A Local Thresholding Algorithm for Image Segmentation by Using Gradient Orientation Histogram
Abstract
1. Introduction
2. Related Works
2.1. Pixel-Wise Gradient Orientation
2.2. 1-D Otsu Method
3. Proposed Method
3.1. Construction of 2-D Gradient Orientation Histogram
3.2. Main Step of Segmentation
Algorithm 1 Image Segmentation based on Gradient Orientation Histogram |
Input: A grayscale image f. Output: A final segmented image .
|
3.3. Comparison of Existing Similar Methods
3.4. Image Test Sets and Quality Evaluation Parameters
4. Experimental Results and Discussions
4.1. Algorithm Performance and Computational Cost
4.2. Consistency of Algorithm Performance with Increasing Threshold
4.3. Comparative Analysis of Method Performance
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gharehchopogh, F.S.; Ibrikci, T. An improved African vultures optimization algorithm using different fitness functions for multi-level thresholding image segmentation. Multimed. Tools Appl. 2024, 83, 16929–16975. [Google Scholar] [CrossRef]
- Su, H.; Zhao, D.; Elmannai, H.; Heidari, A.A.; Bourouis, S.; Wu, Z.; Cai, Z.; Gui, W.; Chen, M. Multilevel threshold image segmentation for COVID-19 chest radiography: A framework using horizontal and vertical multiverse optimization. Comput. Biol. Med. 2022, 146, 105618. [Google Scholar] [CrossRef]
- Houssein, E.H.; Abdelkareem, D.A.; Emam, M.M.; Hameed, M.A.; Younan, M. An efficient image segmentation method for skin cancer imaging using improved golden jackal optimization algorithm. Comput. Biol. Med. 2022, 149, 106075. [Google Scholar] [CrossRef]
- Liu, Q.; Li, N.; Jia, H.; Qi, Q.; Abualigah, L. Modified remora optimization algorithm for global optimization and multilevel thresholding image segmentation. Mathematics 2022, 10, 1014. [Google Scholar] [CrossRef]
- Zarate, O.; Hinojosa, S.; Ortiz-Joachin, D. Improving Prostate Image Segmentation Based on Equilibrium Optimizer and Cross-Entropy. Appl. Sci. 2024, 14, 9785. [Google Scholar] [CrossRef]
- Zhang, K.; He, M.; Dong, L.; Ou, C. The Application of Tsallis Entropy Based Self-Adaptive Algorithm for Multi-Threshold Image Segmentation. Entropy 2024, 26, 777. [Google Scholar] [CrossRef]
- Vaiyapuri, T.; Dutta, A.K.; Punithavathi, I.S.H.; Duraipandy, P.; Alotaibi, S.S.; Alsolai, H.; Mohamed, A.; Mahgoub, H. Intelligent Deep-Learning-Enabled Decision-Making Medical System for Pancreatic Tumor Classification on CT Images. Healthcare 2022, 10, 677. [Google Scholar] [CrossRef] [PubMed]
- Reshma, G.; Al-Atroshi, C.; Nassa, V.K.; Geetha, B.; Sunitha, G.; Galety, M.G.; Neelakandan, S. Deep Learning-Based Skin Lesion Diagnosis Model Using Dermoscopic Images. Intell. Autom. Soft Comput. 2022, 31, 621–634. [Google Scholar] [CrossRef]
- Razmjooy, N.; Arshaghi, A. Application of Multilevel Thresholding and CNN for the Diagnosis of Skin Cancer Utilizing a Multi-Agent Fuzzy Buzzard Algorithm. Biomed. Signal Process. Control 2023, 84, 104984. [Google Scholar] [CrossRef]
- Gopalakrishnan, C.; Iyapparaja, M. Multilevel thresholding based follicle detection and classification of polycystic ovary syndrome from the ultrasound images using machine learning. Int. J. Syst. Assur. Eng. Manag. 2021, 1–8. [Google Scholar] [CrossRef]
