Nutritional Use of Greek Medicinal Plants as Diet Mixtures for Weaned Pigs and Their Effects on Production, Health and Meat Quality
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design, Animals and Diets
2.2. Μicrobial Analysis
2.3. Hematological and Biochemical Analysis of the Blood
2.4. Chemical Analysis, pH Measurement and Color Analysis of the Meat
2.5. Oxidative Stability Analysis of the Meat
2.6. Fatty Acid Analysis of the Meat
2.7. Statistical Analysis
3. Results
3.1. Performance Parameters
3.2. Intestinal Microflora
3.3. Blood Parameters
3.4. Chemical Analysis of the Meat
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Giller, K.E.; Delaune, T.; Silva, J.V.; Descheemaeker, K.; van de Ven, G.; Schut, A.G.T.; van Wijk, M.; Hammond, J.; Hochman, Z.; Taulya, G.; et al. The Future of Farming: Who Will Produce Our Food? Food Secur. 2021, 13, 1073–1099. [Google Scholar] [CrossRef]
- OECD/FAO. OECD-FAO Agricultural Outlook 2021–2030; OECD Publishing: Paris, France, 2021. [Google Scholar] [CrossRef]
- Lillehoj, H.; Liu, Y.; Calsamiglia, S.; Fernandez-Miyakawa, M.E.; Chi, F.; Cravens, R.L.; Oh, S.; Gay, C.G. Phytochemicals as antibiotic alternatives to promote growth and enhance host health. Veter-Res. 2018, 49, 76. [Google Scholar] [CrossRef]
- Xu, B.; Fu, J.; Zhu, L.; Li, Z.; Jin, M.; Wang, Y. Overall assessment of antibiotic substitutes for pigs: A set of meta-analyses. J. Anim. Sci. Biotechnol. 2021, 12, 3. [Google Scholar] [CrossRef]
- Matheou, A.; Abousetta, A.; Pascoe, A.P.; Papakostopoulos, D.; Charalambous, L.; Panagi, S.; Panagiotou, S.; Yiallouris, A.; Filippou, C.; Johnson, E.O. Antibiotic Use in Livestock Farming: A Driver of Multidrug Resistance? Microorganisms 2025, 13, 779. [Google Scholar] [CrossRef]
- Iammarino, M. Recent Advances in Meat Products Quality & Safety Improvements and Assurance: Editorial. Int. J. Food Sci. Technol. 2020, 55, 917–918. [Google Scholar] [CrossRef]
- Giannenas, I.; Tzora, A.; Sarakatsianos, I.; Karamoutsios, A.; Skoufos, S.; Papaioannou, N.; Anastasiou, I.; Skoufos, I. The Effectiveness of the Use of Oregano and Laurel Essential Oils in Chicken Feeding. Ann. Anim. Sci. 2016, 16, 779–796. [Google Scholar] [CrossRef]
- Ersanli, C.; Tzora, A.; Skoufos, I.; Fotou, K.; Maloupa, E.; Grigoriadou, K.; Voidarou, C.; Zeugolis, D.I. The Assessment of Antimicrobial and Anti-Biofilm Activity of Essential Oils against Staphylococcus aureus Strains. Antibiotics 2023, 12, 384. [Google Scholar] [CrossRef]
- Li, L.; Sun, X.; Zhao, D.; Dai, H. Pharmacological Applications and Action Mechanisms of Phytochemicals as Alternatives to Antibiotics in Pig Production. Front. Immunol. 2021, 12, 798553. [Google Scholar] [CrossRef]
- Ndomou, S.C.; Mube, H.K. The Use of Plants as Phytobiotics: A New Challenge. In Phytochemicals in Agriculture and Food; Soto-Hernández, M., Aguirre-Hernández, E., Palma-Tenango, M., Eds.; IntechOpen: Rijeka, Croatia, 2023. [Google Scholar]
- Skoufos, I.; Bonos, E.; Anastasiou, I.; Tsinas, A.; Tzora, A. Effects of Phytobiotics in Healthy or Disease Challenged Animals. In Feed Additives; Academic Press: Oxford, UK, 2020; pp. 311–337. [Google Scholar]
- Pandey, S.; Kim, E.S.; Cho, J.H.; Song, M.; Doo, H.; Kim, S.; Keum, G.B.; Kwak, J.; Ryu, S.; Choi, Y.; et al. Cutting-Edge Knowledge on the Roles of Phytobiotics and Their Proposed Modes of Action in Swine. Front. Vet. Sci. 2023, 10, 1265689. [Google Scholar] [CrossRef] [PubMed]
- Giannenas, I.; Florou-Paneri, P.; Papazahariadou, M.; Christaki, E.; Botsoglou, N.A.; Spais, A.B. Effect of dietary supplementation with oregano essential oil on performance of broilers after experimental infection with Eimeria tenella. Arch. Fur Tierernahr. 2003, 57, 99–106. [Google Scholar] [CrossRef]
- Ahmed, S.T.; Hossain, M.E.; Kim, G.M.; Hwang, J.A.; Ji, H.; Yang, C.J. Effects of Resveratrol and Essential Oils on Growth Performance, Immunity, Digestibility and Fecal Microbial Shedding in Challenged Piglets. Asian-Australas. J. Anim. Sci. 2013, 26, 683–690. [Google Scholar] [CrossRef]
- Mohammadi Gheisar, M.; Kim, I.H. Phytobiotics in Poultry and Swine Nutrition—A Review. Ital. J. Anim. Sci. 2018, 17, 92–99. [Google Scholar] [CrossRef]
- Wei, H.-K.; Wang, J.; Cheng, C.; Jin, L.-Z.; Peng, J. Chapter 13—Application of Plant Essential Oils in Pig Diets. In Feed Additives; Florou-Paneri, P., Christaki, E., Giannenas, I.B.T.-F.A., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 227–237. ISBN 978-0-12-814700-9. [Google Scholar]
- Wang, J.; Deng, L.; Chen, M.; Che, Y.; Li, L.; Zhu, L.; Chen, G.; Feng, T. Phytogenic Feed Additives as Natural Antibiotic Alternatives in Animal Health and Production: A Review of the Literature of the Last Decade. Anim. Nutr. 2024, 17, 244–264. [Google Scholar] [CrossRef]
- Li, S.Y.; Ru, Y.J.; Liu, M.; Xu, B.; Péron, A.; Shi, X.G. The Effect of Essential Oils on Performance, Immunity and Gut Microbial Population in Weaner Pigs. Livest. Sci. 2012, 145, 119–123. [Google Scholar] [CrossRef]
- Dávila-Ramírez, J.L.; Munguía-Acosta, L.L.; Morales-Coronado, J.G.; García-Salinas, A.D.; González-Ríos, H.; Celaya-Michel, H.; Sosa-Castañeda, J.; Sánchez-Villalba, E.; Anaya-Islas, J.; Barrera-Silva, M.A. Addition of a Mixture of Plant Extracts to Diets for Growing-Finishing Pigs on Growth Performance, Blood Metabolites, Carcass Traits, Organ Weight as a Percentage of Live Weight, Quality and Sensorial Analysis of Meat. Animals 2020, 10, 1229. [Google Scholar] [CrossRef] [PubMed]
- Girard, M.; Hu, D.; Pradervand, N.; Neuenschwander, S.; Bee, G. Chestnut Extract but Not Sodium Salicylate Decreases the Severity of Diarrhea and Enterotoxigenic Escherichia coli F4 Shedding in Artificially Infected Piglets. PLoS ONE 2020, 15, e0214267. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Huang, Y.; Shi, Y.; Liu, Y.; Wu, S.; Bao, W. Effect of Bamboo Vinegar Powder as an Antibiotic Alternative on the Digesta Bacteria Communities of Finishing Pigs. Can. J. Microbiol. 2018, 64, 732–743. [Google Scholar] [CrossRef]
- Li, Y.; Fu, X.; Ma, X.; Geng, S.; Jiang, X.; Huang, Q.; Hu, C.; Han, X. Intestinal Microbiome-Metabolome Responses to Essential Oils in Piglets. Front. Microbiol. 2018, 9, 1988. [Google Scholar] [CrossRef] [PubMed]
- Su, G.; Zhou, X.; Wang, Y.; Chen, D.; Chen, G.; Li, Y.; He, J. Dietary Supplementation of Plant Essential Oil Improves Growth Performance, Intestinal Morphology and Health in Weaned Pigs. J. Anim. Physiol. Anim. Nutr. 2020, 104, 579–589. [Google Scholar] [CrossRef]
- Zeng, Z.; Xu, X.; Zhang, Q.; Li, P.; Zhao, P.; Li, Q.; Liu, J.; Piao, X. Effects of Essential Oil Supplementation of a Low-Energy Diet on Performance, Intestinal Morphology and Microflora, Immune Properties and Antioxidant Activities in Weaned Pigs. Anim. Sci. J. 2015, 86, 279–285. [Google Scholar] [CrossRef]
- Skoufos, I.; Giannenas, I.; Tontis, D.; Bartzanas, T.; Kittas, C.; Panagakis, P.; Tzora, A. Effects of Oregano Essential Oil and Attapulgite on Growth Performance, Intestinal Microbiota and Morphometry in Broilers. S. Afr. J. Anim. Sci. 2016, 46, 77. [Google Scholar] [CrossRef]
- Madesh, M.; Yan, J.; Jinan, G.; Hu, P.; Kim, I.H.; Liu, H.-Y.; Ennab, W.; Jha, R.; Cai, D. Phytogenics in Swine Nutrition and Their Effects on Growth Performance, Nutrient Utilization, Gut Health, and Meat Quality: A Review. Stress Biol. 2025, 5, 11. [Google Scholar] [CrossRef]
