Subcritical Water Extraction of Rosa alba L.—Technology and Quality of the Products
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Experimental Design
3.2. Extracts
3.3. Chemical Composition of the Extracts
3.3.1. Gas Chromatography–Mass Spectrometry (GC-MS) Analyses
3.3.2. Total Neutral Sugars and Protein Content Determination
3.3.3. Monosaccharide Composition of the SWE Extracts
3.3.4. Total Polyphenols, Total Flavonoids and Antioxidant Activity of the R. alba L. SWE Extracts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SWE | Subcritical water extraction |
GC-MS | Gas chromatography–Mass spectrometry |
HPLC | High performance liquid chromatography |
DPPH | 2,2-diphenyl-1-picrylhydrazyl radical |
ABTS | 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid |
FRAP | Ferric-Reducing Antioxidant Power |
CUPRAC | CUPric Reducing Antioxidant Capacity |
References
- Fonmboh, D.J.; Abah, E.R.; Fokunang, T.E.; Herve, B.; Teke, G.N.; Rose, N.M.; Borgia, N.N.; Fokunang, L.B.; Andrew, B.N.; Kaba, N. An overview of methods of extraction, isolation and characterization of natural medicinal plant products in improved traditional medicine research. Asian J. Res. Med. Pharm. Sci. 2020, 9, 31–57. [Google Scholar] [CrossRef]
- Faheem, F.; Singh, K.; Gairola, S.; Zabeer, A.; Shah, B.A. A comprehensive review on phytochemistry and pharmacology of Rosa species (Rosaceae). Curr. Top. Med. Chem. 2023, 24, 364–378. [Google Scholar]
- Dobreva, A. Aromatic products of the white oil-bearing rose (Rosa alba L.). Sci. Works Univ. Food Technol. 2010, V.LVII, 354–358. (In Bulgarian) [Google Scholar]
- Dobreva, A.; Nedelcheva-Antonova, D.; Gechovska, K.; Nenov, N.; Antonov, L. Subcritical extraction of Rosa alba L. in static and dynamic modes. Chemistry 2025, submitted.
- Vardakas, A. A new process for enzyme-assisted subcritical water extraction of rice husk polyphenols. Sci. Works Univ. Food Technol. 2020, 67, 76–81. [Google Scholar]
- Chemat, F.; Abert Vian, M.; Ravi, H.K.; Khadhraoui, B.; Hilali, S.; Perino, S.; Fabiano Tixier, A.-S. Review of alternative solvents for green extraction of food and natural products: Panorama, principles, applications and prospects. Molecules 2019, 24, 3007. [Google Scholar] [CrossRef]
- Nastić, N.; Švarc-Gajić, J.; Delerue-Matos, C.; Barroso, F.; Soares, C.; Moreira, M.; Morais, S.; Mašković, P.; Srček, V.; Slivac, I.; et al. Subcritical water extraction as an environmentally-friendly technique to recover bioactive compounds from traditional Serbian medicinal plants. Ind. Crops Prod. 2018, 111, 579–589. [Google Scholar] [CrossRef]
- Atanasova, A.; Petrova, A.; Teneva, D.; Ognyanov, M.; Georgiev, Y.; Nenov, N.; Denev, P. Subcritical water extraction of rosmarinic acid from lemon balm (Melissa officinalis L.) and its effect on plant cell wall constituents. Antioxidants 2023, 12, 888. [Google Scholar] [CrossRef]
- Ibanez, E.; Kubatova, A.; Senorans, F.J.; Cavero, S.; Reglero, G.; Hawthorne, S.B. Subcritical water extraction of antioxidant compounds from rosemary plants. J Agricul. Food Chem. 2003, 51, 375–382. [Google Scholar] [CrossRef]
- Zhang, J.; Wen, C.; Zhang, H.; Duan, Y.; Ma, H. Recent advances in the extraction of bioactive compounds with subcritical water, A review. Trends Food Sci. Technol. 2020, 95, 183–195. [Google Scholar] [CrossRef]
- Özel, M.; Clifford, A. Superheated water extraction of fragrance compounds from Rosa canina. Flavour Fragr. J. 2004, 19, 354–359. [Google Scholar] [CrossRef]
- Özel, M.; Göǧüş, F.; Lewis, A. Comparison of direct thermal desorption with water distillation and superheated water extraction for the analysis of volatile components of Rosa damascena Mill. using GCxGC-TOF/MS. Anal. Chim. Acta 2006, 566, 172–177. [Google Scholar] [CrossRef]
- ISO 9842:2024; Oil of Rose (Rosa x damascena Miller). International Organization for Standardization: Geneva, Switzerland, 2024. Available online: https://www.iso.org/standard/86897.html (accessed on 30 March 2025).