- Kavitha, T.; Mathai, P.P.; Karthikeyan, C.; Ashok, M.; Kohar, R.; Avanija, J.; Neelakandan, S. Deep learning based capsule neural network model for breast cancer diagnosis using mammogram images. Interdiscip. Sci. Comput. Life Sci. 2022, 14, 113–129. [Google Scholar] [CrossRef]
- Badhan, M.; Shamsaei, K.; Ebrahimian, H.; Bebis, G.; Lareau, N.P.; Rowell, E. Deep Learning Approach to Improve Spatial Resolution of GOES-17 Wildfire Boundaries Using VIIRS Satellite Data. Remote Sens. 2024, 16, 715. [Google Scholar] [CrossRef]
- Ramaswamy, R.K.; Naresh, P.; Nagesh, C.; Balan, S.K. Multilevel thresholding technique with Archery Gold Rush Optimization and PCNN-based childhood medulloblastoma classification using microscopic images. Biomed. Signal Process. Control 2025, 107, 107801. [Google Scholar] [CrossRef]
- Kapur, J.N.; Sahoo, P.K.; Wong, A.K. A new method for gray-level picture thresholding using the entropy of the histogram. Comput. Vision, Graph. Image Process. 1985, 29, 273–285. [Google Scholar] [CrossRef]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Abutaleb, A.S. Automatic thresholding of gray-level pictures using two-dimensional entropy. Comput. Vis. Graph. Image Process. 1989, 47, 22–32. [Google Scholar] [CrossRef]
- Pal, N.R.; Pal, S.K. Entropic thresholding. Signal Process. 1989, 16, 97–108. [Google Scholar] [CrossRef]
- Ning, G. Two-dimensional Otsu multi-threshold image segmentation based on hybrid whale optimization algorithm. Multimed. Tools Appl. 2023, 82, 15007–15026. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Arora, G. A thresholding method based on two-dimensional Renyi’s entropy. Pattern Recognit. 2004, 37, 1149–1161. [Google Scholar] [CrossRef]
- Wang, Q.; Chi, Z.; Zhao, R. Image thresholding by maximizing the index of nonfuzziness of the 2-D grayscale histogram. Comput. Vis. Image Underst. 2002, 85, 100–116. [Google Scholar] [CrossRef]
- Naik, M.K.; Panda, R.; Wunnava, A.; Jena, B.; Abraham, A. A leader Harris hawks optimization for 2-D Masi entropy-based multilevel image thresholding. Multimed. Tools Appl. 2021, 80, 35543–35583. [Google Scholar] [CrossRef]
- Yimit, A.; Hagihara, Y.; Miyoshi, T.; Hagihara, Y. 2-D direction histogram based entropic thresholding. Neurocomputing 2013, 120, 287–297. [Google Scholar] [CrossRef]
- Senthilkumaran, N.; Vaithegi, S. Image segmentation by using thresholding techniques for medical images. Comput. Sci. Eng. Int. J. 2016, 6, 1–13. [Google Scholar] [CrossRef]
- Jiang, X.; Mojon, D. Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 131–137. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Guo, Z.; Siddique, A.; Liu, Y.; Yu, K. Infrared Small Target Detection Based on Adaptive Region Growing Algorithm with Iterative Threshold Analysis. IEEE Trans. Geosci. Remote Sens. 2024, 62, 5003715. [Google Scholar] [CrossRef]
- Jardim, S.; António, J.; Mora, C. Image thresholding approaches for medical image segmentation-short literature review. Procedia Comput. Sci. 2023, 219, 1485–1492. [Google Scholar] [CrossRef]
- Kandhway, P. A novel adaptive contextual information-based 2D-histogram for image thresholding. Expert Syst. Appl. 2024, 238, 122026. [Google Scholar] [CrossRef]
- Vijayalakshmi, D.; Nath, M.K. A strategic approach towards contrast enhancement by two-dimensional histogram equalization based on total variational decomposition. Multimed. Tools Appl. 2023, 82, 19247–19274. [Google Scholar] [CrossRef]
