Quantitative Proteomics Based on Data-Independent Acquisition Reveals Differential Protein Expression in Sika Deer Antler-Derived Traditional Chinese Medicine Across Different Growth Periods
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample and Reagent Information
2.2. Instrumentation
2.3. Sample Handling
2.3.1. Extraction of Protein
2.3.2. Proteolytic Desalting
2.4. LC-MS/MS Analysis
2.4.1. Liquid Chromatography Detection
2.4.2. Orbitrap Astral Mass Spectrometry Detection
2.5. Database Search
2.6. Protein Quantification
2.6.1. Database Search Software Quantification
2.6.2. Standardized Processing
2.6.3. Difference Analysis
2.7. Bioinformatics Analysis
3. Results
3.1. Qualitative Results for Quality Assessment of Peptides
3.2. Protein Screening
3.3. Differentially Expressed Protein GO Functional Annotation and Enrichment Analysis
3.3.1. GO Function Annotation
3.3.2. GO Enrichment
3.4. Functional Annotation and Enrichment Analysis of Differentially Expressed Proteins in KEGG
3.5. Functional Annotation and Enrichment Analysis of Differentially Expressed Proteins in KOG
3.6. Functional Annotation and Enrichment Analysis of Differentially Expressed Protein Domains
3.7. Subcellular Localization of Differentially Expressed Proteins
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, F.; Li, H.; Jin, L.; Li, X.; Ma, Y.; You, J.; Li, S.; Xu, Y. Deer antler base as a traditional Chinese medicine: A review of its traditional uses, chemistry and pharmacology. J. Ethnopharmacol. 2013, 145, 403–415. [Google Scholar] [CrossRef]
- Sun, S.; Zhang, K.; Wang, Y.; Zhou, Z.; Wang, L.; Zhao, H.; Zhang, Y. Pharmacodynamic structure of deer antler base protein and its mammary gland hyperplasia inhibition mechanism by mediating Raf-1/MEK/ERK signaling pathway activation. Food Funct. 2023, 14, 3319–3331. [Google Scholar] [CrossRef]
- Sun, S.; Qiu, H.; Wang, C.; Zhang, K.; Zhao, H.; Zhao, H.; Shen, Y.; Wang, Y.; Zhang, Y. Antler base (Cervus nippon Temminck) peptides modulate the NLRP3 inflammatory pyroptosis and Nrf2/HO-1/NQO1 signaling pathways to ameliorate osteoarthritis: A structural and mechanistic study. J. Ethnopharmacol. 2025, 351, 120149. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, P.; Bai, J.; Zhong, Z.; Shan, Y.; Cheng, Z.; Zhang, Q.; Guo, Q.; Zhang, H.; Zhang, B. Integrated Transcriptomic and Proteomic Analyses of Antler Growth and Ossification Mechanisms. Int. J. Mol. Sci. 2024, 25, 13215. [Google Scholar] [CrossRef] [PubMed]
- Prianichnikov, N.; Koch, H.; Koch, S.; Lubeck, M.; Heilig, R.; Brehmer, S.; Fischer, R.; Cox, J. MaxQuant Software for Ion Mobility Enhanced Shotgun Proteomics. Mol. Cell. Proteom. 2020, 19, 1058–1069. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Costa, C.; Martinez-Bartolome, S.; McClatchy, D.B.; Saviola, A.J.; Yu, N.-K.; Yates, J.R., III. Impact of the Identification Strategy on the Reproducibility of the DDA and DIA Results. J. Proteome Res. 2020, 19, 3153–3161. [Google Scholar] [CrossRef] [PubMed]
- Joshua, K.A.; Wang, M.; Cavallero, G.J.; Chang, D.; Nalehua, M.R.; Hackett, W.E.; Morrison, L.; Zaia, J. Comparison of DDA, scanning window DIA, and HDMSE for assigning and quantifying glycopeptides. Mol. Cell. Proteom. 2022, 21, S86. [Google Scholar] [CrossRef]
