Model Predictive Control of Underwater Tethered Payload
Abstract
1. Introduction
2. Methodology
2.1. Model Predictive Control
2.2. Implementing MPC
Algorithm 1. Implemented MPC algorithm. |
for i = 1 : N |
1. Measure |
2. Adjust prediction |
3. Evaluate |
4. Evaluate |
5. Evaluate |
6. Send to system |
7. Find new |
8. Advance horizons |
9. Update to be u |
2.3. System and Modeling
2.4. Trajectory Planning
3. Results
3.1. Simulated Results
3.2. Practical Testing
4. Discussion
4.1. Simulations
4.2. Practical Testing
4.3. Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IIoT | Industrial Internet of Things |
MPC | Model Predictive Control |
MIMO | Multi-Input, Multi-Output |
SISO | Single-Input, Single-Output |
PWM | Pulse Width Modulation |
MSE | Mean Square Error |
References
- Wang, C.; Li, Z.; Wang, T.; Xu, X.; Zhang, X.; Li, D. Intelligent fish farm—The future of aquaculture. Aquac. Int. 2021, 29, 2681–2711. [Google Scholar] [CrossRef] [PubMed]
- Teja, K.B.R.; Monika, M.; Chandravathi, C.; Kodali, P. Smart Monitoring System for Pond Management and Automation in Aquaculture. In Proceedings of the 2020 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 28–30 July 2020; pp. 204–208. [Google Scholar] [CrossRef]
- Dupont, C.; Cousin, P.; Dupont, S. IoT for Aquaculture 4.0 Smart and easy-to-deploy real-time water monitoring with IoT. In Proceedings of the 2018 Global Internet of Things Summit (GIoTS), Bilbao, Spain, 4–7 June 2018; pp. 1–5. [Google Scholar] [CrossRef]
- Azim, M.A.; Sarkar, I.; Chowdhury, M.A.H.; Rabbi, F. Towards Sustainable Aquaculture: An IoT-Driven Indoor Fish Farming System. In Proceedings of the 2024 IEEE International Conference on Power, Electrical, Electronics and Industrial Applications (PEEIACON), Rajshahi, Bangladesh, 12–13 September 2024; pp. 383–388. [Google Scholar] [CrossRef]
- Achouch, M.; Dimitrova, M.; Ziane, K.; Sattarpanah Karganroudi, S.; Dhouib, R.; Ibrahim, H.; Adda, M. On Predictive Maintenance in Industry 4.0: Overview, Models, and Challenges. Appl. Sci. 2022, 12, 8081. [Google Scholar] [CrossRef]
- Akhter, F.; Siddiquei, H.R.; Alahi, M.E.E.; Mukhopadhyay, S.C. Recent Advancement of the Sensors for Monitoring the Water Quality Parameters in Smart Fisheries Farming. Computers 2021, 10, 26. [Google Scholar] [CrossRef]
- Jayandan, S.A.; Prathibanandhi, K.; Sahana, A.; Agilesh, M.B.; Dhanush Moorthy, R.; Chethan, K. Smart Systems for Sustainable Aquaculture: A Focus on Water Quality. In Proceedings of the 2024 International Conference on Power, Energy, Control and Transmission Systems (ICPECTS), Chennai, India, 8–9 October 2024; pp. 1–4. [Google Scholar] [CrossRef]
- Brewer, J.; Simoneau, A.; Dubay, R. Digital Twin Application to Ocean Monitoring Equipment. In Proceedings of the 2025 IEEE International systems Conference (SysCon), Montreal, QC, Canada, 7–10 April 2025; pp. 1–7. [Google Scholar] [CrossRef]
- Singh, M.; Fuenmayor, E.; Hinchy, E.P.; Qiao, Y.; Murray, N.; Devine, D. Digital Twin: Origin to Future. Appl. Syst. Innov. 2021, 4, 36. [Google Scholar] [CrossRef]
- Karau, F.; Leuer, M. Model Predictive Velocity Control of Electrical Drives on an Industrial-PC. In Proceedings of the 2022 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Sorrento, Italy, 22–24 June 2022; pp. 76–81. [Google Scholar] [CrossRef]