- Zhao, B.C.; Wang, T.H.; Chen, J.; Qiu, B.H.; Xu, Y.R.; Zhang, Q.; Li, J.J.; Wang, C.J.; Nie, Q.F.; Li, J.L. Effects of Dietary Supplementation with a Carvacrol–Cinnamaldehyde–Thymol Blend on Growth Performance and Intestinal Health of Nursery Pigs. Porc. Health Manag. 2023, 9, 24. [Google Scholar] [CrossRef]
- Chang, S.Y.; Lee, J.H.; Oh, H.J.; An, J.W.; Song, D.C.; Cho, H.A.; Park, S.H.; Jeon, K.H.; Cho, S.Y.; Kim, D.J.; et al. Effect of Different Ratios of Phytogenic Feed Additives on Growth Performance, Nutrient Digestibility, Intestinal Barrier Integrity, and Immune Response in Weaned Pigs Challenged with a Pathogenic Escherichia coli. J. Anim. Sci. 2023, 101, skad148. [Google Scholar] [CrossRef]
- Pezzani, R.; Vitalini, S.; Iriti, M. Bioactivities of Origanum vulgare L.: An Update. Phytochem. Rev. 2017, 16, 1253–1268. [Google Scholar] [CrossRef]
- Pu, J.; Chen, D.; Tian, G.; He, J.; Zheng, P.; Mao, X.; Yu, J.; Huang, Z.; Luo, J.; Luo, Y.; et al. Effects of Benzoic Acid, Bacillus Coagulans and Oregano Oil Combined Supplementation on Growth Performance, Immune Status and Intestinal Barrier Integrity of Weaned Piglets. Anim. Nutr. 2020, 6, 152–159. [Google Scholar] [CrossRef]
- Kolypetri, S.; Kostoglou, D.; Nikolaou, A.; Kourkoutas, Y.; Giaouris, E. Chemical Composition, Antibacterial and Antibiofilm Actions of Oregano (Origanum vulgare subsp. hirtum) Essential Oil against Salmonella typhimurium and Listeria monocytogenes. Foods 2023, 12, 2893. [Google Scholar] [CrossRef]
- Węglarz, Z.; Kosakowska, O.; Przybył, J.; Pióro-Jabrucka, E.; Baczek, K. The Quality of Greek Oregano (O. vulgare L. subsp. hirtum (Link) Ietswaart) and Common Oregano (O. vulgare L. subsp. vulgare) Cultivated in the Temperate Climate of Central Europe. Foods 2020, 9, 1671. [Google Scholar] [CrossRef]
- Sidiropoulou, E.; Marugán-Hernández, V.; Skoufos, I.; Giannenas, I.; Bonos, E.; Aguiar-Martins, K.; Lazari, D.; Papagrigoriou, T.; Fotou, K.; Grigoriadou, K.; et al. In Vitro Antioxidant, Antimicrobial, Anticoccidial, and Anti-Inflammatory Study of Essential Oils of Oregano, Thyme, and Sage from Epirus, Greece. Life 2022, 12, 1783. [Google Scholar] [CrossRef]
- Ranucci, D.; Beghelli, D.; Trabalza-Marinucci, M.; Branciari, R.; Forte, C.; Olivieri, O.; Badillo Pazmay, G.V.; Cavallucci, C.; Acuti, G. Dietary Effects of a Mix Derived from Oregano (Origanum vulgare L.) Essential Oil and Sweet Chestnut (Castanea sativa Mill.) Wood Extract on Pig Performance, Oxidative Status and Pork Quality Traits. Meat Sci. 2015, 100, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Xiang, Q.; Wang, J.; Wei, H.; Peng, J. Effects of Oregano Essential Oil or Quercetin Supplementation on Body Weight Loss, Carcass Characteristics, Meat Quality and Antioxidant Status in Finishing Pigs under Transport Stress. Livest. Sci. 2016, 192, 33–38. [Google Scholar] [CrossRef]
- Tian, Q.; Piao, X. Essential Oil Blend Could Decrease Diarrhea Prevalence by Improving Antioxidative Capability for Weaned Pigs. Animals 2019, 9, 847. [Google Scholar] [CrossRef]
- Duarte, M.E.; Kim, S.W. Phytobiotics from Oregano Extracts Enhance the Intestinal Health and Growth Performance of Pigs. Antioxidants 2022, 11, 2066. [Google Scholar] [CrossRef] [PubMed]
- Janz, J.A.M.; Morel, P.C.H.; Wilkinson, B.H.P.; Purchas, R.W. Preliminary Investigation of the Effects of Low-Level Dietary Inclusion of Fragrant Essential Oils and Oleoresins on Pig Performance and Pork Quality. Meat Sci. 2007, 75, 350–355. [Google Scholar] [CrossRef]
- Brenes, A.; Roura, E. Essential Oils in Poultry Nutrition: Main Effects and Modes of Action. Anim. Feed. Sci. Technol. 2010, 158, 1–14. [Google Scholar] [CrossRef]
- Simitzis, P.E.; Symeon, G.K.; Charismiadou, M.A.; Bizelis, J.A.; Deligeorgis, S.G. The Effects of Dietary Oregano Oil Supplementation on Pig Meat Characteristics. Meat Sci. 2010, 84, 670–676. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Galicia, I.A.; Arras-Acosta, J.A.; Huerta-Jimenez, M.; Rentería-Monterrubio, A.L.; Loya-Olguin, J.L.; Carrillo-Lopez, L.M.; Tirado-Gallegos, J.M.; Alarcon-Rojo, A.D. Natural Oregano Essential Oil May Replace Antibiotics in Lamb Diets: Effects on Meat Quality. Antibiotics 2020, 9, 248. [Google Scholar] [CrossRef]
- Kołodziej-Skalska, A.; Kamyczek, M.; Pietruszka, A.; Matysiak, B. Effect of Dietary Oregano Essential Oil on the Growth, Meat Quality, Selenium Distribution, and Serum Biochemical Traits of Pigs. Anim. Sci. Genet. 2022, 18, 115–128. [Google Scholar] [CrossRef]
- Martins-Noguerol, R.; Matías, L.; Pérez-Ramos, I.M.; Moreira, X.; Francisco, M.; Pedroche, J.; DeAndrés-Gil, C.; Gutiérrez, E.; Salas, J.J.; Moreno-Pérez, A.J.; et al. Soil Physicochemical Properties Associated with the Yield and Phytochemical Composition of the Edible Halophyte Crithmum Maritimum. Sci. Total Environ. 2023, 869, 161806. [Google Scholar] [CrossRef]
- Bonos, E.; Skoufos, I.; Giannenas, I.; Sidiropoulou, E.; Fotou, K.; Stylianaki, I.; Tsiftsoglou, O.; Lazari, D.; Venardou, B.; Galamatis, D.; et al. Effect of an Herbal Mixture of Oregano, Garlic, Sage and Rock Samphire Extracts in Combination with Tributyrin on Growth Performance, Intestinal Microbiota and Morphology, and Meat Quality in Broilers. Sustainability 2022, 14, 13565. [Google Scholar] [CrossRef]
- Correia, I.; Antunes, M.; Tecelão, C.; Neves, M.; Pires, C.L.; Cruz, P.F.; Rodrigues, M.; Peralta, C.C.; Pereira, C.D.; Reboredo, F.; et al. Nutritive Value and Bioactivities of a Halophyte Edible Plant: Crithmum maritimum L. (Sea Fennel). Plants 2024, 13, 427. [Google Scholar] [CrossRef]
- Zubr, J. Dietary Fatty Acids and Amino Acids of Camelina sativa Seed. J. Food Qual. 2003, 26, 451–462. [Google Scholar] [CrossRef]
- Waraich, E.A.; Ahmed, Z.; Ahmad, R.; Yasin Ashraf, M.; Saifullah; Naeem, M.S.; Rengel, Z. Camelina sativa, a Climate Proof Crop, Has High Nutritive Value and Multiple-Uses: A Review. Aust. J. Crop Sci. 2013, 7, 1551–1559. [Google Scholar]
- Ni Eidhin, D.; Burke, J.; Lynch, B.; O’Beirne, D. Effects of Dietary Supplementation with Camelina Oil on Porcine Blood Lipids. J. Food Sci. 2003, 68, 671–679. [Google Scholar] [CrossRef]
- Smit, M.N.; Beltranena, E. Effects of Feeding Camelina Cake to Weaned Pigs on Safety, Growth Performance, and Fatty Acid Composition of Pork. J. Anim. Sci. 2017, 95, 2496–2508. [Google Scholar] [CrossRef] [PubMed]
- Delver, J.J.; Smith, Z.K. Opportunities for Camelina Meal as a Livestock Feed Ingredient. Agriculture 2024, 14, 116. [Google Scholar] [CrossRef]
- Liu, Y.; Espinosa, C.D.; Abelilla, J.J.; Casas, G.A.; Lagos, L.V.; Lee, S.A.; Kwon, W.B.; Mathai, J.K.; Navarro, D.M.D.L.; Jaworski, N.W.; et al. Non-Antibiotic Feed Additives in Diets for Pigs: A Review. Anim. Nutr. 2018, 4, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Ogbuewu, I.P.; Okoro, V.M.; Mbajiorgu, E.F.; Mbajiorgu, C.A. Beneficial Effects of Garlic in Livestock and Poultry Nutrition: A Review. Agric. Res. 2019, 8, 411–426. [Google Scholar] [CrossRef]
- Ruiz, R.; García, M.P.; Lara, A.; Rubio, L.A. Garlic Derivatives (PTS and PTS-O) Differently Affect the Ecology of Swine Faecal Microbiota In Vitro. Vet. Microbiol. 2010, 144, 110–117. [Google Scholar] [CrossRef]
- Filocamo, A.; Nueno-Palop, C.; Bisignano, C.; Mandalari, G.; Narbad, A. Effect of Garlic Powder on the Growth of Commensal Bacteria from the Gastrointestinal Tract. Phytomedicine 2012, 19, 707–711. [Google Scholar] [CrossRef]
- Eurostat. Pigs—Number by Country [Data Set]. 2024. Available online: https://ec.europa.eu/eurostat/databrowser/bookmark/036f5b39-6e43-4428-bcd2-d51feba8c58d?lang=en (accessed on 11 August 2025).