- Yang, W.; Cai, L.; Wu, F. Image segmentation based on gray level and local relative entropy two dimensional histogram. PLoS ONE 2020, 15, e0229651. [Google Scholar] [CrossRef]
- Liang, J.; Liu, D. A local thresholding approach to flood water delineation using Sentinel-1 SAR imagery. ISPRS J. Photogramm. Remote Sens. 2020, 159, 53–62. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, J.; Cao, X.; Xu, X.; Zhou, J.; Chen, H. An integrated global and local thresholding method for segmenting blood vessels in angiography. Heliyon 2024, 10, e38579. [Google Scholar] [CrossRef]
- Niu, Y.; Song, J.; Zou, L.; Yan, Z.; Lin, X. Cloud detection method using ground-based sky images based on clear sky library and superpixel local threshold. Renew. Energy 2024, 226, 120452. [Google Scholar] [CrossRef]
- Tan, L.; Liu, Y.; Zhou, K.; Zhang, R.; Li, J.; Yan, R. Optimization of DG-LRG Water Extraction Algorithm Considering Polarization and Texture Information. Appl. Sci. 2025, 15, 4434. [Google Scholar] [CrossRef]
- Cao, X.; Zuo, M.; Chen, G.; Wu, X.; Wang, P.; Liu, Y. Visual Localization Method for Fastener-Nut Disassembly and Assembly Robot Based on Improved Canny and HOG-SED. Appl. Sci. 2025, 15, 1645. [Google Scholar] [CrossRef]
- Hong, X.; Chen, G.; Chen, Y.; Cai, R. Research on Abnormal Ship Brightness Temperature Detection Based on Infrared Image Edge-Enhanced Segmentation Network. Appl. Sci. 2025, 15, 3551. [Google Scholar] [CrossRef]
- Chung, C.T.; Ying, J.J.C. Seg-Eigen-CAM: Eigen-Value-Based Visual Explanations for Semantic Segmentation Models. Appl. Sci. 2025, 15, 7562. [Google Scholar] [CrossRef]
- Wang, W.; Chen, J.; Hong, Z. Multiscale Eight Direction Descriptor-Based Improved SAR–SIFT Method for Along-Track and Cross-Track SAR Images. Appl. Sci. 2025, 15, 7721. [Google Scholar] [CrossRef]
- Hosseini-Fard, E.; Roshandel-Kahoo, A.; Soleimani-Monfared, M.; Khayer, K.; Ahmadi-Fard, A.R. Automatic seismic image segmentation by introducing a novel strategy in histogram of oriented gradients. J. Pet. Sci. Eng. 2022, 209, 109971. [Google Scholar] [CrossRef]
- Bhattarai, B.; Subedi, R.; Gaire, R.R.; Vazquez, E.; Stoyanov, D. Histogram of oriented gradients meet deep learning: A novel multi-task deep network for 2D surgical image semantic segmentation. Med. Image Anal. 2023, 85, 102747. [Google Scholar] [CrossRef]
- Sun, Z.; Caetano, E.; Pereira, S.; Moutinho, C. Employing histogram of oriented gradient to enhance concrete crack detection performance with classification algorithm and Bayesian optimization. Eng. Fail. Anal. 2023, 150, 107351. [Google Scholar] [CrossRef]
- Wang, B.; Si, S.; Zhao, H.; Zhu, H.; Dou, S. False positive reduction in pulmonary nodule classification using 3D texture and edge feature in CT images. Technol. Health Care 2021, 29, 1071–1088. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Gao, X.; Wang, F.; Ji, Z.; Hu, X. Feature point matching method based on consistent edge structures for infrared and visible images. Appl. Sci. 2020, 10, 2302. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, F.; You, H. Robust region feature extraction with salient mser and segment distance-weighted gloh for remote sensing image registration. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 17, 2475–2488. [Google Scholar] [CrossRef]