- DuBois, M.; Gilles, K.; Hamilton, J.; Rebers, P.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Ivanov, I.; Vrancheva, R.; Marchev, A.; Petkova, N.; Aneva, I.; Denev, P.; Georgiev, V.; Pavlov, A. Antioxidant activities and phenolic compounds in Bulgarian Fumaria species. Int. J. Curr. Microbiol. Appl. Sci. 2014, 3, 296–306. [Google Scholar]
- Industry Standard BS-II-02. Natural Rose Water. Bulgarian Association of Essential Oils, Perfumes and Cosmetics (BNAEOPC). 2006. Available online: https://www.bnaeopc.com/ (accessed on 25 May 2025).
- Mihailova, J.; Atanasova, R.; Balinova-Tsvetkova, A. Direct gas chromatography of essential oil in the separate parts of the flower of the Kazanlik rose (Rosa damascena Mill. trigintipetala Dieck). In Proceedings of the VIIth International Congress of the Essential Oils, Kyoto, Japan, 7–11 October 1977; pp. 219–221. [Google Scholar]
- Antonova, D.V.; Medarska, Y.N.; Stoyanova, A.S.; Nenov, N.S.; Slavov, A.M.; Antonov, L.M. Chemical profile and sensory evaluation of Bulgarian rose (Rosa damascena Mill.) aroma products, isolated by different techniques. J. Essent. Oil Res. 2021, 33, 171–181. [Google Scholar] [CrossRef]
- Agarwal, S.G.; Gupta, A.; Kapahi, B.K.; Meena, B.; Thappa, R.K.; Suri, O.P. Chemical composition of rose water volatiles. J. Essent. Oil Res. 2005, 17, 265–267. [Google Scholar] [CrossRef]
- Babu, K.G.D.; Singh, B.; Joshi, V.P.; Singh, V. Essential oil composition of Damask rose (Rosa damascena Mill.) distilled under different pressures and temperatures. Flavour Fragr. J. 2002, 17, 136–140. [Google Scholar] [CrossRef]
- Mihailova, J.; Decheva, R.; Koseva, D. Microscopic and biochemical study of starch and localization of essential oil in the corolla leaves of the Kazanlak oil-bearing rose. Plant Sci. 1977, XIV, 34–40. (In Bulgarian) [Google Scholar]
- Sood, S.; Vyas, D.; Nagar, P.K. Physiological and biochemical studies during flower development in two rose species. Sci. Hort. 2006, 108, 390–396. [Google Scholar] [CrossRef]
- Wyman, C.E.; Dale, B.E. Producing biofuels via the sugar platform. Chem. Eng. Prog. 2015, 111, 45–51. [Google Scholar]
- Wojcieszak, R.; Itabaiana, I. Engineering the future: Perspectives in the 2,5-furandicarboxylic acid synthesis. Catal. Today 2020, 354, 211–2017. [Google Scholar] [CrossRef]