- Partheniadis, I.; Karakasidou, P.; Vergkizi, S.; Nikolakakis, I. Spectroscopic Examination and Release of Microencapsulated Oregano Essential Oil. ADMET DMPK 2017, 5, 224–233. [Google Scholar] [CrossRef]
- O’Fallon, J.V.; Busboom, J.R.; Nelson, M.L.; Gaskins, C.T. A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. J. Anim. Sci. 2007, 85, 1511–1521. [Google Scholar] [CrossRef] [PubMed]
- NRC National Research Council. Nutrient Requirements of Swine; The National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
- Premier Nutrition. Premier Atlas 2014; Premier Nutrition: Brereton, UK, 2014. [Google Scholar]
- Skoufos, I.; Nelli, A.; Venardou, B.; Lagkouvardos, I.; Giannenas, I.; Magklaras, G.; Zacharis, C.; Jin, L.; Wang, J.; Gouva, E.; et al. Use of an Innovative Silage of Agro-Industrial Waste By-Products in Pig Nutrition: A Pilot Study of Its Effects on the Pig Gastrointestinal Microbiota. Microorganisms 2023, 11, 1723. [Google Scholar] [CrossRef]
- Anderson, S. Determination of fat, moisture, and protein in meat and meat products by using the FOSS FoodScan near-infrared spectrophotometer with FOSS artificial neural network calibration model and associated database: Collaborative study. J. AOAC Int. 2007, 90, 1073–1083. [Google Scholar] [CrossRef]
- Magklaras, G.; Skoufos, I.; Bonos, E.; Tsinas, A.; Zacharis, C.; Giavasis, I.; Petrotos, K.; Fotou, K.; Nikolaou, K.; Vasilopoulou, K.; et al. Innovative Use of Olive, Winery and Cheese Waste By-Products as Novel Ingredients in Weaned Pigs Nutrition. Vet. Sci. 2023, 10, 397. [Google Scholar] [CrossRef] [PubMed]
- Florou-Paneri, P.; Palatos, G.; Govaris, A.; Botsoglou, D.; Giannenas, I.; Ambrosiadis, I. Oregano Herb versus Oregano Essential Oil as Feed Supplements to Increase the Oxidative Stability of Turkey Meat. Int. J. Poult. Sci. 2005, 4, 866–871. [Google Scholar] [CrossRef]
- Giannenas, I.; Bonos, E.; Skoufos, I.; Tzora, A.; Stylianaki, I.; Lazari, D.; Tsinas, A.; Christaki, E.; Florou-Paneri, P. Effect of Herbal Feed Additives on Performance Parameters, Intestinal Microbiota, Intestinal Morphology and Meat Lipid Oxidation of Broiler Chickens. Br. Poult. Sci. 2018, 59, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Minelli, G.; D’Ambra, K.; Macchioni, P.; Lo Fiego, D. Pietro Effects of Pig Dietary N-6/n-3 Polyunsaturated Fatty Acids Ratio and Gender on Carcass Traits, Fatty Acid Profiles, Nutritional Indices of Lipid Depots and Oxidative Stability of Meat in Medium–Heavy Pigs. Foods 2023, 12, 4106. [Google Scholar] [CrossRef]
- SPSS. SPSS Statistics for Windows; IBM: Armonk, NY, USA, 2018. [Google Scholar]
- Grunert, K.G.; Sonntag, W.I.; Glanz-Chanos, V.; Forum, S. Consumer Interest in Environmental Impact, Safety, Health and Animal Welfare Aspects of Modern Pig Production: Results of a Cross-National Choice Experiment. Meat Sci. 2018, 137, 123–129. [Google Scholar] [CrossRef]
- Apostolidis, C.; McLeay, F. To Meat or Not to Meat? Comparing Empowered Meat Consumers’ and Anti-Consumers’ Preferences for Sustainability Labels. Food Qual. Prefer. 2019, 77, 109–122. [Google Scholar] [CrossRef]
- Carlsson, F.; Kataria, M.; Lampi, E. Sustainable Food: Can Information from Food Labels Make Consumers Switch to Meat Substitutes? Ecol. Econ. 2022, 201, 107567. [Google Scholar] [CrossRef]
- Zacharis, C.; Bonos, E.; Giannenas, I.; Skoufos, I.; Tzora, A.; Voidarou, C.; Tsinas, A.; Fotou, K.; Papadopoulos, G.; Mitsagga, C.; et al. Utilization of Tenebrio Molitor Larvae Reared with Different Substrates as Feed Ingredients in Growing Pigs. Vet. Sci. 2023, 10, 393. [Google Scholar] [CrossRef] [PubMed]
- Dugan, M.E.R.; Vahmani, P.; Turner, T.D.; Mapiye, C.; Juárez, M.; Prieto, N.; Beaulieu, A.D.; Zijlstra, R.T.; Patience, J.F.; Aalhus, J.L. Pork as a Source of Omega-3 (n-3) Fatty Acids. J. Clin. Med. 2015, 4, 1999–2011. [Google Scholar] [CrossRef] [PubMed]
- Henchion, M.; Moloney, A.P.; Hyland, J.; Zimmermann, J.; McCarthy, S. Review: Trends for Meat, Milk and Egg Consumption for the next Decades and the Role Played by Livestock Systems in the Global Production of Proteins. Animal 2021, 15, 100287. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, L.; Cao, G.; Feng, J.; Yue, M.; Xu, Y.; Dai, B.; Han, Q.; Guo, X. Effects of Dietary Supplementation with Essential Oils and Organic Acids on the Growth Performance, Immune System, Fecal Volatile Fatty Acids, and Microflora Community in Weaned Piglets. J. Anim. Sci. 2019, 97, 133–143. [Google Scholar] [CrossRef]
- Froehlich, K.A.; Abdelsalam, K.W.; Chase, C.; Koppien-Fox, J.; Casper, D.P. Evaluation of Essential Oils and Prebiotics for Newborn Dairy Calves. J. Anim. Sci. 2017, 95, 3772. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.C.; Wang, T.H.; Chen, J.; Qiu, B.H.; Xu, Y.R.; Li, J.L. Essential Oils Improve Nursery Pigs’ Performance and Appetite via Modulation of Intestinal Health and Microbiota. Anim. Nutr. 2024, 16, 174–188. [Google Scholar] [CrossRef]
- Sánchez, C.J.; Martínez-Miró, S.; Ariza, J.J.; Madrid, J.; Orengo, J.; Aguinaga, M.A.; Baños, A.; Hernández, F. Effect of Alliaceae Extract Supplementation on Performance and Intestinal Microbiota of Growing-Finishing Pig. Animals 2020, 10, 1557. [Google Scholar] [CrossRef]
- Huang, C.; Chen, D.; Tian, G.; He, J.; Zheng, P.; Yu, J.; Mao, X.; Huang, Z.; Yan, H.; Wang, Q.; et al. Effects of Dietary Plant Essential Oil Supplementation on Growth Performance, Nutrient Digestibility and Meat Quality in Finishing Pigs. J. Anim. Physiol. Anim. Nutr. 2022, 106, 1246–1257. [Google Scholar] [CrossRef]
- Li, Y.; Cao, H.; Zhang, S.; Guo, P.; Zhao, J.; Zhang, D.; Zhang, S. Effects of the Supplementation of Essential Oil Mixtures on Growth Performance, Nutrient Digestibility, Immune Status and Microbial Community in Weaned Piglets. Animals 2023, 13, 3697. [Google Scholar] [CrossRef]
- Dokou, S.; Vasilopoulou, K.; Bonos, E.; Grigoriadou, K.; Savvidou, S.; Stefanakis, M.K.; Christaki, S.; Kyriakoudi, A.; Mourtzinos, I.; Tzora, A.; et al. Effects of Dietary Supplementation with Phytobiotic Encapsulated Plant Extracts on Broilers’ Performance Parameters, Welfare Traits and Meat Characteristics. Ann. Anim. Sci. 2023, 23, 1105–1118. [Google Scholar] [CrossRef]
- Chen, K.; Dai, Z.; Zhang, Y.; Wu, S.; Liu, L.; Wang, K.; Shen, D.; Li, C. Effects of Microencapsulated Essential Oils on Growth and Intestinal Health in Weaned Piglets. Animals 2024, 14, 2705. [Google Scholar] [CrossRef] [PubMed]
- Heckert Bastos, L.P.; Vicente, J.; Corrêa dos Santos, C.H.; Geraldo de Carvalho, M.; Garcia-Rojas, E.E. Encapsulation of Black Pepper (Piper nigrum L.) Essential Oil with Gelatin and Sodium Alginate by Complex Coacervation. Food Hydrocoll. 2020, 102, 105605. [Google Scholar] [CrossRef]
- Sousa, V.I.; Parente, J.F.; Marques, J.F.; Forte, M.A.; Tavares, C.J. Microencapsulation of Essential Oils: A Review. Polymers 2022, 14, 1730. [Google Scholar] [CrossRef]
- Stevanović, Z.D.; Bošnjak-Neumüller, J.; Pajić-Lijaković, I.; Raj, J.; Vasiljević, M. Essential Oils as Feed Additives—Future Perspectives. Molecules 2018, 23, 1717. [Google Scholar] [CrossRef]
