A New Plant Growth Regulator: An In Silico Evaluation
Abstract
1. Introduction
2. Materials and Methods
2.1. Molecular Docking
2.2. Molecular Dynamics
2.3. ADME Pharmacokinetic
2.4. Characterization of Materials/GA3, IAA, BL and AG
3. Results and Discussion
3.1. Molecular Docking Evaluation
3.1.1. Docking Between KPR GA3Ox2 and PGRs GA3 and AG
3.1.2. Docking Between KPR BRI1 and PGRs BL and AG
3.1.3. Docking Between KPR IAA7 and PGRs IAA and AG
3.2. Molecular Dynamics
3.2.1. Root Mean Square Deviation (RMSD)
3.2.2. Hydrogen Bonds
3.3. ADME Pharmacokinetic Results
3.4. Fourier-Transform Infrared Spectroscopy (FTIR)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AG | Agavenin |
PGR | Plant Growth Regulator |
KPR | Key Protein Receptor |
ADME | Absorption, Distribution, Metabolism, and Excretion |
FTIR | Fourier Transform Infrared |
GA3 | Gibberelic Acid |
BL | Brassinolide |
IAA | Indole-3-Acetic Acid |
PDB | Protein Data Bank |
MD | Molecular Dynamics |
References
- Sands, R.D.; Meade, B.; Seale, J.L.; Robinson, S.; Seeger, R. Economic Research Service Economic Research Report Number 323 Scenarios of Global Food Consumption: Implications for Agriculture. 2023. Available online: www.ers.usda.gov (accessed on 28 May 2025).
- Holt-Giménez, E. One Billion Hungry: Can We Feed the World? by Gordon Conway. Agroecol. Sustain. Food Syst. 2013, 37, 968–971. [Google Scholar] [CrossRef]
- Zhumanova, N.; Akimbayeva, N.; Myrzakhmetova, N.; Dzhiembaev, B.; Kuandykova, A.; Diyarova, B.; Seilkhanov, O.; Kishibayev, K.; Amangeldi Meldeshov; Saparbekova, I.; et al. A Comprehensive Review of New Generation Plant Growth Regulators. ES Food Agrofor. 2024, 17, 1190. [Google Scholar] [CrossRef]
- Gupta, S.; Bhattacharyya, P.; Kulkarni, M.G.; Doležal, K. Editorial: Growth regulators and biostimulants: Upcoming opportunities. Front. Media S.A. 2023, 14, 1209499. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Patel, R.; Kumar, S.K.; Sahu, M.P. Plant Growth Regulators and Their Use in Plant Growth and Development. 2021. Available online: https://www.researchgate.net/publication/350546132 (accessed on 28 May 2025).
- Sebastian, K.; Arya, M.; Reshma, U.; Anaswara, S.; Thampi, S.S. Impact of Plant Growth Regulators on Fruit Production. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 800–814. [Google Scholar] [CrossRef]
- Arteca, R.N. Plant Growth Substances: Principles and Applications; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Pimentel, D. Environmental and economic costs of the application of pesticides primarily in the United States. Environ. Dev. Sustain. 2005, 7, 229–252. [Google Scholar] [CrossRef]
- Ashraf, M.; Foolad, M.R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Campos, E.V.; Pereira, A.D.E.; Aleksieienko, I.; Carmo, G.C.D.; Gohari, G.; Santaella, C.; Fraceto, L.F.; Oliveira, H.C. Encapsulated plant growth regulators and associative microorganisms: Nature-based solutions to mitigate the effects of climate change on plants. Plant Sci. 2023, 331, 111688. [Google Scholar] [CrossRef]
- Sandhu, K.; Tengli, M.B.; Desai, R.; Regatipally, D. Assessing Farmer Perceptions and Adaptive Responses to Climate Change in Crop Production. Indian Res. J. Ext. Edu. 2025, 25, 3. [Google Scholar] [CrossRef]
- Bushkov, N.A.; Veselov, M.S.; Chuprov-Netochin, R.N.; Marusich, E.I.; Majouga, A.G.; Volynchuk, P.B.; Shumilina, D.V.; Leonov, S.V.; Ivanenkov, Y.A. Computational insight into the chemical space of plant growth regulators. Phytochemistry 2016, 122, 254–264. [Google Scholar] [CrossRef]