- Tao, H.; Lu, X. Smoke vehicle detection based on multi-feature fusion and hidden Markov model. J. Real-Time Image Process. 2020, 17, 745–758. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, Y.; Feng, H.; Chen, R.; Bian, M.; Ma, Y.; Yue, J.; Yang, G. Estimating potato above-ground biomass based on vegetation indices and texture features constructed from sensitive bands of UAV hyperspectral imagery. Comput. Electron. Agric. 2024, 220, 108918. [Google Scholar] [CrossRef]
- Chai, X.; Song, S.; Gan, Z.; Long, G.; Tian, Y.; He, X. CSENMT: A deep image compressed sensing encryption network via multi-color space and texture feature. Expert Syst. Appl. 2024, 241, 122562. [Google Scholar] [CrossRef]
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Liang, D.; Ding, J.; Zhang, Y. Efficient Multisource Remote Sensing Image Matching Using Dominant Orientation of Gradient. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2194–2205. [Google Scholar] [CrossRef]
- Xu, W.; Zhong, S.; Yan, W.L. A New Orientation Estimation Method Based on Rotation Invariant Gradient for Feature Points. IEEE Geosci. Remote Sens. Lett. 2021, 18, 791–795. [Google Scholar] [CrossRef]
- Wan, G.; Ye, Z.; Xu, Y.; Huang, R.; Zhou, Y.; Xie, H.; Tong, X. Multimodal Remote Sensing Image Matching Based on Weighted Structure Saliency Feature. IEEE Trans. Geosci. Remote Sens. 2024, 62, 4700816. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, J. Image Segmentation Based on 2D Otsu Method with Histogram Analysis. In Proceedings of the 2008 International Conference on Computer Science and Software Engineering, Wuhan, China, 12–14 December 2008; Volume 6, pp. 105–108. [Google Scholar]
- Du, Y.; Yuan, H.; Jia, K.; Li, F. Research on Threshold Segmentation Method of Two-Dimensional Otsu Image Based on Improved Sparrow Search Algorithm. IEEE Access 2023, 11, 70459–70469. [Google Scholar] [CrossRef]
- Cimpoi, M.; Maji, S.; Kokkinos, I.; Mohamed, S.; Vedaldi, A. Describing Textures in the Wild. arXiv 2013, arXiv:1311.3618. [Google Scholar] [CrossRef]
- Available online: https://www.robots.ox.ac.uk/~vgg/data/dtd/ (accessed on 4 August 2024).
- Horé, A.; Ziou, D. Image Quality Metrics: PSNR vs. SSIM. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369. [Google Scholar]
- Zhang, L.; Zhang, L.; Mou, X.; Zhang, D. FSIM: A Feature Similarity Index for Image Quality Assessment. IEEE Trans. Image Process. 2011, 20, 2378–2386. [Google Scholar] [CrossRef]
- Seyyedabbasi, A. A Hybrid Multi-Strategy Optimization Metaheuristic Algorithm for Multi-Level Thresholding Color Image Segmentation. Appl. Sci. 2025, 15, 7255. [Google Scholar] [CrossRef]
- Liao, P.S.; Chen, T.S.; Chung, P. A Fast Algorithm for Multilevel Thresholding. J. Inf. Sci. Eng. 2001, 17, 713–727. [Google Scholar]
- Chouksey, M.; Jha, R.K. A joint entropy for image segmentation based on quasi opposite multiverse optimization. Multimed. Tools Appl. 2021, 80, 10037–10074. [Google Scholar] [CrossRef]
- Codella, N.C.F.; Gutman, D.; Celebi, M.E.; Helba, B.; Marchetti, M.A.; Dusza, S.W.; Kalloo, A.; Liopyris, K.; Mishra, N.; Kittler, H.; et al. Skin lesion analysis toward melanoma detection: A challenge at the 2017 International symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC). In Proceedings of the 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; pp. 168–172. [Google Scholar] [CrossRef]