- Costa, L.B.; Luciano, F.B.; Miyada, V.S.; Gois, F.D. Herbal Extracts and Organic Acids as Natural Feed Additives in Pig Diets. S. Afr. J. Anim. Sci. 2013, 43, 181–193. [Google Scholar] [CrossRef]
- Ali, A.; Ponnampalam, E.N.; Pushpakumara, G.; Cottrell, J.J.; Suleria, H.A.R.; Dunshea, F.R. Cinnamon: A Natural Feed Additive for Poultry Health and Production—A Review. Animals 2021, 11, 2026. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Dev, K.; Sourirajan, A. Essential Oils of Rosmarinus officinalis L., Cymbopogon Citratus (DC.) Stapf., and the Phyto-Compounds, Delta-Carene and Alpha-Pinene Mediate Cell Cycle Arrest at G2/M Transition in Budding Yeast Saccharomyces Cerevisiae. S. Afr. J. Bot. 2021, 141, 296–305. [Google Scholar] [CrossRef]
- Long, S.; Liu, S.; Wang, J.; Mahfuz, S.; Piao, X. Natural Capsicum Extract Replacing Chlortetracycline Enhances Performance via Improving Digestive Enzyme Activities, Antioxidant Capacity, Anti-Inflammatory Function, and Gut Health in Weaned Pigs. Anim. Nutr. 2021, 7, 305–314. [Google Scholar] [CrossRef]
- Hossain, M.M.; Bo Cho, S.; Kim, I.H. Silybum Marianum Seed Extract as a Potential Phytogenic Feed Additive for Improving Growth Performance and Nutrient Digestibility in Growing Pigs. Can. J. Anim. Sci. 2024, 104, 80–85. [Google Scholar] [CrossRef]
- Liu, Y.; Song, M.; Che, T.M.; Lee, J.J.; Bravo, D.; Maddox, C.W.; Pettigrew, J.E. Dietary Plant Extracts Modulate Gene Expression Profiles in Ileal Mucosa of Weaned Pigs after an Escherichia coli Infection. J. Anim. Sci. 2014, 92, 2050–2062. [Google Scholar] [CrossRef]
- Long, S.F.; Wu, D.; He, T.F.; Piao, X.S. Dietary Supplementation with Forsythia Suspensa Extract during Late Gestation Improves Reproductive Performance, Colostrum Composition, Antioxidant Status, Immunoglobulin, and Inflammatory Cytokines in Sows and Newborn Piglets. Anim. Feed. Sci. Technol. 2021, 271, 114700. [Google Scholar] [CrossRef]
- Rabelo-Ruiz, M.; Teso-Pérez, C.; Peralta-Sánchez, J.M.; Ariza, J.J.; Martín-Platero, A.M.; Casabuena-Rincón, Ó.; Vázquez-Chas, P.; Guillamón, E.; Aguinaga-Casañas, M.A.; Maqueda, M.; et al. Allium Extract Implements Weaned Piglet’s Productive Parameters by Modulating Distal Gut Microbiota. Antibiotics 2021, 10, 269. [Google Scholar] [CrossRef]
- Zhang, Q.; Kim, H.I. Micelle Silymarin Supplementation to Fattening Diet Augments Daily Gain, Nutrient Digestibility, Decreases Toxic Gas Emissions, and Ameliorates Meat Quality of Fattening Pigs. Czech J. Anim. Sci. 2022, 67, 125–136. [Google Scholar] [CrossRef]
- Yang, Y.; Li, F.; Guo, Q.; Wang, W.; Zhang, L.; Yin, Y.; Gong, S.; Han, M.; Yin, Y. Effects of Different Supplemental Levels of Eucommia Ulmoides Leaf Extract in the Diet on Carcass Traits and Lipid Metabolism in Growing–Finishing Pigs. Front. Vet. Sci. 2022, 8, 828165. [Google Scholar] [CrossRef]
- Ahmed, S.T.; Mun, H.S.; Islam, M.M.; Ko, S.Y.; Yang, C.J. Effects of Dietary Natural and Fermented Herb Combination on Growth Performance, Carcass Traits and Meat Quality in Grower-Finisher Pigs. Meat Sci. 2016, 122, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Zhou, Q.; Wu, C.; Zhao, J.; Tan, Q.; He, Y.; Hu, L.; Fang, Z.; Lin, Y.; Xu, S.; et al. Effects of Dietary Supplementation with Essential Oils and Protease on Growth Performance, Antioxidation, Inflammation and Intestinal Function of Weaned Pigs. Anim. Nutr. 2022, 9, 39–48. [Google Scholar] [CrossRef]
- Muhl, A.; Liebert, F. No Impact of a Phytogenic Feed Additive on Digestion and Unspecific Immune Reaction in Piglets. J. Anim. Physiol. Anim. Nutr. 2007, 91, 426–431. [Google Scholar] [CrossRef]
- Patil, Y.; Gooneratne, R.; Ju, X.H. Interactions between Host and Gut Microbiota in Domestic Pigs: A Review. Gut Microbes 2020, 11, 310–334. [Google Scholar] [CrossRef] [PubMed]
- Rueda, A.F.; Samuel, R.; St-Pierre, B. Investigating the Effects of a Phytobiotics-Based Product on the Fecal Bacterial Microbiome of Weaned Pigs. Animals 2021, 11, 1950. [Google Scholar] [CrossRef]
- Chen, G.; Li, Z.; Liu, S.; Tang, T.; Chen, Q.; Yan, Z.; Peng, J.; Yang, Z.; Zhang, G.; Liu, Y.; et al. Fermented Chinese Herbal Medicine Promoted Growth Performance, Intestinal Health, and Regulated Bacterial Microbiota of Weaned Piglets. Animals 2023, 13, 476. [Google Scholar] [CrossRef]
- Cheng, C.; Xia, M.; Zhang, X.; Wang, C.; Jiang, S.; Peng, J. Supplementing Oregano Essential Oil in a Reduced-Protein Diet Improves Growth Performance and Nutrient Digestibility by Modulating Intestinal Bacteria, Intestinal Morphology, and Antioxidative Capacity of Growing-Finishing Pigs. Animals 2018, 8, 159. [Google Scholar] [CrossRef]
- Li, N.; Huang, S.; Jiang, L.; Wang, W.; Li, T.; Zuo, B.; Li, Z.; Wang, J. Differences in the Gut Microbiota Establishment and Metabolome Characteristics between Low- and Normal-Birth-Weight Piglets during Early-Life. Front. Microbiol. 2018, 9, 1798. [Google Scholar] [CrossRef]
- Wang, M.; Huang, H.; Hu, Y.; Liu, Y.; Zeng, X.; Zhuang, Y.; Yang, H.; Wang, L.; Chen, S.; Yin, L.; et al. Effects of Dietary Supplementation with Herbal Extract Mixture on Growth Performance, Organ Weight and Intestinal Morphology in Weaning Piglets. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1462–1470. [Google Scholar] [CrossRef]
- Mosolov, A.A.; Starodubova, Y.V.; Miroshnik, A.S.; Slozhenkina, M.I.; Komlatsky, V.I.; Struk, A.N. Phytobiotics in Pig Feeding Architecture for the Organic Animal Husbandry Development. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022. [Google Scholar] [CrossRef]
- Szabó, C.; Kachungwa Lugata, J.; Ortega, A.D.S.V. Gut Health and Influencing Factors in Pigs. Animals 2023, 13, 1350. [Google Scholar] [CrossRef] [PubMed]
- Saad, N.; Delattre, C.; Urdaci, M.; Schmitter, J.M.; Bressollier, P. An Overview of the Last Advances in Probiotic and Prebiotic Field. LWT 2013, 50, 1–16. [Google Scholar] [CrossRef]
- Lan, R.X.; Park, J.W.; Lee, D.W.; Kim, I.H. Effects of Astragalus Membranaceus, Codonopsis Pilosula and Allicin Mixture on Growth Performance, Nutrient Digestibility, Faecal Microbial Shedding, Immune Response and Meat Quality in Finishing Pigs. J. Anim. Physiol. Anim. Nutr. 2017, 101, 1122–1129. [Google Scholar] [CrossRef] [PubMed]
- Su, G.; Zhou, X.; Wang, Y.; Chen, D.; Chen, G.; Li, Y.; He, J. Effects of Plant Essential oil Supplementation on Growth Performance, Immune Function and Antioxidant Activities in Weaned Pigs. Lipids Health Dis. 2018, 17, 139. [Google Scholar] [CrossRef]
- Ma, J.; Ma, H.; Liu, S.; Wang, J.; Wang, H.; Zang, J.; Long, S.; Piao, X. Effect of Mulberry Leaf Powder of Varying Levels on Growth Performance, Immuno-Antioxidant Status, Meat Quality and Intestinal Health in Finishing Pigs. Antioxidants 2022, 11, 2243. [Google Scholar] [CrossRef]
- Wang, M.; Wu, H.; Lu, L.; Jiang, L.; Yu, Q. Lactobacillus reuteri Promotes Intestinal Development and Regulates Mucosal Immune Function in Newborn Piglets. Front. Vet. Sci. 2020, 7, 42. [Google Scholar] [CrossRef]
- Yin, Z.; Wang, K.; Liu, Y.; Li, Y.; He, F.; Yin, J.; Tang, W. Lactobacillus johnsonii Improves Intestinal Barrier Function and Reduces Post-Weaning Diarrhea in Piglets: Involvement of the Endocannabinoid System. Animals 2024, 14, 493. [Google Scholar] [CrossRef]