- Ludwig, C.; Gillet, L.; Rosenberger, G.; Amon, S.; Collins, B.C.; Aebersold, R. Data-independent acquisition-based SWATH-MS for quantitative proteomics: A tutorial. Mol. Syst. Biol. 2018, 14, e8126. [Google Scholar] [CrossRef]
- Pino, L.K.; Just, S.C.; MacCoss, M.J.; Searle, B.C. Acquiring and Analyzing Data Independent Acquisition Proteomics Experiments Without Spectrum Libraries. Mol. Cell. Proteom. 2020, 19, 1088–1103. [Google Scholar] [CrossRef]
- Bai, Y.; Yan, T.; Fang, F.; Li, X.; Wang, S.; Li, J.; Hou, C.; Zhang, D. DIA-based quantitative proteomic analysis on porcine meat quality at different chilling rates. Food Sci. Hum. Wellness 2024, 13, 2573–2583. [Google Scholar] [CrossRef]
- Li, L.; Lu, X.; Dai, P.; Ma, H. DIA-Based Quantitative Proteomics in the Flower Buds of Two Malus sieversii (Ledeb.) M. Roem Subtypes at Different Overwintering Stages. Int. J. Mol. Sci. 2024, 25, 2964. [Google Scholar] [CrossRef]
- Song, Y.; Huang, F.; Li, X.; Zhang, H.; Liu, J.; Han, D.; Rui, M.; Wang, J.; Zhang, C. DIA-based quantitative proteomic analysis on the meat quality of porcine Longissimus thoracis et lumborum cooked by different procedures. Food Chem. 2022, 371, 131206. [Google Scholar] [CrossRef] [PubMed]
- Ding, R.; Liu, Z.; Wang, J.; Xia, T.; Li, L. DIA-based quantitative proteomics analysis of plasma exosomes in rat model of allergic rhinitis. Anal. Biochem. 2024, 688, 115463. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, Y.; Dou, X.; Wan, J.; Zhou, J.; Li, T.; Yu, J.; Ye, F. Integrative metabolomics and proteomics reveal the effect and mechanism of Zi Qi decoction on alleviating liver fibrosis. Sci. Rep. 2024, 14, 28943. [Google Scholar] [CrossRef] [PubMed]
- Ross, P.L.; Huang, Y.L.N.; Marchese, J.N.; Williamson, B.; Parker, K.; Hattan, S.; Khainovski, N.; Pillai, S.; Dey, S.; Daniels, S.; et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteom. 2004, 3, 1154–1169. [Google Scholar] [CrossRef]
- Wu, J.; An, Y.; Pu, H.; Shan, Y.; Ren, X.; An, M.; Wang, Q.; Wei, S.; Ji, J. Enrichment of serum low-molecular-weight proteins using C18 absorbent under urea/dithiothreitol denatured environment. Anal. Biochem. 2010, 398, 34–44. [Google Scholar] [CrossRef]
- Yu, F.; Haynes, S.E.; Teo, G.C.; Avtonomov, D.M.; Polasky, D.A.; Nesvizhskii, A.I. Fast Quantitative Analysis of timsTOF PASEF Data with MSFragger and IonQuant. Mol. Cell. Proteom. 2020, 19, 1575–1585. [Google Scholar] [CrossRef]
- Meng, F.; Wang, Y.; Liu, Y.; Hao, Z.; Li, F.; Wang, Y.; Ding, Y.; Li, Y.; Jiang, Y. Naturally Occurring New Peptides from Velvet Antler of Cervus nippon Temminck: Structural Characterization and Organic Synthesis, Antioxidant and Anti-melanogenic Effects Using In Vitro Cell Models and In Vivo Zebrafish Models. Chem. Biodivers. 2025, e00288. [Google Scholar] [CrossRef]
- Lopez-Pedrouso, M.; Lorenzo, J.M.; Landete-Castillejos, T.; Chonco, L.; Perez-Barberia, F.J.; Garcia, A.; Lopez-Garrido, M.-P.; Franco, D. SWATH-MS Quantitative Proteomic Analysis of Deer Antler from Two Regenerating and Mineralizing Sections. Biology 2021, 10, 679. [Google Scholar] [CrossRef]
- Liu, L.; Jiao, Y.; Yang, M.; Wu, L.; Long, G.; Hu, W. Network Pharmacology, Molecular Docking and Molecular Dynamics to Explore the Potential Immunomodulatory Mechanisms of Deer Antler. Int. J. Mol. Sci. 2023, 24, 10370. [Google Scholar] [CrossRef]