- Zhao, C.; Kleiman, D.E.; Shukla, D. Resolving binding pathways and solvation thermodynamics of plant hormone receptors. J. Biol. Chem. 2023, 299, 105456. [Google Scholar] [CrossRef]
- Wu, F.T.H.; Stefanini, M.O.; Gabhann, F.M.; Popel, A.S. Chapter 18 Modeling of Growth Factor-Receptor Systems. From Molecular-Level Protein Interaction Networks to Whole-Body Compartment Models. Methods Enzymol. 2009, 467, 461–497. [Google Scholar] [CrossRef]
- Jafari, M.; Daneshvar, M.H. Prediction and optimization of indirect shoot regeneration of Passiflora caerulea using machine learning and optimization algorithms. BMC Biotechnol. 2023, 23, 27. [Google Scholar] [CrossRef]
- Holtje, H.-D.; Folkers, G. Molecular Modeling; Wiley: Hoboken, NJ, USA, 1996; pp. 177–187. [Google Scholar] [CrossRef]
- Sidana, J.; Singh, B.; Sharma, O.P. Saponins of Agave: Chemistry and bioactivity. Phytochemistry 2016, 130, 22–46. [Google Scholar] [CrossRef] [PubMed]
- Mellado-Mojica, E.; López, M.G. Identification, classification, and discrimination of agave syrups from natural sweeteners by infrared spectroscopy and HPAEC-PAD. Food Chem. 2015, 167, 349–357. [Google Scholar] [CrossRef] [PubMed]
- Xiong, T.; Leveque, T.; Shahid, M.; Foucault, Y.; Mombo, S.; Dumat, C. Lead and Cadmium Phytoavailability and Human Bioaccessibility for Vegetables Exposed to Soil or Atmospheric Pollution by Process Ultrafine Particles. J. Environ. Qual. 2014, 43, 1593–1600. [Google Scholar] [CrossRef] [PubMed]
- Torrez, G.; Enrique, R. Ballón Paucara, Wendy Guadalupe; Revista Con-Ciencia; SciELO: Santiago, Chile, 2019; Volume 7, pp. 55–72. [Google Scholar]
- Lengauer, T.; Rareyt, M. Computational methods for biomolecular docking. Curr. Opin. Struct. Biol. 1996, 6, 402–406. [Google Scholar] [CrossRef]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Westbrook, J.; Feng, Z.; Jain, S.; Bhat, T.N.; Thanki, N.; Ravichandran, V.; Gilliland, G.L.; Bluhm, W.; Weissig, H.; Greer, D.S.; et al. The protein data bank: Unifying the archive. Nucleic Acids Res. 2002, 30, 245–248. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef]
- Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; et al. PubChem substance and compound databases. Nucleic Acids Res. 2016, 44, D1202–D1213. [Google Scholar] [CrossRef]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef]
- Schöning-Stierand, K.; Diedrich, K.; Ehrt, C.; Flachsenberg, F.; Graef, J.; Sieg, J.; Penner, P.; Poppinga, M.; Ungethüm, A.; Rarey, M. ProteinsPlus: A comprehensive collection of web-based molecular modeling tools. Nucleic Acids Res. 2022, 50, W611–W615. [Google Scholar] [CrossRef] [PubMed]
- Bekker, H.; Berendsen, H.J.C.; Van Der Spoel, D. Gromacs: A Parallel Computer for Molecular Dynamics Simulations; World Scientific Publishing: Singapore, 1993. [Google Scholar]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25. [Google Scholar] [CrossRef]
- Jo, S.; Kim, T.; Iyer, V.G.; Im, W. CHARMM-GUI: A web-based graphical user interface for CHARMM. J. Comput. Chem. 2008, 29, 1859–1865. [Google Scholar] [CrossRef]
- Huang, J.; Rauscher, S.; Nawrocki, G.; Ran, T.; Feig, M.; de Groot, B.L.; Grubmüller, H.; MacKerell, A.D., Jr. CHARMM36m: An improved force field for folded and intrinsically disordered proteins. Nat. Methods 2016, 14, 71–73. [Google Scholar] [CrossRef]
- Hollingsworth, S.A.; Dror, R.O. Molecular Dynamics Simulation for All. Neuron 2018, 99, 1129–1143. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Q Settings. 2001. Available online: https://pubmed.ncbi.nlm.nih.gov/11259830/ (accessed on 28 May 2025).