- Basak, S.; Annarupe, U.S. The potential of subcritical water as a “green” method for the extraction and modification of pectin: A critical review. Food Res. Int. 2022, 161, 111849. [Google Scholar] [CrossRef] [PubMed]
- Kayahan, S.; Ozdemir, Y.; Gulbag, F. Functional compounds and antioxidant activity of Rosa species grown in Turkey. Erwerbs-Obstbau 2023, 65, 1079–1086. [Google Scholar] [CrossRef]
- Verma, A.; Srivastava, R.; Sonar, P.K.; Yadav, R. Traditional, phytochemical, and biological aspects of Rosa alba L.: A systematic review. Futur. J. Pharm. Sci. 2020, 6, 114. [Google Scholar] [CrossRef]
- Ilieva, Y.; Dimitrova, L.; Georgieva, A.; Vilhelmova-Ilieva, N.; Zaharieva, M.M.; Kokanova-Nedialkova, Z.; Dobreva, A.; Nedialkov, P.; Kussovski, V.; Kroumov, A.D.; et al. In vitro study of the biological potential of wastewater obtained after the distillation of four Bulgarian oil-bearing roses. Plants 2022, 11, 1073. [Google Scholar] [CrossRef]
- Baydar, N.; Baydar, H. Phenolic compounds, antiradical activity and antioxidant capacity of oil-bearing rose (Rosa damascena Mill.) extracts. Ind. Crops Prod. 2013, 41, 375–380. [Google Scholar] [CrossRef]
- Chroho, M.; Bouymajane, A.; Oulad El Majdoub, Y.; Cacciola, F.; Mondello, L.; Aazza, M.; Zair, T.; Bouissane, L. Phenolic composition, antioxidant and antibacterial activities of extract from flowers of Rosa damascena from Morocco. Separations 2022, 9, 247. [Google Scholar] [CrossRef]
- Gavra, D.I.; Endres, L.; Pető, Á.; Józsa, L.; Fehér, P.; Ujhelyi, Z.; Pallag, A.; Marian, E.; Vicas, L.G.; Ghitea, T.C.; et al. In vitro and human pilot studies of different topical formulations containing Rosa species for the treatment of psoriasis. Molecules 2022, 27, 5499. [Google Scholar] [CrossRef]
- Sivaraj, C.; Abhirami, R.; Deepika, M.; Sowmiya, V.; Saraswathi, K.; Arumugam, P. Antioxidant, antibacterial activities and GC-MS analysis of fresh rose petals aqueous extract of Rosa damascena Mill L. J. Drug Deliv. Ther. 2019, 9, 68–77. [Google Scholar]
- Alizadeh, Z.; Fattahi, M. Essential oil, total phenolic, flavonoids, anthocyanins, carotenoids and antioxidant activity of cultivated Damask Rose (Rosa damascena) from Iran: With chemotyping approach concerning morphology and composition. Sci. Hortic. 2021, 288, 110341. [Google Scholar] [CrossRef]