- Ni, Y.; Wang, Z.; Ma, L.; Yang, L.; Wu, T.; Fu, Z. Pilose antler polypeptides ameliorate inflammation and oxidative stress and improves gut microbiota in updates hypoxic-ischemic injured rats. Nutr. Res. 2019, 64, 93–108. [Google Scholar] [CrossRef] [PubMed]
- Shao, M.-J.; Wang, S.-R.; Zhao, M.-J.; Lv, X.-L.; Xu, H.; Li, L.; Gu, H.; Zhang, J.-L.; Li, G.; Cui, X.-N.; et al. The Effects of Velvet Antler of Deer on Cardiac Functions of Rats with Heart Failure following Myocardial Infarction. Evid.-Based Complement Altern. Med. 2012, 2012, 825056. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Xu, S.; Li, L.; Mao, M.; Wang, J.; Li, Y.; Wang, Z.; Ye, F.; Huang, L. The Effect of Velvet Antler Proteins on Cardiac Microvascular Endothelial Cells Challenged with Ischemia-Hypoxia. Front. Pharmacol. 2017, 8, 601. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Yang, L.; Chen, Y.; Ni, Y.; Jiang, J.; Zhang, W.; Zhou, Q.; Zheng, X.; Wang, Q.; Fu, Z.; et al. Pilose antler polypeptides ameliorates hypoxic-ischemic encephalopathy by activated neurotrophic factors and SDF1/CXCR4 axis in rats. Acta Biochim. Biophys. Sin. 2018, 50, 254–262. [Google Scholar] [CrossRef]
- Pei, H.; Du, R.; He, Z.; Yang, Y.; Wu, S.; Li, W.; Sheng, J.; Lv, Y.; Han, C. Protection of a novel velvet antler polypeptide PNP1 against cerebral ischemia-reperfusion injury. Int. J. Biol. Macromol. 2023, 247, 125815. [Google Scholar] [CrossRef]
- Xia, P.; Liu, D.; Jiao, Y.; Wang, Z.; Chen, X.; Zheng, S.; Fang, J.; Hao, L. Health Effects of Peptides Extracted from Deer Antler. Nutrients 2022, 14, 4183. [Google Scholar] [CrossRef]
- Gustafsson, A.B.; Gottlieb, R.A. Bcl-2 family members and apoptosis, taken to heart. Am. J. Physiol.-Cell Physiol. 2007, 292, C45–C51. [Google Scholar] [CrossRef]
- Sui, Z.; Sun, H.; Weng, Y.; Zhang, X.; Sun, M.; Sun, R.; Zhao, B.; Liang, Z.; Zhang, Y.; Li, C.; et al. Quantitative proteomics analysis of deer antlerogenic periosteal cells reveals potential bioactive factors in velvet antlers. J. Chromatogr. A 2020, 1609, 460496. [Google Scholar] [CrossRef]
- Qin, T.; Zhang, G.; Zheng, Y.; Li, S.; Yuan, Y.; Li, Q.; Hu, M.; Si, H.; Wei, G.; Gao, X.; et al. A population of stem cells with strong regenerative potential discovered in deer antlers. Science 2023, 379, 840–847. [Google Scholar] [CrossRef]
- Wang, D.; Berg, D.; Ba, H.; Sun, H.; Wang, Z.; Li, C. Deer antler stem cells are a novel type of cells that sustain full regeneration of a mammalian organ-deer antler. Cell Death Dis. 2019, 10, 443. [Google Scholar] [CrossRef]
- Dong, Z.; Ba, H.; Zhang, W.; Coates, D.; Li, C. iTRAQ-Based Quantitative Proteomic Analysis of the Potentiated and Dormant Antler Stem Cells. Int. J. Mol. Sci. 2016, 17, 1778. [Google Scholar] [CrossRef]
- Lei, J.; Jiang, X.; Li, W.; Ren, J.; Wang, D.; Ji, Z.; Wu, Z.; Cheng, F.; Cai, Y.; Yu, Z.-R.; et al. Exosomes from antler stem cells alleviate mesenchymal stem cell senescence and osteoarthritis. Protein Cell 2022, 13, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Qi, T.; Gao, H.; Dang, Y.; Huang, S.; Peng, M. Cervus and cucumis peptides combined umbilical cord mesenchymal stem cells therapy for rheumatoid arthritis. Medicine 2020, 99, e21222. [Google Scholar] [CrossRef] [PubMed]