- Veber, D.F.; Johnson, S.R.; Cheng, H.-Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Silverstein, R.M.; Bassler, G.C. Spectrometric Identification of Organic Compounds; John Wiley & Sons: New York, NY, USA, 1962. [Google Scholar]
- Barbara. Stuart, Infrared Spectroscopy: Fundamentals and Applications; Wiley: Hoboken, NJ, USA, 2004. [Google Scholar]
- Coates, J. Interpretation of Infrared Spectra, A Practical Approach; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Hinestroza, H.P.; Diaz, J.A.H.; Alfaro, M.E.; Toriz, G.; Rojas, O.J.; Sulbarán-Rangel, B.C. Isolation and Characterization of Nanofibrillar Cellulose from Agave tequilana Weber Bagasse. Adv. Mater. Sci. Eng. 2019, 2019, 1–7. [Google Scholar] [CrossRef]
- Hedden, P.; Sponsel, V. A Century of Gibberellin Research. J. Plant Growth Regul. 2015, 34, 740–760. [Google Scholar] [CrossRef] [PubMed]
- Hothorn, M.; Belkhadir, Y.; Dreux, M.; Dabi, T.; Noel, J.P.; Wilson, I.A.; Chory, J. Structural basis of steroid hormone perception by the receptor kinase BRI1. Nature 2011, 474, 467–471. [Google Scholar] [CrossRef] [PubMed]
- Santiago, J.; Henzler, C.; Hothorn, M. Molecular mechanism for plant steroid receptor activation by somatic embryogenesis co-receptor kinases. Science 2013, 341, 889–892. [Google Scholar] [CrossRef] [PubMed]
- She, J.; Han, Z.; Kim, T.-W.; Wang, J.; Cheng, W.; Chang, J.; Shi, S.; Wang, J.; Yang, M.; Wang, Z.-Y.; et al. Structural insight into brassinosteroid perception by BRI1. Nature 2011, 474, 472–476. [Google Scholar] [CrossRef]
- Nolan, T.M.; Vukašinović, N.; Liu, D.; Russinova, E.; Yin, Y. Brassinosteroids: Multidimensional regulators of plant growth, development, and stress responses. Plant Cell 2020, 32, 298–318. [Google Scholar] [CrossRef]
- Monrroy, M.; García, J.R.; Mafra, I. Gibberellic Acid Production from Corn Cob Residues via Fermentation with Aspergillus niger. J. Chem. 2022, 2022, 1–7. [Google Scholar] [CrossRef]
- Borisevich, N.A.; Buslov, D.K. Infrared spectra of brassinolide and castasterone steroid phytohormones and their 24-epi derivatives. J. Appl. Spectrosc. 2010, 77, 491–495. [Google Scholar] [CrossRef]
- Wang, H.; Shan, X.; Wen, B.; Owens, G.; Fang, J.; Zhang, S. Effect of indole-3-acetic acid on lead accumulation in maize (Zea mays L.) seedlings and the relevant antioxidant response. Environ. Exp. Bot. 2007, 61, 246–253. [Google Scholar] [CrossRef]
Receptor | Ligand | Docking Score | Interaction Aminoacids |
---|---|---|---|
GA3OX2 | GA3 | −7.90 | GLY320, LYS26, PHE238, PHE27, SER116, TYR35, TYR35, TYR127 |
AG | −7.97 | ARG35, ASN32, PRO37, SER58 | |
BRI1 | BL | −9.06 | ALA315, GLY369, LEU295, LEU423, LYS317, MET366, TYR365, VAL303 |
AG | −8.29 | ALA367, ARG287, ASN368, GLY369, LEU295, MET351, PRO379, VAL290 | |
IAA7 | IAA | −4.21 | ASN10, LYS13, PRO6, TRP5 |
AG | −3.34 | ARG09, GLY4, LYS13, PRO6, VAL8 |
PGR | Physicochemical Properties | Lipophilicity | Water Solubility | Pharmacokinetics | D |
---|---|---|---|---|---|
GA3 | 246.37 g/mol #ERot 1 #H-ac 6 #H-d 3 TPSA 104.06 | 1.15 | Soluble | High GI Absorption | −1.7675 |
Non-Permeable to BBB | |||||
BL | 480.68 g/mol #ERot 5 #H-ac 6 #H-d 4 TPSA 107.22 | 3.7 | Moderately Soluble | High GI Absorption | −0.87999 |
Non-Permeable to BBB | |||||
AG | 446.62 g/mol #ERot 0 #H-ac 5 #H-d 2 TPSA 75.99 | 3.72 | Moderately Soluble | High GI Absorption | 2.2549 |
Permeable to BBB | |||||
IAA | 175.18 g/mol #ERot 2 #H-ac 2 #H-d 2 TPSA 53.09 | 1.51 | Soluble | High GI Absorption | 0.29202 |
Permeable to BBB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montaño, G.H.; Paredes-Carrera, S.P.; Chanona Pérez, J.J.; Medina, D.I.T.; Fregoso Aguilar, T.A.; Mendoza-Pérez, J.A.; Nicolás Álvarez, D.E. A New Plant Growth Regulator: An In Silico Evaluation. Appl. Sci. 2025, 15, 9797. https://doi.org/10.3390/app15179797
Montaño GH, Paredes-Carrera SP, Chanona Pérez JJ, Medina DIT, Fregoso Aguilar TA, Mendoza-Pérez JA, Nicolás Álvarez DE. A New Plant Growth Regulator: An In Silico Evaluation. Applied Sciences. 2025; 15(17):9797. https://doi.org/10.3390/app15179797
Chicago/Turabian StyleMontaño, Giovanny Hernández, Silvia P. Paredes-Carrera, José J. Chanona Pérez, Darío Iker Téllez Medina, Tomás A. Fregoso Aguilar, Jorge A. Mendoza-Pérez, and Dulce Estefanía Nicolás Álvarez. 2025. "A New Plant Growth Regulator: An In Silico Evaluation" Applied Sciences 15, no. 17: 9797. https://doi.org/10.3390/app15179797
APA StyleMontaño, G. H., Paredes-Carrera, S. P., Chanona Pérez, J. J., Medina, D. I. T., Fregoso Aguilar, T. A., Mendoza-Pérez, J. A., & Nicolás Álvarez, D. E. (2025). A New Plant Growth Regulator: An In Silico Evaluation. Applied Sciences, 15(17), 9797. https://doi.org/10.3390/app15179797