- Ko, M.J.; Cheigh, C.I.; Chung, M.S. Relationship analysis between flavonoids structure and subcritical water extraction (SWE). Food Chem. 2014, 143, 147–155. [Google Scholar] [CrossRef]
№ | Sample Description | Abbreviation | Parameters | Extracts Obtained, mL | |
---|---|---|---|---|---|
Temperature, °C | Duration, min | ||||
1 | Whole flowers | BRCC1 | 100 | 15 | 1937 ± 23 |
2 | Whole flowers | BRCC2 | 100 | 30 | 2017 ± 15 |
3 | Petals | BRV1 | 100 | 15 | 1978 ± 10 |
4 | Petals | BRV2 | 100 | 30 | 2050 ± 15 |
5 | Whole flowers | BRCC3 | 150 | 15 | 2112 ± 20 |
6 | Whole flowers | BRCC4 | 150 | 30 | 2066 ± 12 |
7 | Petals | BRV3 | 150 | 15 | 2053 ± 18 |
8 | Petals | BRV4 | 150 | 30 | 2056 ± 21 |
№ | RI | List of the Components/Classes | Essential Oil | BRCC1 | BRCC2 | BRV1 | BRV2. | BRCC3 | BRCC4 | BRV3b | BRV4a |
---|---|---|---|---|---|---|---|---|---|---|---|
Relative % | |||||||||||
1 | 668 | Ethanol | - | - | - | - | - | - | - | - | - |
2 | 1031 | Limonene | 0.06 ± 0.00 g,1 | 3.31 ± 0.02 a | 2.16 ± 0.05 d | 2.94 ± 0.02 b | 2.67 ± 0.02 c | 0.08 ± 0.00 | 0.50 ± 0.02 f | 0.48 ± 0.02 f | 1.00 ± 0.00 e |
3 | 1098 | Linalool | 1.29 ± 0.02 g | 13.40 ± 0.04 c | 18.42 ± 0.10 b | 13.11 ± 0.02 c | 7.35 ± 0.02 e | 20.69 ± 0.01 a | 2.98 ± 0.00 f | 8.84 ± 0.00 d | 2.83 ± 0.02 f |
4 | 1118 | 2-Phenylethanol | 0.16 ± 0.00 g | 14.48 ± 0.05 b | 10.55 ± 0.00 e | 14.08 ± 0.00 c | 6.69 ± 0.09 f | 13.36 ± 0.02 d | 25.05 ± 0.02 a | ||
5 | 1109 | Cis-rose oxide | 0.04 ± 0.02 f | 0.91 ± 0.00 b | 0.60 ± 0.01 c | 0.47 ± 0.02 d | 0.64 ± 0.05 c | 0.67 ± 0.02 c | 0.15 ± 0.05 f | 0.35 ± 0.01 e | 1.26 ± 0.02 a |
6 | 1134 | Trans-rose oxide | 0.02 ± 0.00 e | 0.13 ± 0.02 d | 0.13 ± 0.02 d | 1.84 ± 0.08 a | 0.12 ± 0.02 d | 0.68 ± 0.02 c | 0.04 ± 0.02 e | 0.07 ± 0.01 e | 0.92 ± 0.02 b |
7 | 1228 | Citronellol + Nerol | 14.92 ± 0.06 a | 0.97 ± 0.02 d | 0.20 ± 0.02 f | 0.8 ± 0.06 f | 4.87 ± 0.02 b | 3.28 ± 0.08 c | 0.87 ± 0.00 d | 0.38 ± 0.00 e | 0.88 ± 0.05 d |
8 | 1276 | Geraniol | 19.71 ± 0.00 a | 7.81 ± 0.02 d | 6.84 ± 0.05 e | 9.08 ± 0.02 c | 5.94 ± 0.04 f | 0.68 ± 0.02 i | 0.98 ± 0.00 h | 3.41 ± 0.04 g | 10.48 ± 0.00 b |