- Yao, B.; Zhao, Y.; Wang, Q.; Zhang, M.; Liu, M.; Liu, H.; Li, J. De novo characterization of the antler tip of Chinese Sika deer transcriptome and analysis of gene expression related to rapid growth. Mol. Cell. Biochem. 2012, 364, 93–100. [Google Scholar] [CrossRef]
- Yao, B.; Zhang, M.; Liu, M.; Wang, Q.; Liu, M.; Zhao, Y. Sox9 Functions as a Master Regulator of Antler Growth by Controlling Multiple Cell Lineages. DNA Cell Biol. 2018, 37, 15–22. [Google Scholar] [CrossRef]
- Yao, B.; Zhang, M.; Leng, X.; Zhao, D. Proteomic analysis of the effects of antler extract on chondrocyte proliferation, differentiation and apoptosis. Mol. Biol. Rep. 2019, 46, 1635–1648. [Google Scholar] [CrossRef]
- Yao, B.; Zhao, Y.; Zhang, H.; Zhang, M.; Liu, M.; Liu, H.; Li, J. Sequencing and de novo analysis of the Chinese Sika deer antler-tip transcriptome during the ossification stage using Illumina RNA-Seq technology. Biotechnol. Lett. 2012, 34, 813–822. [Google Scholar] [CrossRef]
- Guo, K.; Wang, T.; Luo, E.; Leng, X.; Yao, B. Use of Network Pharmacology and Molecular Docking Technology to Analyze the Mechanism of Action of Velvet Antler in the Treatment of Postmenopausal Osteoporosis. Evid.-Based Complement Altern. Med. 2021, 2021, 7144529. [Google Scholar] [CrossRef]
- Li, N.; Zhao, L.; Lin, Z.; Li, J.; Li, H.; Sun, J.; Zhu, K.; Yu, Z.; Xu, K.; Yang, Q.; et al. Metabonomics Study of the Anti-Osteoporosis Effect of Velvet Collagen Hydrolysate Using Rapid Resolution Liquid Chromatography Combined with Quadrupole Time-of-Flight Tandem Mass Spectrometry. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 117–122. [Google Scholar] [CrossRef]
- Dong, Z.; Coates, D. Bioactive Molecular Discovery Using Deer Antlers as a Model of Mammalian Regeneration. J. Proteome Res. 2021, 20, 2167–2181. [Google Scholar] [CrossRef]
- Pan, W.; Du, J.; An, L.; Xu, G.; Yuan, G.; Sheng, Y.; Sun, J.; Wang, M.; Zhao, N.; Guo, X.; et al. Sika deer velvet antler protein extract modulater bone metabolism and the structure of gut microbiota in ovariectomized mice. Food Sci. Nutr. 2023, 11, 3309–3319. [Google Scholar] [CrossRef]
- Yang, Q.; Lin, J.-N.; Sui, X.; Li, H.; Kan, M.; Wang, J.-F.; Li, J.; Zhang, Z.; Liu, X.-R.; Ming, S.-T.; et al. Antiapoptotic effects of velvet antler polypeptides on damaged neurons through the hypothalamic-pituitary-adrenal axis. J. Integr. Neurosci. 2020, 19, 469–477. [Google Scholar] [CrossRef]
- Liu, X.; Yang, Q.; Li, H.; Lan, X.; Kan, M.; Lin, J.; Wang, J.; Zhang, Z.; Ming, S.; Li, Z.; et al. The anti-aging effect of velvet antler polypeptide is dependent on modulation of the gut microbiota and regulation of the PPARα/APOE4 pathway. J. Integr. Neurosci. 2021, 20, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Liang, Y.; Zhang, J. Natural and synthetic compounds as dissociated agonists of glucocorticoid receptor. Pharmacol. Res. 2020, 156, 104802. [Google Scholar] [CrossRef]
- Chen, J.-C.; Hsiang, C.-Y.; Lin, Y.-C.; Ho, T.-Y. Deer Antler Extract Improves Fatigue Effect through Altering the Expression of Genes Related to Muscle Strength in Skeletal Muscle of Mice. Evid.-Based Complement Altern. Med. 2014, 2014, 540580. [Google Scholar] [CrossRef]