- Luo, W.; Yin, Z.; Zhang, M.; Huang, X.; Yin, J. Dietary Lactobacillus delbrueckii Affects Ileal Bacterial Composition and Circadian Rhythms in Pigs. Animals 2024, 14, 412. [Google Scholar] [CrossRef] [PubMed]
- Nse Abasi, N.; Etim, E.E.; Offiong, A.; Mary, E.; Williams, L.E.A. Influence of Nutrition on Blood Parameters of Pigs. Am. J. Biol. Life Sci. 2014, 2, 46–52. [Google Scholar]
- Zhang, S.; Yu, B.; Liu, Q.; Zhang, Y.; Zhu, M.; Shi, L.; Chen, H. Assessment of Hematologic and Biochemical Parameters for Healthy Commercial Pigs in China. Animals 2022, 12, 2464. [Google Scholar] [CrossRef]
- Lan, R.; Tran, H.; Kim, I. Effects of Probiotic Supplementation in Different Nutrient Density Diets on Growth Performance, Nutrient Digestibility, Blood Profiles, Fecal Microflora and Noxious Gas Emission in Weaning Pig. J. Sci. Food Agric. 2017, 97, 1335–1341. [Google Scholar] [CrossRef]
- Long, S.; Piao, X. Effects of Dietary Forsythia Suspensa Extract Supplementation to Lactating Sows and Nursery Pigs on Post-Weaning Performance, Antioxidant Capacity, Nutrient Digestibility, Immunoglobulins, and Intestinal Health. J. Anim. Sci. 2021, 99, skab142. [Google Scholar] [CrossRef]
- Li, P.; Piao, X.; Ru, Y.; Han, X.; Xue, L.; Zhang, H. Effects of Adding Essential Oil to the Diet of Weaned Pigs on Performance, Nutrient Utilization, Immune Response and Intestinal Health. Asian-Australas. J. Anim. Sci. 2012, 25, 1617–1626. [Google Scholar] [CrossRef] [PubMed]
- Janacua-Vidales, H.; Peña-González, E.; Alarcon-Rojo, A.D.; Ortega-Gutiérrez, J.; Aguilar-Palma, N. Determination of Carcase Yield, Sensory and Acceptance of Meat from Male and Female Pigs with Dietary Supplementation of Oregano Essential Oils. Ital. J. Anim. Sci. 2019, 18, 668–678. [Google Scholar] [CrossRef]
- Han, M.; Yin, Y.; Gong, S.; Shi, H.; Li, Q.; Lian, X.; Duan, Y.; Li, F.; Guo, Q. Effects of Dietary Eucommia Ulmoides Leaf Extract Supplementation on Growth Performance, Meat Quality, Antioxidant Capacity, and Lipid Metabolism of Finishing Pigs. Antioxidants 2024, 13, 320. [Google Scholar] [CrossRef]
- Zhang, T.; Si, B.; Tu, Y.; Cui, K.; Zhou, C.; Diao, Q. Effect of Including Different Levels of Moringa (Moringa oleifera) Leaf Meal in the Diet of Finishing Pigs: Performance, Pork Quality, Fatty Acid Composition, and Amino Acid Profile. Czech J. Anim. Sci. 2019, 64, 141–149. [Google Scholar] [CrossRef]
- Chen, Z.; Xie, Y.; Luo, J.; Chen, T.; Xi, Q.; Zhang, Y.; Sun, J. Dietary Supplementation with Moringa oleifera and Mulberry Leaf Affects Pork Quality from Finishing Pigs. J. Anim. Physiol. Anim. Nutr. 2021, 105, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Karamucki, T.; Jakubowska, M.; Rybarczyk, A.; Gardzielewska, J. The Influence of Myoglobin on the Colour of Minced Pork Loin. Meat Sci. 2013, 94, 234–238. [Google Scholar] [CrossRef]
- Ngapo, T.M.; Fortin, J.; Martin, J.F. Do Pig Farmers Preferences Bias Consumer Choice for Pork? Response to Critique of the Pork Preference Studies. Meat Sci. 2010, 85, 788–791. [Google Scholar] [CrossRef] [PubMed]
- Simitzis, P.E.; Deligeorgis, S.G.; Bizelis, J.A.; Dardamani, A.; Theodosiou, I.; Fegeros, K. Effect of Dietary Oregano Oil Supplementation on Lamb Meat Characteristics. Meat Sci. 2008, 79, 217–223. [Google Scholar] [CrossRef]
- Li, T.S.; Liu, W.C.; Zhao, P.Y.; Kim, I.H. Evaluation of Essential Oil or/and Emulsifier in Low Energy Density Diets on Growth Performance, Nutrient Digestibility, Blood Cholesterol and Meat Quality in Finishing Pigs. Ital. J. Anim. Sci. 2017, 16, 624–630. [Google Scholar] [CrossRef]
- Campbell, J.M.; Crenshaw, J.D.; Polo, J. The Biological Stress of Early Weaned Piglets. J. Anim. Sci. Biotechnol. 2013, 4, 19. [Google Scholar] [CrossRef]
- Tang, X.; Xiong, K.; Fang, R.; Li, M. Weaning Stress and Intestinal Health of Piglets: A Review. Front. Immunol. 2022, 13, 1042778. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, X.; Huang, Z.; Chen, D.; Yu, B.; Chen, H.; Yu, J.; Yan, H.; Zheng, P.; Luo, Y. Dietary Dihydromyricetin Supplementation Enhances Antioxidant Capacity and Improves Lipid Metabolism in Finishing Pigs. Food Funct. 2021, 12, 6925–6935. [Google Scholar] [CrossRef]
- Giannenas, I.; Bonos, E.; Christaki, E.; Florou-Paneri, P. Chapter 6—Oregano: A Feed Additive with Functional Properties. In Handbook of Food Bioengineering; Holban, A.M., Grumezescu, A.M.B.T.-T.F., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 179–208. ISBN 978-0-12-811517-6. [Google Scholar]
- Wang, S.; Tang, C.; Li, J.; Wang, Z.; Meng, F.; Luo, G.; Xin, H.; Zhong, J.; Wang, Y.; Li, B.; et al. The Effects of Dietary Inclusion of Mulberry Leaf Powder on Growth Performance, Carcass Traits and Meat Quality of Tibetan Pigs. Animals 2022, 12, 2743. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, X.; Chen, D.; He, J.; Zheng, P.; Luo, Y.; Yu, B.; Huang, Z. Dietary Grape Seed Proanthocyanidin Extract Supplementation Improves Antioxidant Capacity and Lipid Metabolism in Finishing Pigs. Anim. Biotechnol. 2023, 34, 4021–4031. [Google Scholar] [CrossRef] [PubMed]
- Madeira, M.S.; Alfaia, C.M.; Lopes, P.A.; Pestana, J.; Coelho, D.; Fontes, C.M.G.A.; Prates, J.A.M. Ameliorating Pork Marbling and Quality with Novel Feeding Approaches. In Advances in Animal Health, Medicine and Production: A Research Portrait of the Centre for Interdisciplinary Research in Animal Health (CIISA); Freitas Duarte, A., Lopes da Costa, L., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 161–177. [Google Scholar]
- Fanalli, S.L.; da Silva, B.P.M.; Petry, B.; Santana, M.H.A.; Polizel, G.H.G.; Antunes, R.C.; de Almeida, V.V.; Moreira, G.C.M.; Luchiari Filho, A.L.; Coutinho, L.; et al. Dietary Fatty Acids Applied to Pig Production and Their Relation to the Biological Processes: A Review. Livest. Sci. 2022, 265, 105092. [Google Scholar] [CrossRef]
- Bengmark, S. Ecoimmunonutrition: A Challenge for the Third Millennium. Nutrition 1998, 14, 563–572. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The Importance of the Omega-6/Omega-3 Fatty Acid Ratio in Cardiovascular Disease and Other Chronic Diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef]
- Guasch-Ferré, M.; Babio, N.; Martínez-González, M.A.; Corella, D.; Ros, E.; Martín-Peláez, S.; Estruch, R.; Arós, F.; Gómez-Gracia, E.; Fiol, M.; et al. Dietary Fat Intake and Risk of Cardiovascular Disease and All-Cause Mortality in a Population at High Risk of Cardiovascular Disease. Am. J. Clin. Nutr. 2015, 102, 1563–1573. [Google Scholar] [CrossRef]
- Maki, K.C.; Dicklin, M.R.; Kirkpatrick, C.F. Saturated Fats and Cardiovascular Health: Current Evidence and Controversies. J. Clin. Lipidol. 2021, 15, 765–772. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Yang, F.; McClements, D.J.; Guo, Y.; Liu, R.; Chang, M.; Wei, W.; Jin, J.; Wang, X. Impact of Dietary N-6/n-3 Fatty Acid Ratio of Atherosclerosis Risk: A Review. Prog. Lipid Res. 2024, 95, 101289. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. Omega-6/Omega-3 Essential Fatty Acid Ratio and Chronic Diseases. Food Rev. Int. 2004, 20, 77–90. [Google Scholar] [CrossRef]