9 | 1364 | Eugenol | 0.06 ± 0.02 f | 2.47 ± 0.07 c | 1.72 ± 0.07 d | 1.36 ± 0.00 e | 3.58 ± 0.05 b | 8.33 ± 0.00 a | 1.35 ± 0.05 e | 1.83 ± 0.02 d | 3.62 ± 0.04 b |
10 | 1401 | Methyl eugenol | 0.05 ± 0.01 i | 5.80 ± 0.04 b | 4.12 ± 0.00 c | 3.49 ± 0.04 e | 7.80 ± 0.02 a | 0.22 ± 0.02 h | 2.99 ± 0.02 f | 3.77 ± 0.07 d | 1.93 ± 0.07 g |
11 | 1678 | Heptadecane | 0.45 ± 0.01 c | 0.05 ± 0.02 e | 0.58 ± 0.02 b | 0.30 ± 0.00 d | 0.09 ± 0.00 e | 0.69 ± 0.05 b | 1.36 ± 0.00 a | 0.62 ± 0.00 b | 0.06 ± 0.02 e |
12 | 1727 | Farnesol | 3.77 ± 0.04 a | 0.08 ± 0.02 d | 0.19 ± 0.02 c | - | 0.10 ± 0.02 d | 0.42 ± 0.02 b | 0.38 ± 0.02 b | 0.22 ± 0.02 c | 0.05 ± 0.04 d |
13 | 1874 | Nonadecene | 5.50 ± 0.05 a | 0.46 ± 0.00 g | 2.70 ± 0.02 d | 0.27 ± 0.02 h | 0.68 ± 0.02 f | 1.73 ± 0.01 e | 4.73 ± 0.00 b | 3.22 ± 0.02 c | 0.51 ± 0.00 g |
14 | 1900 | Nonadecane | 13.21 ± 0.04 d | 1.17 ± 0.01 h | 15.56 ± 0.00 c | 1.01 ± 0.00 i | 1.65 ± 0.01 g | 8.21 ± 0.00 f | 24.96 ± 0.00 a | 16.39 ± 0.01 b | 10.04 ± 0.02 e |
15 | 2000 | Eicosane | 1.39 ± 0.02 c | 0.10 ± 0.01 f | 1.50 ± 0.00 b | 0.57 ± 0.00 e | 0.15 ± 0.00 f | 0.75 ± 0.01 d | 2.04 ± 0.01 a | 1.43 ± 0.03 b,c | 0.04 ± 0.00 g |
16 | 2100 | Heneicosane | 11.86 ± 0.00 a | 0.58 ± 0.05 f | 8.28 ± 0.00 c | 0.18 ± 0.00 g | 0.86 ± 0.00 e | 3.54 ± 0.00 d | 10.91 ± 0.01 b | 8.40 ± 0.00 c | 0.03 ± 0.01 h |
17 | 2300 | Tricosane | 2.67 ± 0.00 a | 0.08 ± 0.2 h | 1.86 ± 0.00 c | 1.72 ± 0.01 d | 0.15 ± 0.02 | 0.83 ± 0.02 f | 2.31 ± 0.02 b | 1.53 ± 0.00 e | 0.24 ± 0.00 g |
18 | 2500 | Pentacosane | 1.18 ± 0.02 b | 0.04 ± 0.02 h | 0.71 ± 0.01 e | 1.04 ± 0.00 c | 0.14 ± 0.00 f | 1.62 ± 0.00 a | 0.72 ± 0.02 e | 0.91 ± 0.01 d | 0.11 ± 0.00 f |
19 | 2700 | Heptacosane | 1.22 ± 0.00 c | 0.04 ± 0.00 h | 0.70 ± 0.00 e | 3.49 ± 0.02 a | 0.16 ± 0.02 g | 1.66 ± 0.02 b | 0.92 ± 0.00 d | 0.30 ± 0.02 f | 0.29 ± 0.00 f |
Monoterpenes | 36.04 | 26.53 | 28.35 | 28.3 | 21.59 | 26.08 | 5.52 | 13.53 | 17.37 | ||
Phenylethanol | 0.16 | 14.48 | 18.42 | 10.55 | 14.08 | 20.69 | 6.69 | 13.36 | 25.05 | ||
Rose oxides | 0.06 | 1.04 | 0.73 | 2.31 | 0.76 | 1.35 | 0.19 | 0.42 | 2.18 | ||
Phenylpropenes | 0.11 | 8.27 | 5.84 | 4.85 | 11.38 | 8.55 | 4.34 | 5.6 | 5.55 | ||
Sesquiterpenes | 3.77 | 0.08 | 0.19 | - | 0.1 | 0.42 | 0.38 | 0.22 | 0.05 | ||
Alkanes and alkenes | 37.48 | 2.52 | 31.89 | 8.58 | 3.88 | 19.03 | 47.95 | 32.8 | 11.32 | ||