- Li, S.; Wang, S.; Luo, X. Depth Control of Autonomous Underwater Vehicles Based on Constrained Model Predictive Control. In Proceedings of the 2023 42nd Chinese Control Conference (CCC), Tianjin, China, 24–26 July 2023; pp. 2707–2712. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Z.; Tan, M.; Yu, J. Model Predictive Control-Based Depth Control in Gliding Motion of a Gliding Robotic Dolphin. IEEE Trans. Syst. Man, Cybern. Syst. 2021, 51, 5466–5477. [Google Scholar] [CrossRef]
- Gehlaut, S.; Varshney, T.; Gupta, S. Performance Analysis of MPC for Level Control of Modified Quadruple Tank System. In Proceedings of the 2018 2nd International Conference on Power, Energy and Environment: Towards Smart Technology (ICEPE), Shillong, India, 1–2 June 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Wang, L. Model Predictive Control System Design and Implementation Using MATLAB; Springer: London, UK, 2010. [Google Scholar]
- Camacho, E.F.; Carlos Bordons, J.M.M. Model Predictive Control, 3rd ed.; Springer: Cham, Switzerland, 2025. [Google Scholar]
- Sebastian, W. Model Predictive Position Control for Permanent Magnet Synchronous Linear Motors. In Proceedings of the Innovative Small Drives and Micro-Motor Systems, 11th GMM/ETG-Symposium, Saarbruecken, Germany, 27–28 September 2017; pp. 1–6. [Google Scholar]
- Kästner, F.; Werner, F.; Seydioglu, E.; Hübner, M. Design and Open Source Implementation of a Reconfigurable Hardware Model Predicitive Controller Using Online Optimization. In Proceedings of the 2018 Conference on Design and Architectures for Signal and Image Processing (DASIP), Porto, Portugal, 10–12 October 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Huba, M.; Bistak, P.; Vrancic, D.; Sun, M. PID vs. Model-Based Control for the Double Integrator Plus Dead-Time Model: Noise Attenuation and Robustness Aspects. Mathematics 2025, 13, 664. [Google Scholar] [CrossRef]
- Lixian, S.; Rahiman, W. A Compound Control for Hybrid Stepper Motor Based on PI and Sliding Mode Control. IEEE Access 2024, 12, 163536–163550. [Google Scholar] [CrossRef]
- Craig, J.J. Introduction to Robotics: Mechanics and Control, 3rd ed.; Pearson Educacion Internacional: London, UK, 2005. [Google Scholar]
Component Type | Component Selected |
---|---|
Stepper Motor | 175-QSH5718-76-28-189-ND |
Motor Driver | DRI0043-ND |
Microcontroller | Arduino MKR NB 1500 |
Depth Sensor | MS5837-30BA |
Power | Bench-top power supply |
Test Number | MSE |
---|---|
Test 1—No Disturbance | 0.00093275 |
Test 2—Constant Disturbance | 0.00343450 |
Test 3—Sudden Disturbance | 0.00104725 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Connor, M.; Simoneau, A.; Dubay, R. Model Predictive Control of Underwater Tethered Payload. Appl. Sci. 2025, 15, 10122. https://doi.org/10.3390/app151810122
O’Connor M, Simoneau A, Dubay R. Model Predictive Control of Underwater Tethered Payload. Applied Sciences. 2025; 15(18):10122. https://doi.org/10.3390/app151810122
Chicago/Turabian StyleO’Connor, Mark, Andy Simoneau, and Rickey Dubay. 2025. "Model Predictive Control of Underwater Tethered Payload" Applied Sciences 15, no. 18: 10122. https://doi.org/10.3390/app151810122
APA StyleO’Connor, M., Simoneau, A., & Dubay, R. (2025). Model Predictive Control of Underwater Tethered Payload. Applied Sciences, 15(18), 10122. https://doi.org/10.3390/app151810122