- Ma, X.; Jiang, Z.; Lai, C. Significance of Increasing N-3 PUFA Content in Pork on Human Health. Crit. Rev. Food Sci. Nutr. 2016, 56, 858–870. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Becerra, K.; Barron-Cabrera, E.; Muñoz-Valle, J.F.; Torres-Castillo, N.; Rivera-Valdes, J.J.; Rodriguez-Echevarria, R.; Martinez-Lopez, E. A Balanced Dietary Ratio of N-6:N-3 Polyunsaturated Fatty Acids Exerts an Effect on Total Fatty Acid Profile in RBCs and Inflammatory Markers in Subjects with Obesity. Healthcare 2023, 11, 2333. [Google Scholar] [CrossRef]
- Department of Health. Nutritional Aspects of Cardiovascular Disease; Report on Health and Social Subjects No. 46; Her Majesty’s Stationery Office: London, UK, 1994; ISBN 0113218753. [Google Scholar]
- Ratusz, K.; Symoniuk, E.; Wroniak, M.; Rudzińska, M. Bioactive Compounds, Nutritional Quality and Oxidative Stability of Cold-Pressed Camelina (Camelina sativa L.) Oils. Appl. Sci. 2018, 8, 2606. [Google Scholar] [CrossRef]
- Ahmed, S.T.; Islam, M.M.; Bostami, A.B.M.R.; Mun, H.S.; Kim, Y.J.; Yang, C.J. Meat Composition, Fatty Acid Profile and Oxidative Stability of Meat from Broilers Supplemented with Pomegranate (Punica granatum L.) by-Products. Food Chem. 2015, 188, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, H. Nutritional Indices for Assessing Fatty Acids: A Mini-Review. Int. J. Mol. Sci. 2020, 21, 5695. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Liu, Z.; Zhou, Y.; Wei, H.; Zhang, X.; Xia, M.; Deng, Z.; Zou, Y.; Jiang, S.; Peng, J. Effect of Oregano Essential Oil Supplementation to a Reduced-Protein, Amino Acid-Supplemented Diet on Meat Quality, Fatty Acid Composition, and Oxidative Stability of Longissimus Thoracis Muscle in Growing-Finishing Pigs. Meat Sci. 2017, 133, 103–109. [Google Scholar] [CrossRef] [PubMed]
Plant Material/Feed Additive | PM-A | PM-B |
---|---|---|
Oregano (Origanum vulgare subsp. hirtum) (Essential oil) * | 100 mL (25 mL methylcellulose/75 mL oil) | 200 mL (50 mL methylcellulose/150 mL oil) |
Rock samphire (Crithmum maritimum L.) (Essential oil) | 25 mL | 25mL |
Camelina (Camelina sativa L. Crantz) (Dried and flour form) | 0.5 kg | 0.5 kg |
Garlic (Allium sativum L.) (Dried and flour form) | 0.5 kg | 0.5 kg |
Garlic (Allium sativum L.) 1 | Oregano (Origanum vulgare subsp. hirtum) 1 | Rock Samphire (Crithmum maritimum L.) 1 | Camelina (Camelina sativa L. Crantz) 2 | ||||
---|---|---|---|---|---|---|---|
Compound | % | Compound | % | Compound | % | FA | % |
Diallyl trisulfide | 58.46 | Carvacrol | 78.72 | β-phellandrene | 28.01 | C11:0 (Undecanoic) | 0.01 |
Diallyl disulphide | 24.54 | p-cymene | 8.19 | Sabinene | 20.96 | C12:0 (Lauric) | 0.01 |
Diallyl tetrasulphide | 4.73 | γ-terpinene | 2.11 | γ-terpinene | 18.69 | C14:0 (Myristic) | 0.11 |
3-Vinyl-1,2-dithiocyclohex-5-ene | 0.64 | Myrcene | 1.64 | 1,8-cineol | 9.53 | C15:0 (Pentadecanoic) | 0.03 |
N,N-dimethyl-Ethanethioamide | 0.63 | β-caryophyllene | 1.27 | Thymol methyl ether | 4.07 | C16:0 (Palmitic) | 8.29 |
Allyl methyl trisulphide | 4.42 | α-terpinene | 1.01 | cis-β-ocimene | 3.68 | C16:1 (Palmitoleic) | 0.14 |
Dimethyl trisulphide | 1.25 | α-pinene | 0.98 | p-cymene | 3.55 | C17:0 (Heptadecanoic) | 0.05 |
Apiol | 0.26 | cis-sabinene hydrate | 0.62 | Terpinen-4-ol | 2.66 | C17:1 (cis-10-Heptadecenoic) | 0.05 |
(methylsulfinyl)(methylthio)-Methane | 0.24 | Terpinen-4-ol | 0.55 | α-pinene | 2.42 | C18:0 (Stearic) | 2.24 |
Carvacrol | 1.22 | α-thujene | 0.48 | α-terpinene | 1.64 | C18:1n9t (Elaidic) | 0.03 |
Epiglobulol | 0.18 | Borneol | 0.42 | Myrcene | 1.44 | C18:1n9c (Oleic) | 15.36 |
3-Vinyl-1,2-dithiocyclohex-4-ene | 0.17 | 1-octen-3-ol | 0.38 | α-terpinolene | 0.91 | C18:2n6t (Linolelaidic) | 0.01 |
Hinesol | 0.16 | α-humulene | 0.30 | α-thujene | 0.48 | C18:2n6c (Linoleic) | 22.31 |
Patchoulane | 0.15 | Thymol | 0.28 | α-phenalldrene | 0.44 | C18:3n6 (γ-Linolenic) | 0.00 |
p-Cymene | 0.14 | Limonene | 0.27 | trans-β-ocimene | 0.24 | C20:0 (Arachidic) | 1.11 |
1-Docosanol | 0.12 | Camphene | 0.25 | Allo-ocimene | 0.23 | C18:3n3 (a-Linolenic) | 34.54 |
3-(Methylthio)pent-4-yn-1-ol | 0.11 | Caryophyllene oxide | 0.24 | β-pinene | 0.20 | C20:1n9c (cis-11-Eicosenoic) | 11.14 |
D-Limonene | 0.09 | β-phellandrene | 0.23 | Bicyclogermacrene | 0.14 | C20:2 (cis-11,14-Eicossadienoic) | 1.59 |
Isobutyl isothiocyanate | 0.08 | α-phellandrene | 0.18 | cis-2-p-menthen-1-ol | 0.11 | C22:0 (Behenic) | 0.13 |
Linalool | 0.07 | β-pinene | 0.16 | α-terpineol | 0.08 | C20:4n6 (Arachidonic) | 1.00 |
cis-2-Thiabicyclo [3.3.0]Octane | 0.06 | α-terpinolene | 0.15 | β-caryophyllene | 0.08 | C22:1n9 (Erucic) | 1.50 |
Eucalyptol | 0.05 | δ-cadinene | 0.13 | Camphene | 0.07 | C22:2 (cis-13,16-Docosadienoic) | 0.09 |
Camphor | 0.05 | δ-3-carene | 0.10 | cis-sabinene hydrate | 0.07 | C20:5n3 (cis-5,8,11,14,17-Eicosapentaenoic) | 0.02 |
p-Cymen-7-ol | 0.05 | trans-β-farnesene | 0.10 | Caryophyllene oxide | 0.02 | C24:0 (Lignoceric) | 0.04 |
Linalyl butyrate | 0.04 | β-bisabolene | 0.10 | C24:1n9 (Nervonic) | 0.15 | ||
Butyl isothiocyanate | 0.02 | Germacrene D | 0.08 | Σ SFA (Total Saturated FA) | 12.07 | ||
1,8-cineol | 0.07 | Σ MUFA (Total Monounsaturated FA) | 28.38 | ||||
Σ PUFA (Total Polyunsaturated FA) | 56.83 |
Ingredients, % | CONT | PM-A | PM-B |
---|---|---|---|
Maize | 33.48 | 33.28 | 33.28 |
Barley | 34.80 | 34.80 | 34.80 |
Phytobiotic Mixture (PM) | 0.00 | 0.20 | 0.20 |
Soybean meal (47% CP) | 16.81 | 16.81 | 16.81 |
Fishmeal 62% CP | 3.00 | 3.00 | 3.00 |
Wheat middlings | 3.00 | 3.00 | 3.00 |
Soybean oil | 1.91 | 1.91 | 1.91 |
Vitamin and mineral premix 6% * | 6.00 | 6.00 | 6.00 |
Zinc oxide | 0.30 | 0.30 | 0.30 |
Benzoic acid | 0.30 | 0.30 | 0.30 |
Monocalcium phosphate | 0.20 | 0.20 | 0.20 |
Salt | 0.20 | 0.20 | 0.20 |
Total | 100.00 | 100.00 | 100.00 |
Calculated proximate analysis | |||
Digestible energy, MJ/kg | 14.18 | 14.18 | 14.18 |
Crude protein, % | 18.78 | 18.78 | 18.78 |
Dry matter, % | 88.31 | 88.31 | 88.31 |
Ash, % | 5.26 | 5.26 | 5.26 |
Crude fat, % | 5.00 | 5.00 | 5.00 |
Crude fiber, % | 3.41 | 3.41 | 3.41 |
ADF, % | 3.94 | 3.94 | 3.94 |
NDF, % | 11.25 | 11.25 | 11.25 |
Ca, % | 0.20 | 0.20 | 0.20 |
Total P, % | 0.43 | 0.43 | 0.43 |
Lysine, % | 1.11 | 1.11 | 1.11 |
Methionine + Cystine, % | 0.49 | 0.49 | 0.49 |
CONT | PM-A | PM-B | SEM | p-Value | |
---|---|---|---|---|---|
Body weight on day (kg) | |||||
1 | 8.38 | 8.40 | 8.16 | 0.943 | 0.571 |
20 | 14.56 | 14.19 | 14.28 | 0.185 | 0.752 |
43 | 26.89 | 26.55 | 27.15 | 0.330 | 0.754 |
Weight gain for days (kg) | |||||
1–20 | 6.19 | 5.79 | 6.12 | 0.176 | 0.632 |
20–43 | 12.33 | 12.37 | 12.87 | 0.276 | 0.712 |
1–43 | 18.51 | 18.15 | 18.98 | 0.331 | 0.573 |
Feed intake per group for days (kg) | |||||
1–20 | 169.7 | 161.6 | 166.9 | NA | NA |
20–43 | 283.18 | 290.36 | 283.44 | NA | NA |
1–43 | 452.88 | 451.96 | 450.34 | NA | NA |
FCR for days (g feed/g weight gain) | |||||
1–20 | 1.83 | 1.86 | 1.82 | NA | NA |
20–43 | 1.53 | 1.56 | 1.47 | NA | NA |