Total | 77.56 | 61.20 | 66.27 | 52.28 | 51.03 | 54.08 | 65.88 | 65.51 | 60.14 |
№ | Sample | Total Neutral Sugars, mg/mL | Proteins, µg/mL |
---|---|---|---|
1 | BRCC1 | 0.52 ± 0.00 b,1 | 156.97 ± 3.99 e |
2 | BRCC2 | 0.49 ± 0,05 b,c | 152.62 ± 2.18 e |
3 | BRV1 | 0.44 ± 0.01 c | 170.56 ± 3.46 d |
4 | BRV2 | 0.45 ± 0.04 c | 155.18 ± 0.73 e |
5 | BRCC3 | 0.41 ± 0.02 c | 206.72 ± 1.81 c |
6 | BRCC4 | 0.52 ± 0.03 b | 234.67 ± 5.08 a |
7 | BRV3 | 0.64 ± 0.02 a | 221.85 ± 1.45 b |
8 | BRV4 | 0.63 ± 0.02 a | 240.31 ± 3.63 a |
№ | Sample | GalA, mg/mL (Galacturonic Acid) | Glc, mg/mL (Glucose) | Rha, mg/mL (Rhamnose) | Gal, mg/mL (Galactose) | Xyl, mg/mL (Xylose) |
---|---|---|---|---|---|---|
1 | BRCC1 | 1.24 ± 0.11 c,d,1 | 4.09 ± 0.27 f | 0.48 ± 0.08 a | - | - |
2 | BRCC2 | 1.02 ± 0.16 d | 7.72 ± 0.12 d | 0.28 ± 0.01 b | - | - |
3 | BRV1 | 1.36 ± 0.25 c | 6.55 ± 0.14 e | 0.18 ± 0.02 c | 0.24 ± 0.07 c | - |
4 | BRV2 | 1.58 ± 0.18 b,c | 3.09 ± 0.23 g | 0.17 ± 0.02 c | 0.47 ± 0.04 b | - |
5 | BRCC3 | 1.84 ± 0.14 b | 8.53 ± 0.10 c | 0.25 ± 0.07 b | - | - |
6 | BRCC4 | 2.34 ± 0.12 a | 11.59 ± 0.21 b | 0.33 ± 0.01 b | 0.17 ± 0.01 c | 0.07 ± 0.01 b |
7 | BRV3 | 1.29 ± 0.14 c | 4.12 ± 0.26 f | 0.22 ± 0.03 b,c | 0.18 ± 0.09 c | - |
8 | BRV4 | 2.24 ± 0.18 a | 15.29 ± 0.11 a | 0.27 ± 0.05 b | 0.78 ± 0.08 a | 0.17 ± 0.01 a |
№ | Samples | TPC, mg GAE/mL | TFC, mg QE/mL | Antioxidant Activity, mM TE/mL | |||
---|---|---|---|---|---|---|---|
DPPH | ABTS | FRAP | CUPRAC | ||||
1 | BRCC1 | 0.57 ± 0.00 b,1 | 0.25 ± 0.00 a | 5.81 ± 0.02 d | 5.75 ± 0.01 c | 5.49 ± 0.05 c | 14.18 ± 0.02 c |
2 | BRCC2 | 0.51 ± 0.00 c | 0.21 ± 0.00 c | 5.17 ± 0.02 e | 4.91 ± 0.08 d | 4.67 ± 0.08 d | 11.44 ± 0.11 d |
3 | BRV1 | 0.41 ± 0.03 e | 0.19 ± 0.00 d | 4.06 ± 0.12 f | 3.69 ± 0.03 f | 3.65 ± 0.01 f | 8.66 ± 0.11 f |
4 | BRV2 | 0.43 ± 0.00 e | 0.21 ± 0.00 c | 4.44 ± 0.07 f | 4.37 ± 0.19 e | 4.14 ± 0.01 e | 9.39 ± 0.04 e |
5 | BRCC3 | 0.48 ± 0.00 d | 0.18 ± 0.00 d | 5.62 ± 0.02 d | 5.46 ± 0.08 c | 4.87 ± 0.01 d | 11.29 ± 0.04 d |
6 | BRCC4 | 0.57 ± 0.01 b | 0.18 ± 0.00 d | 6.27 ± 0.02 c | 6.52 ± 0.51 b | 6.16 ± 0.19 b | 14.49 ± 0.02 c |
7 | BRV3 | 0.60 ± 0.01 a,b | 0.23 ± 0.00 b | 6.70 ± 0.22 b | 6.71 ± 0.42 b | 6.71 ± 0.25 a | 15.18 ± 0.02 b |