- Hung, Y.-K.; Ho, S.-T.; Kuo, C.-Y.; Chen, M.-J. Multiomics Strategy Reveals the Mechanism of Action and Ameliorating Effect of Deer Velvet Antler Water Extracts on DSS-Induced Colitis. Biomedicines 2023, 11, 1913. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Wang, D.; Ren, J.; Sun, H.; Li, J.; Wang, S.; Shi, L.; Wang, Z.; Yao, M.; Zhao, H.; et al. Velvet Antler Peptides Reduce Scarring via Inhibiting the TGF-β Signaling Pathway During Wound Healing. Front. Med. 2022, 8, 799789. [Google Scholar] [CrossRef]
- Hao, M.; Peng, X.; Sun, S.; Ding, C.; Liu, W. Chitosan/Sodium Alginate/Velvet Antler Blood Peptides Hydrogel Promoted Wound Healing by Regulating PI3K/AKT/mTOR and SIRT1/NF-κB Pathways. Front. Pharmacol. 2022, 13, 913408. [Google Scholar] [CrossRef]
- Xu, G.; Zhao, H.; Xu, J.; Zhang, Y.; Qi, X.; Shi, A. Hard antler extract inhibits invasion and epithelial-mesenchymal transition of triple-negative and Her-2+ breast cancer cells by attenuating nuclear factor-κB signaling. J. Ethnopharmacol. 2021, 269, 113705. [Google Scholar] [CrossRef]
- Cao, T.-Q.; An, H.-X.; Ma, R.-J.; Dai, K.-Y.; Ji, H.-Y.; Liu, A.-J.; Zhou, J.-P. Structural characteristics of a low molecular weight velvet antler protein and the anti-tumor activity on S180 tumor-bearing mice. Bioorg. Chem. 2023, 131, 106304. [Google Scholar] [CrossRef]
- Zheng, K.; Li, Q.; Lin, D.; Zong, X.; Luo, X.; Yang, M.; Yue, X.; Ma, S. Peptidomic analysis of pilose antler and its inhibitory effect on triple-negative breast cancer at multiple sites. Food Funct. 2020, 11, 7481–7494. [Google Scholar] [CrossRef]
- Sun, H.; Xiao, D.; Liu, W.; Li, X.; Lin, Z.; Li, Y.; Ding, Y. Well-known polypeptides of deer antler velvet with key actives: Modern pharmacological advances. Naunyn-Schmiedeb. Arch. Pharmacol. 2024, 397, 15–31. [Google Scholar] [CrossRef]
- Li, L.; Wang, L.; Ding, W.; Wu, J.; Liu, F.; Liu, J.; Zhang, J.; Wang, J. The Improvement Effects of Sika Deer Antler Protein in an Alzheimer’s Disease Mouse Model via the Microbe-Gut-Brain Axis. Food Sci. Nutr. 2025, 13, e4656. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Liang, L.; Hu, Z.; Ding, Z.; Yu, Z. Quantitative Proteomics Based on Data-Independent Acquisition Reveals Differential Protein Expression in Sika Deer Antler-Derived Traditional Chinese Medicine Across Different Growth Periods. Appl. Sci. 2025, 15, 9737. https://doi.org/10.3390/app15179737
Jiang Y, Liang L, Hu Z, Ding Z, Yu Z. Quantitative Proteomics Based on Data-Independent Acquisition Reveals Differential Protein Expression in Sika Deer Antler-Derived Traditional Chinese Medicine Across Different Growth Periods. Applied Sciences. 2025; 15(17):9737. https://doi.org/10.3390/app15179737
Chicago/Turabian StyleJiang, Yihao, Lei Liang, Zheng Hu, Zhangfeng Ding, and Zhibiao Yu. 2025. "Quantitative Proteomics Based on Data-Independent Acquisition Reveals Differential Protein Expression in Sika Deer Antler-Derived Traditional Chinese Medicine Across Different Growth Periods" Applied Sciences 15, no. 17: 9737. https://doi.org/10.3390/app15179737
APA StyleJiang, Y., Liang, L., Hu, Z., Ding, Z., & Yu, Z. (2025). Quantitative Proteomics Based on Data-Independent Acquisition Reveals Differential Protein Expression in Sika Deer Antler-Derived Traditional Chinese Medicine Across Different Growth Periods. Applied Sciences, 15(17), 9737. https://doi.org/10.3390/app15179737