1–43 | 1.63 | 1.66 | 1.58 | NA | NA |
Carcass parameters | |||||
Carcass weight (kg) | 19.30 | 18.92 | 19.92 | 0.283 | 0.368 |
Carcass dressing percentage (%) | 67.67 | 66.67 | 67.50 | 0.004 | 0.505 |
CONT | PM-A | PM-B | SEM | p-Value | |
---|---|---|---|---|---|
Ileum microbes (Log10 CFU/g) | |||||
Total Aerobic Bacterial Count (TABC) | 6.99 a | 8.08 b | 7.21 ab | 0.201 | 0.044 |
Total Anaerobes | 7.146 | 7.795 | 7.265 | 0.190 | 0.374 |
Enterobacteriaceae | 5.24 b | 5.78 b | 4.69 a | 0.352 | 0.020 |
Enterococcaceae | 4.758 | 5.775 | 4.556 | 0.295 | 0.218 |
Lactobacillaceae | 6.795 | 6.684 | 6.660 | 0.183 | 0.959 |
Caecum microbes (Log10 CFU/g) | |||||
Total Aerobic Bacterial Count (TABC) | 8.545 | 7.882 | 8.644 | 0.189 | 0.072 |
Total Anaerobes | 8.394 | 8.071 | 8.209 | 0.148 | 0.689 |
Enterobacteriaceae | 7.27 b | 5.937 ab | 4.235 a | 0.446 | 0.004 |
Enterococcaceae | 5.071 | 5.146 | 4.801 | 0.257 | 0.872 |
Lactobacillaceae | 7.715 b | 6.88 a | 6.793 a | 0.138 | 0.013 |
CONT | PM-A | PM-B | ||||
---|---|---|---|---|---|---|
Isolated Bacteria/Ileum | Samples (%) | CountLog10 | Samples (%) | CountLog10 | Samples (%) | CountLog10 |
Enterococcus faecium | 8 (100%) | 5.44 | 8 (100%) | 6.53 | 8 (100%) | 4.65 |
Enterococcus hirae | 2 (25%) | 6.00 | - | - | - | - |
Escherichia coli | 8 (100%) | 6.06 | 8 (100%) | 7.10 | 8 (100%) | 5.52 |
Escherichia fergusonii | 4 (50%) | 4.71 | 6 (75%) | 7.02 | 2 (25%) | 4.38 |
Lactobacillus amylovorus | - | - | 2 (25%) | 7.00 | 2 (25%) | 7.85 |
Lactobacillus crispatus | - | - | 2 (25%) | 7.30 | - | - |
Lactobacillus gasseri | 4 (50%) | 7.18 | - | - | - | - |
Lactobacillus johnsonii | 2 (25%) | 5.48 | 2 (25%) | 7.08 | - | - |
Lactobacillus kitasatonis | - | - | 2 (25%) | 6.08 | 2 (25%) | 7.30 |
Lactobacillus ultunensis | - | - | 2 (25%) | 6.90 | - | - |
Ligilactobacillus murinus | 2 (25%) | 5.00 | - | - | - | - |
Ligilactobacillus salivarius | - | - | - | - | 2 (25%) | 6.95 |
Limosilactobacillus mucosae | 2 (25%) | 7.70 | - | - | 4 (50%) | 7.58 |
Limosilactobacillus reuteri | 8 (100%) | 7.14 | 8 (100%) | 7.55 | 6 (75%) | 6.80 |
Streptococcus alactolyticus | 4 (50%) | 8.22 | 4 (50%) | 7.70 | 2 (25%) | 5.70 |
Streptococcus hyointestinalis | 2 (25%) | 8.48 | 4 (50%) | 7.70 | 2 (25%) | 5.30 |
Streptococcus infantarius | - | - | 2 (25%) | 7.95 | - | - |
Streptococcus oralis | - | - | - | - | 2 (25%) | 7.85 |
Streptococcus pneumoniae | - | - | - | - | 2 (25%) | 3.70 |
CONT | PM-A | PM-B | ||||
Isolated bacteria/Caecum | Samples (%) | CountLog10 | Samples (%) | CountLog10 | Samples (%) | CountLog10 |
Enterococcus durans | - | - | - | 2 (25%) | 5.00 | |
Enterococcus faecium | 8 (100%) | 5.29 | 8 (100%) | 6.25 | 8 (100%) | 5.25 |
Escherichia coli | 8 (100%) | 7.58 | 8 (100%) | 6.14 | 8 (100%) | 4.79 |
Escherichia fergusonii | - | - | 4 (50%) | 5.01 | 2 (25%) | 4.30 |
Lactobacillus delbrueckii | - | - | 2 (25%) | 6.48 | - | |
Lactobacillus gasseri | - | - | - | 2 (25%) | 5.95 | |
Lactobacillus johnsonii | 2 (25%) | 7.00 | 4 (50%) | 6.93 | 2 (25%) | 6.00 |
Ligilactobacillus salivarius | - | - | - | 2 (25%) | 6.30 | |
Limosilactobacillus mucosae | 2 (25%) | 7.90 | 2 (25%) | 7.00 | 4 (50%) | 8.19 |
Limosilactobacillus reuteri | 8 (100%) | 7.65 | 8 (100%) | 6.74 | 8 (100%) | 7.01 |
Streptococcus alactolyticus | 8 (100%) | 8.62 | 8 (100%) | 7.99 | 8 (100%) | 7.72 |
Streptococcus hyointestinalis | - | - | 2 (25%) | 5.30 | - |
Hematological Parameters | CONT | PM-A | PM-B | SEM | p-Value |
WBC (103/μL) | 23.47 | 22.03 | 21.70 | 1.338 | 0.87 |
Lymphocytes (%) | 33.65 | 37.22 | 34.47 | 1.246 | 0.50 |
Monocytes (%) | 6.27 | 6.53 | 7.55 | 0.500 | 0.58 |
Granulocytes (%) | 61.12 | 55.62 | 56.63 | 1.431 | 0.27 |
RBC (106/μL) | 6.06 | 6.03 | 6.93 | 0.433 | 0.70 |
HCT (%) | 33.30 | 32.83 | 33.30 | 1.910 | 1.00 |
HB (g/dL) | 11.77 | 10.95 | 11.52 | 0.693 | 0.89 |
THR (m/mm3) | 271.17 | 277.67 | 287.17 | 10.007 | 0.811 |
Blood biochemical parameters | CONT | PM-A | PM-B | SEM | p-Value |
ALB (g/dL) | 3.33 | 3.08 | 3.28 | 0.150 | 0.796 |
ALP (UL) | 285.17 | 278.33 | 310.33 | 13.621 | 0.631 |
ALT (U/L) | 165.00 | 168.00 | 175.50 | 7.566 | 0.854 |
AST (U/L) | 129.00 | 125.50 | 133.33 | 5.775 | 0.86 |
CHOL (mg/dL) | 117.17 | 113.50 | 116.67 | 3.029 | 0.887 |
GLU (mg/dL) | 130.00 | 128.00 | 131.00 | 4.274 | 0.961 |
TBIL (mg/dL) | 2.12 | 1.90 | 2.35 | 1.332 | 0.378 |
TRIG (mg/dL) | 59.67 | 57.83 | 58.17 | 2.155 | 0.943 |
CONT | PM-A | PM-B | SEM | p-Value | |
---|---|---|---|---|---|
Shoulder meat (triceps brachii) chemical composition (%) | |||||
Collagen | 1.63 | 1.60 | 1.65 | 0.517 | 0.912 |
Fat | 6.09 | 6.27 | 6.23 | 0.229 | 0.953 |
Moisture | 74.16 | 75.66 | 74.62 | 0.443 | 0.379 |
Protein | 17.56 | 18.04 | 17.54 | 0.113 | 0.163 |
Ash | 1.10 | 1.06 | 1.11 | 0.304 | 0.776 |
pH | 5.82 | 5.85 | 5.85 | 0.231 | 0.841 |
Ham meat (biceps femoris) chemical composition (%) | |||||
Collagen | 1.34 | 1.43 | 1.24 | 0.3711 | 0.108 |
Fat | 6.04 | 6.14 | 6.14 | 0.1659 | 0.970 |
Moisture | 74.34 | 75.43 | 75.42 | 0.4642 | 0.628 |
Protein | 18.88 b | 18.15 a | 18.56 ab | 0.1189 | 0.028 |
Ash | 1.08 | 1.02 | 1.11 | 0.0247 | 0.361 |
pH | 5.68 | 5.78 | 5.61 | 0.0338 | 0.109 |
Belly meat (external abdominal) chemical composition (%) | |||||
Collagen | 1.86 | 1.85 | 1.81 | 0.445 | 0.920 |
Fat | 8.97 | 8.19 | 8.29 | 0.385 | 0.708 |
Moisture | 71.49 | 71.49 | 71.62 | 0.570 | 0.955 |
Protein | 17.11 | 17.06 | 17.16 | 0.141 | 0.954 |
Ash | 1.05 | 1.09 | 1.10 | 0.160 | 0.409 |
pH | 5.67 | 5.78 | 5.77 | 0.230 | 0.085 |
CONT | PM-A | PM-B | SEM | p-Value | |
---|---|---|---|---|---|
Shoulder meat (triceps brachii) color | |||||
L* | 62.74 | 62.06 | 61.10 | 0.322 | 0.105 |
a* | 10.30 a | 11.10 ab | 11.77 b | 0.228 | 0.020 |
b* | 9.34 | 9.87 | 9.60 | 0.169 | 0.464 |
Ham meat (biceps femoris) color | |||||
L* | 65.85 b | 62.66 a | 61.18 a | 0.689 | 0.008 |
a* | 9.01 a | 11.67 b | 12.09 b | 0.435 | 0.002 |
b* | 11.07 b | 9.88 a | 9.68 a | 0.220 | 0.011 |
Belly meat (external abdominal) color | |||||
L* | 64.41 a | 68.63 b | 66.38 ab | 0.674 | 0.026 |
a* | 11.42 b | 8.4 a | 9.3 a | 0.443 | 0.007 |
b* | 9.88 | 10.45 | 10.52 | 0.297 | 0.654 |
Day 4, MDA (ng/g) | CONT | PM-A | PM-B | SEM | p-Value |
Ham meat (biceps femoris) | 5.55 b | 4.35 a | 3.70 a | 0.25 | 0.003 |
Shoulder meat (triceps brachii) | 9.94 b | 7.365 ab | 5.27 c | 0.72 | 0.020 |
Belly meat (external abdominal) | 6.31 x | 4.71 y | 4.33 y | 0.39 | 0.085 |
Day 7, MDA (ng/g) | CONT | PM-A | PM-B | SEM | p-Value |
Ham meat (biceps femoris) | 22.69 y | 20.45 xy | 18.91 x | 0.69 | 0.073 |
Shoulder meat (triceps brachii) | 24.28 b | 19.50 a | 17.56 a | 1.14 | 0.036 |
Belly meat (external abdominal) | 28.88 b | 23.25 a | 22.51 a | 0.97 | 0.006 |
Shoulder Meat (Triceps Brachii) | CONT | PM-A | PM-B | SEM | p-Value |
---|---|---|---|---|---|
FA (%) | |||||
C8:0 (Caprylic | 0.01 | 0.01 | 0.01 | 0.002 | 0.808 |
C10:0 (Capric) | 0.04 a | 0.10 b | 0.07 ab | 0.008 | 0.005 |
C12:0 (Lauric) | 0.07 a | 0.10 b | 0.07 ab | 0.004 | <0.001 |
C14:0 (Myristic) | 1.72 b | 1.76 b | 1.53 a | 0.025 | 0.001 |
C14:1 (Myristoleic) | 0.02 | 0.02 | 0.01 | 0.002 | 0.321 |