8 | BRV4 | 0.63 ± 0.01 a | 0.19 ± 0.00 d | 7.56 ± 0.16 a | 7.24 ± 0.01 a | 7.22 ± 0.22 a | 15.84 ± 0.02 a |
Compound | Concentration, µg/mL | |||||||
---|---|---|---|---|---|---|---|---|
BRCC1 | BRCC2 | BRV1 | BRV2 | BRCC3 | BRCC4 | BRV3 | BRV4 | |
Gallic acid | 44.45 ± 1.01 e,1 | 39.07 ± 0.86 f | 30.92 ± 0.98 g | 40.79 ± 1.05 f | 68.17 ± 1.05 d | 113.37 ± 1.35 a | 104.34 ± 1.35 c | 108.85 ± 0.99 b |
Protocate–huic acid | NF * | NF | NF * | NF | NF | 13.05 ± 0.94 c | 19.22 ± 0.67 b | 25.48 ± 0.86 a |
Ferulic acid | 99.96 ± 1.80 a | 47.21 ± 1.62 e,f | 77.49 ± 1.02 c | 87.56 ± 1.68 b | 51.36 ± 1.85 e | 44.50 ± 1.47 f | 84.26 ± 1.57 b | 67.63 ± 1.77 d |
Rutin | 47.13 ± 1.21 a | 19.25 ± 0.99 e | 33.04 ± 0.89 c | 37.76 ± 1.02 b | 16.58 ± 1.35 f | 13.53 ± 0.86 g | 31.01 ± 1.14 c | 25.00 ± 0.94 d |
Hesperidin | 10.95 ± 0.94 a | 2.51 ± 0.87 d | 7.42 ± 0.96 b | 6.12 ± 0.85 b,c | 7.68 ± 0.88 b | 5.77 ± 1.02 c | 10.95 ± 0.94 a | 2.51 ± 0.87 d |
Rosmarinic acid | 65.12 ± 1.74 b | 25.27 ± 1.16 f | 50.06 ± 1.02 c | 46.95 ± 1.11 d | 79.41 ± 1.34 a | 80.47 ± 1.20 a | 65.12 ± 1.74 b | 25.27 ± 1.16 f |
Quercetin | NF | NF | NF | NF | 8.35 ± 0.89 b | 8.25 ± 0.94 b | NF | NF |
Kaemphe–rol | NF | NF | NF | NF | ULOQ ** | 0.311 ± 0.08 | NF | NF |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobreva, A.; Nenov, N.; Ivanov, I.; Georgiev, V.; Hambarliyska, I.; Slavov, A. Subcritical Water Extraction of Rosa alba L.—Technology and Quality of the Products. Appl. Sci. 2025, 15, 10007. https://doi.org/10.3390/app151810007
Dobreva A, Nenov N, Ivanov I, Georgiev V, Hambarliyska I, Slavov A. Subcritical Water Extraction of Rosa alba L.—Technology and Quality of the Products. Applied Sciences. 2025; 15(18):10007. https://doi.org/10.3390/app151810007
Chicago/Turabian StyleDobreva, Ana, Nenko Nenov, Ivan Ivanov, Vasil Georgiev, Ivanka Hambarliyska, and Anton Slavov. 2025. "Subcritical Water Extraction of Rosa alba L.—Technology and Quality of the Products" Applied Sciences 15, no. 18: 10007. https://doi.org/10.3390/app151810007
APA StyleDobreva, A., Nenov, N., Ivanov, I., Georgiev, V., Hambarliyska, I., & Slavov, A. (2025). Subcritical Water Extraction of Rosa alba L.—Technology and Quality of the Products. Applied Sciences, 15(18), 10007. https://doi.org/10.3390/app151810007