- Yang, Y.; Newsam, S. Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems, GIS ’10, New York, NY, USA, 2–5 November 2010; pp. 270–279. [Google Scholar] [CrossRef]
- Arbeláez, P.; Maire, M.; Fowlkes, C.; Malik, J. Contour Detection and Hierarchical Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 898–916. [Google Scholar] [CrossRef]
- Ponomarenko, N.; Lukin, V.; Zelensky, A.; Egiazarian, K.; Carli, M.; Battisti, F. TID2008-a database for evaluation of full-reference visual quality assessment metrics. Adv. Mod. Radioelectron. 2009, 10, 30–45. [Google Scholar]
Reference | Definition of Gradient Orientation | Usage of Gradient Orientation |
---|---|---|
[22] | Defines the gradient orientation as . | Constructs the orientation histogram for image segmentation. |
[38] | Defines the gradient orientation as , where I is an image window, and . | Calculates the histogram vector to interpret geological object on seismic image. |
[40] | Defines the gradient orientation as . | Yields the histogram of oriented gradient (HOG) to enhance the crack detection. |
Proposed | Defines the gradient orientation as . | Constructs the gradient orientation histogram , which is used to cluster the pixels. |
j | Board | Bag | Tire | Woven_0118 | Lacelike_0053 | Pitted_0009 | Blotchy_0085 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PSNR | FSIM | PSNR | FSIM | PSNR | FSIM | PSNR | FSIM | PSNR | FSIM | PSNR | FSIM | PSNR | FSIM | |
2 | 20.5403 | 0.8654 | 21.7597 | 0.8037 | 22.1534 | 0.7417 | 24.0976 | 0.7335 | 27.1553 | 0.8219 | 22.9091 | 0.8141 | 24.6104 | 0.8408 |
3 | 20.5560 | 0.8755 | 21.7905 | 0.8198 | 22.1416 | 0.7381 | 24.1442 | 0.7331 | 27.1465 | 0.8197 | 22.9227 | 0.8236 | 24.6096 | 0.8393 |
4 | 20.5724 | 0.8817 | 21.7939 | 0.8200 | 22.1688 | 0.7423 | 24.1498 | 0.7366 | 27.1712 | 0.8299 | 22.9255 | 0.8271 | 24.6108 | 0.8400 |
5 | 20.5847 | 0.8828 | 21.8023 | 0.8210 | 22.1710 | 0.7438 | 24.1769 | 0.7420 | 27.1732 | 0.8292 | 22.9509 | 0.8372 | 24.6119 | 0.8409 |
Image | Thresholds | Kapur (1-D) | Otsu (1-D) | Otsu (2-D) | QOMVO (1-D) | Adaptive (1-D) | ACM-Tsallis (2-D) | Proposed | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PSNR | FSIM | PSNR | FSIM | PSNR | FSIM | PSNR | FSIM | PSNR | FSIM | PSNR | FSIM | PSNR | FSIM | ||
board | 2 | 19.8486 | 0.8417 | 20.5365 | 0.8594 | 20.1805 | 0.8603 | 20.0574 | 0.8462 | 20.2337 | 0.8499 | 20.3342 | 0.8559 | 20.5403 | 0.8654 |
3 | 22.0879 | 0.8925 | 23.0899 | 0.9254 | 20.9382 | 0.8703 | 22.2054 | 0.8947 | 22.4471 | 0.9001 | 22.5171 | 0.9196 | 23.0959 | 0.9304 | |
4 | 24.1754 | 0.9367 | 25.1001 | 0.9489 | 21.0960 | 0.8721 | 24.5454 | 0.9419 | 24.6850 | 0.9429 | 24.7531 | 0.9461 | 25.1076 | 0.9532 | |
5 | 25.9686 | 0.9539 | 26.7874 | 0.9635 | 21.0735 | 0.8718 | 26.1119 | 0.9548 | 26.1548 | 0.9552 | 26.3624 | 0.9592 | 26.7947 | 0.9665 | |
bag | 2 | 21.0917 | 0.7064 | 21.7318 | 0.7291 | 21.6042 | 0.6936 | 21.0939 | 0.7054 | 21.1872 | 0.7132 | 21.6345 | 0.7457 | 21.7597 | 0.8037 |
3 | 23.9386 | 0.8154 | 24.1852 | 0.8388 | 22.1903 | 0.7096 | 23.9386 | 0.8154 | 23.9274 | 0.8146 | 24.0522 | 0.8301 | 24.2273 | 0.8677 | |
4 | 25.8303 | 0.8759 | 25.9751 | 0.8839 | 22.3528 | 0.7113 | 25.8304 | 0.8759 | 25.8208 | 0.8797 | 25.9087 | 0.8853 | 26.0317 | 0.9124 | |
5 | 27.2505 | 0.9106 | 27.5939 | 0.9154 | 22.3593 | 0.7113 | 27.3375 | 0.9114 | 27.2353 | 0.9101 | 27.4899 | 0.9119 | 27.6188 | 0.9226 | |
