | 47 | 60 |
Case 14 | 47 | 65 |
Case 15 | 47 | 70 |
Case 16 | 48 | 50 |
Case 17 | 48 | 55 |
Case 18 | 48 | 60 |
Case 19 | 48 | 65 |
Case 20 | 48 | 70 |
Case 21 | 49 | 50 |
Case 22 | 49 | 55 |
Case 23 | 49 | 60 |
Case 24 | 49 | 65 |
Case 25 | 49 | 70 |
Case 26 | 50 | 50 |
Case 27 | 50 | 55 |
Case 28 | 50 | 60 |
Case 29 | 50 | 65 |
Case 30 | 50 | 70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, H.; Ren, S.; Shen, Z.; Fu, C.; Lan, R.; Tian, X.; Zhang, P. Quantifying the Protective Efficacy of Baffles Through Numerical Simulation with the MPM-DEM Method. Appl. Sci. 2025, 15, 10148. https://doi.org/10.3390/app151810148
Zhu H, Ren S, Shen Z, Fu C, Lan R, Tian X, Zhang P. Quantifying the Protective Efficacy of Baffles Through Numerical Simulation with the MPM-DEM Method. Applied Sciences. 2025; 15(18):10148. https://doi.org/10.3390/app151810148
Chicago/Turabian StyleZhu, Hongwei, Songkai Ren, Zhongyue Shen, Can Fu, Rong Lan, Xiaoqing Tian, and Pei Zhang. 2025. "Quantifying the Protective Efficacy of Baffles Through Numerical Simulation with the MPM-DEM Method" Applied Sciences 15, no. 18: 10148. https://doi.org/10.3390/app151810148
APA StyleZhu, H., Ren, S., Shen, Z., Fu, C., Lan, R., Tian, X., & Zhang, P. (2025). Quantifying the Protective Efficacy of Baffles Through Numerical Simulation with the MPM-DEM Method. Applied Sciences, 15(18), 10148. https://doi.org/10.3390/app151810148