tire | 2 | 20.9682 | 0.6295 | 22.0913 | 0.6762 | 21.0869 | 0.6406 | 20.9682 | 0.6295 | 20.9206 | 0.6290 | 21.0608 | 0.6408 | 22.1534 | 0.7417 |
3 | 24.7329 | 0.7427 | 24.7887 | 0.7439 | 24.2287 | 0.7270 | 24.7018 | 0.7433 | 24.6246 | 0.7421 | 24.6331 | 0.7433 | 24.8545 | 0.8013 | |
4 | 26.5611 | 0.7991 | 26.6432 | 0.8020 | 26.2494 | 0.7919 | 26.5435 | 0.7977 | 26.4583 | 0.7963 | 26.4832 | 0.7959 | 26.6680 | 0.8362 | |
5 | 27.4821 | 0.8282 | 28.2698 | 0.8414 | 26.6968 | 0.8075 | 27.4828 | 0.8289 | 27.4711 | 0.8282 | 27.6303 | 0.8296 | 28.3058 | 0.8686 |
Kapur (1-D) | Otsu (1-D) | Otsu (2-D) | Proposed | |
---|---|---|---|---|
board | 0.32 | 0.27 | 147,103.22 | 2.35 |
bag | 0.32 | 0.27 | 135,890.45 | 1.25 |
tire | 0.32 | 0.27 | 142,732.34 | 1.22 |
Image | Thresholds | Kapur (1-D) | Otsu (1-D) | Otsu (2-D) | QOMVO (1-D) | Adaptive (1-D) | ACM-Tsallis (2-D) | Proposed | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PSNR | FSIM | PSNR | FSIM | PSNR | FSIM | PSNR | FSIM | PSNR | FSIM | PSNR | FSIM | PSNR | FSIM | ||
woven (81 images) | 2 | 0 | 0 | 2 | 6 | 0 | 7 | 0 | 0 | 0 | 4 | 0 | 13 | 81 | 51 |
3 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 22 | 81 | 54 | |
4 | 0 | 2 | 6 | 1 | 0 | 0 | 0 | 1 | 0 | 4 | 0 | 18 | 75 | 55 | |
5 | 0 | 3 | 1 | 2 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 21 | 80 | 53 | |
lacelike (119 images) | 2 | 0 | 3 | 1 | 4 | 0 | 5 | 0 | 0 | 0 | 2 | 0 | 26 | 119 | 79 |
3 | 0 | 1 | 1 | 5 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 31 | 118 | 79 | |
4 | 0 | 3 | 16 | 6 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 26 | 103 | 81 | |
5 | 0 | 2 | 1 | 11 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 17 | 118 | 86 | |
pitted (107 images) | 2 | 0 | 7 | 10 | 10 | 0 | 2 | 0 | 7 | 0 | 4 | 0 | 37 | 104 | 46 |
3 | 0 | 4 | 5 | 7 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 23 | 103 | 73 | |
4 | 0 | 2 | 6 | 14 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 27 | 105 | 64 | |
5 | 0 | 3 | 12 | 11 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 26 | 99 | 68 | |
blotchy (119 images) | 2 | 0 | 2 | 15 | 10 | 2 | 4 | 0 | 3 | 0 | 0 | 0 | 7 | 113 | 100 |
3 | 0 | 1 | 13 | 12 | 0 | 1 | 0 | 2 | 0 | 1 | 0 | 9 | 112 | 99 | |
4 | 0 | 3 | 8 | 9 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 13 | 115 | 92 | |
5 | 0 | 1 | 14 | 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 17 | 109 | 95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, L.; Zhang, K.; He, M.; Zhong, S.; Ou, C. A Local Thresholding Algorithm for Image Segmentation by Using Gradient Orientation Histogram. Appl. Sci. 2025, 15, 9808. https://doi.org/10.3390/app15179808
Dong L, Zhang K, He M, Zhong S, Ou C. A Local Thresholding Algorithm for Image Segmentation by Using Gradient Orientation Histogram. Applied Sciences. 2025; 15(17):9808. https://doi.org/10.3390/app15179808
Chicago/Turabian StyleDong, Lijie, Kailong Zhang, Mingyue He, Shenxin Zhong, and Congjie Ou. 2025. "A Local Thresholding Algorithm for Image Segmentation by Using Gradient Orientation Histogram" Applied Sciences 15, no. 17: 9808. https://doi.org/10.3390/app15179808
APA StyleDong, L., Zhang, K., He, M., Zhong, S., & Ou, C. (2025). A Local Thresholding Algorithm for Image Segmentation by Using Gradient Orientation Histogram. Applied Sciences, 15(17), 9808. https://doi.org/10.3390/app15179808