C15:0 (Pentadecanoic) | 0.05 b | 0.03 a | 0.05 b | 0.003 | 0.003 |
C16:0 (Palmitic) | 27.46 xy | 27.69 y | 26.95 x | 0.144 | 0.092 |
C16:1 cis (Palmitoleic) | 2.70 c | 2.46 b | 1.97 a | 0.083 | 0.002 |
C17:0 (Heptadecanoic) | 0.37 ab | 0.20 a | 0.39 b | 0.057 | 0.014 |
C17:1 (cis-10 Heptadecenoic cis) | 0.22 a | 0.25 b | 0.31 c | 0.010 | <0.001 |
C18:0 (Stearic) | 11.05 a | 11.88 b | 12.96 c | 0.204 | <0.001 |
C18:1n-9t (Elaidic) | 0.12 b | 0.06 a | 0.07 a | 0.007 | <0.001 |
C18:1 cis n-9 (Oleic) | 39.18 b | 42.12 c | 38.03 a | 0.432 | <0.001 |
C18:2n-6t (Linolelaidic) | 0.02 | 0.02 | 0.03 | 0.002 | 0.233 |
C18:2 n-6c (Linoleic) | 14.85 b | 10.86 a | 15.17 b | 0.484 | <0.001 |
C18:3n-6 (γ-Linolenic) | 0.09 b | 0.08 b | 0.04 a | 0.005 | <0.001 |
C20:0 (Arachidic) | 0.04 a | 0.07 b | 0.11 c | 0.008 | <0.001 |
C18:3n-3 (a-Linolenic) | 0.78 b | 0.65 a | 0.93 c | 0.029 | <0.001 |
C20:1 cis n-9 (cis-11 Eicosenoic) | 0.22 a | 0.55 c | 0.39 b | 0.033 | <0.001 |
C21:0 (Henicosanoic) | 0.02 | 0.02 | 0.02 | 0.002 | 0.918 |
C20:2 cis n-6 (cis-11,14-Eicosadienoic) | 0.30 a | 0.37 b | 0.45 c | 0.016 | <0.001 |
C20:3 cis n-3 (cis-11-14-17-Eicosatrienoate) | 0.19 | 0.43 | 0.25 | 0.091 | 0.154 |
C20:4 cis n-6 (Arachidonic) | 0.73 c | 0.54 b | 0.36 a | 0.037 | <0.001 |
C23:0 (Tricosanoic) | 0.02 | 0.02 | 0.01 | 0.002 | 0.905 |
C20:5 cis n-3 (Cis-5,8,11,14,17-Eicosapentaenoic) | 0.02 | 0.02 | 0.02 | 0.002 | 0.926 |
C24:1n-9 (Nervonic) | 0.07 xy | 0.25 y | 0.06 x | 0.057 | 0.080 |
C22:6 cis n-3 (cis-4,7,10,13,16,19-Docosahexaenoic) | 0.03 | 0.04 | 0.03 | 0.003 | 0.419 |
Σ SFA (Total Saturated FA) | 40.84 a | 41.86 ab | 42.17 b | 0.227 | 0.033 |
Σ MUFA (Total Monounsaturated FA) | 42.53 b | 45.71 c | 40.84 a | 0.508 | <0.001 |
Σ PUFA (Total Polyunsaturated FA) | 17.00 b | 13.00 a | 17.29 b | 0.487 | <0.001 |
Σ n-3 (Total omega-3 FA) | 1.02 | 1.13 | 1.23 | 0.089 | 0.208 |
Σ n-6 (Total omega-6 FA) | 15.98 b | 11.87 a | 16.06 b | 0.483 | <0.001 |
Ratio n-6/n-3 FA | 15.82 | 12.25 | 13.91 | 0.822 | 0.236 |
PUFA/SFA | 0.42 b | 0.31 a | 0.41 b | 0.012 | <0.001 |
h/H c | 1.92 xy | 1.87 x | 1.94 y | 0.014 | 0.066 |
Belly Meat (External Abdominal) FA (%) | CONT | PM-A | PM-B | SEM | p-Value |
---|---|---|---|---|---|
C8:0 (Caprylic) | 0.02 | 0.02 | 0.02 | 0.003 | 0.649 |
C10:0 (Capric) | 0.14 b | 0.11 a | 0.12 a | 0.005 | 0.001 |
C12:0 (Lauric) | 0.12 | 0.10 | 0.10 | 0.003 | 0.220 |
C14:0 (Myristic) | 1.87 a | 1.91 a | 2.06 b | 0.025 | <0.001 |
C14:1 (Myristoleic) | 0.02 | 0.02 | 0.02 | 0.003 | 0.901 |
C15:0 (Pentadecanoic) | 0.05 | 0.04 | 0.04 | 0.003 | 0.191 |
C16:0 (Palmitic) | 30.88 a | 30.35 a | 32.51 b | 0.272 | <0.001 |
C16:1 cis (Palmitoleic) | 2.06 a | 2.24 b | 2.67 c | 0.067 | <0.001 |
C17:0 (Heptadecanoic) | 0.23 a | 0.29 b | 0.22 a | 0.009 | <0.001 |
C17:1 cis-10 (Heptadecenoic cis) | 0.15 a | 0.26 ab | 0.37 b | 0.055 | 0.001 |
C18:0 (Stearic) | 14.91 b | 11.85 a | 12.10 a | 0.357 | 0.002 |
C18:1n-9t (Elaidic) | 0.09 a | 0.21 b | 0.22 b | 0.015 | <0.001 |
C18:1 cis n-9 (Oleic) | 35.07 a | 35.98 b | 35.91 b | 0.161 | 0.024 |
C18:2n-6t (Linolelaidic) | 0.02 | 0.02 | 0.02 | 0.002 | 0.869 |
C18:2 n-6c (Linoleic) | 12.01 b | 13.40 c | 10.55 a | 0.290 | 0.001 |
C18:3n-6 (γ-Linolenic) | 0.04 b | 0.05 b | 0.03 a | 0.003 | 0.008 |
C20:0 (Arachidic) | 0.09 | 0.11 | 0.10 | 0.004 | 0.140 |
C18:3n-3 (a-Linolenic) | 0.70 | 0.77 | 0.75 | 0.014 | 0.175 |
C20:1 cis n-9 (cis-11-Eicosenoic) | 0.31 | 0.31 | 0.32 | 0.005 | 0.384 |
C21:0 (Henicosanoic) | 0.02 | 0.02 | 0.02 | 0.002 | 0.580 |
C20:2 cis n-6 (cis-11,14-Eicosadienoic) | 0.32 b | 0.32 b | 0.30 a | 0.005 | 0.015 |
C20:3 cis n-3 (cis-11-14-17-Eicosatrienoate) | 0.05 a | 0.07 b | 0.07 b | 0.004 | 0.023 |
C20:4 cis n-6 (Arachidonic) | 0.31 b | 0.50 c | 0.25 a | 0.026 | <0.001 |
C20:5 cis n-3 (Cis-5,8,11,14,17-Eicosapentaenoic) | 0.03 | 0.04 | 0.02 | 0.005 | 0.443 |
C24:1n-9 (Nervonic) | 0.05 b | 0.06 b | 0.04 a | 0.003 | 0.007 |
C22:6 cis n-3 (cis-4,7,10,13,16,19-Docosahexaenoic) | 0.02 | 0.04 | 0.03 | 0.004 | 0.428 |
Σ SFA (Total Saturated FA) | 48.47 c | 44.79 a | 47.27 b | 0.422 | <0.001 |
Σ MUFA (Total Monounsaturated FA) | 37.76 a | 39.08 b | 39.55b | 0.242 | 0.003 |
Σ PUFA (Total Polyunsaturated FA) | 13.50 b | 15.19 c | 12.00 a | 0.324 | 0.001 |
Σ n-3 (Total omega-3 FA) | 0.80 a | 0.91 b | 0.87 ab | 0.020 | 0.043 |
Σ n-6 (Total omega-6 FA) | 12.70 b | 14.28 c | 11.13 a | 0.319 | <0.001 |
Ratio n-6/n-3 FA | 16.13 b | 15.76 b | 12.87 a | 0.462 | 0.001 |
PUFA/SFA | 0.28 b | 0.34 c | 0.25 a | 0.009 | <0.001 |
h/H c | 1.48 b | 1.58 c | 1.38 a | 0.021 | <0.001 |
Ham Meat (Biceps Femoris) FA (%) | CONT | PM-A | PM-B | SEM | p-Value |
---|---|---|---|---|---|
C10:0 (Capric) | 0.09 a | 0.07 a | 0.11 b | 0.005 | <0.001 |
C12:0 (Lauric) | 0.12 | 0.11 | 0.11 | 0.003 | 0.338 |
C14:0 (Myristic) | 2.01 b | 1.69 a | 1.94 b | 0.036 | <0.001 |
C14:1 (Myristoleic) | 0.03 b | 0.01 a | 0.05 c | 0.004 | <0.001 |
C15:0 (Pentadecanoic) | 0.06 a | 0.04 a | 0.10 b | 0.007 | <0.001 |
C16:0 (Palmitic) | 28.83 b | 26.78 a | 28.99 b | 0.257 | 0.002 |
C16:1 cis (Palmitoleic) | 3.40 b | 3.22 ab | 3.13 a | 0.043 | 0.022 |
C17:0 (Heptadecanoic) | 0.27 a | 0.30 b | 0.30 b | 0.005 | 0.018 |
C17:1 cis-10 (Heptadecenoic cis) | 0.31 c | 0.25 a | 0.28 b | 0.007 | <0.001 |
C18:0 (Stearic) | 8.63 a | 8.69 a | 9.85 b | 0.160 | <0.001 |
C18:1n-9t (Elaidic) | 0.10 b | 0.11 b | 0.08 a | 0.006 | 0.019 |
C18:1 cis n-9 (Oleic) | 29.91 b | 33.67 c | 29.13 a | 0.492 | <0.001 |
C18:2n-6t (Linolelaidic) | 0.02 | 0.03 | 0.03 | 0.003 | 0.363 |
C18:2 n-6c (Linoleic) | 22.87 c | 20.87 a | 22.28 b | 0.211 | 0.001 |
C18:3n-6 (γ-Linolenic) | 0.05 a | 0.15 b | 0.20 c | 0.016 | <0.001 |
C20:0 (Arachidic) | 0.20 b | 0.06 a | 0.05 a | 0.017 | <0.001 |
C18:3n-3 (a-Linolenic) | 1.41 b | 1.22 a | 1.24 a | 0.022 | <0.001 |
C20:1 cis n-9 (cis-11-Eicosenoic) | 0.20 a | 0.28 b | 0.18 a | 0.012 | <0.001 |
C21:0 (Henicosanoic) | 0.03 | 0.02 | 0.03 | 0.003 | 0.133 |
C20:2 cis n-6 (cis-11,14-Eicosadienoic) | 0.41 b | 0.41 b | 0.36 a | 0.007 | 0.003 |
C20:3 cis n-3 (cis-11-14-17-Eicosatrienoate) | 0.19 b | 0.22 c | 0.17 a | 0.006 | <0.001 |
C20:4 cis n-6 (Arachidonic) | 1.01 a | 1.41 c | 1.12 b | 0.044 | <0.001 |
C20:5 cis n-3 (cis-5,8,11,14,17-Eicosapentaenoic) | 0.07 | 0.07 | 0.25 | 0.057 | 0.388 |
C22:6 cis n-3 (cis-4,7,10,13,16,19-Docosahexaenoic) | 0.17 | 0.17 | 0.17 | 0.003 | 0.962 |
Σ SFA (Total Saturated FA) | 40.25 b | 37.77 a | 41.48 c | 0.396 | <0.001 |
Σ MUFA (Total Monounsaturated FA) | 33.96 b | 37.55 c | 32.85 a | 0.499 | <0.001 |
Σ PUFA (Total Polyunsaturated FA) | 26.22 b | 24.55 a | 25.82 b | 0.198 | 0.019 |
Σ n-3 (Total omega-3 FA) | 1.85 | 1.68 | 1.83 | 0.056 | 0.418 |
Σ n-6 (Total omega-6 FA) | 24.37 b | 22.87 a | 24.00 b | 0.168 | 0.002 |
Ratio n-6/n-3 FA | 13.20 x | 13.66 y | 13.54 y | 0.288 | 0.052 |
PUFA/SFA | 0.65 b | 0.65 b | 0.62 a | 0.005 | 0.006 |
h/H c | 1.81 b | 2.04 c | 1.77 a | 0.029 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magklaras, G.; Tzora, A.; Bonos, E.; Zacharis, C.; Fotou, K.; Wang, J.; Grigoriadou, K.; Giannenas, I.; Jin, L.; Skoufos, I. Nutritional Use of Greek Medicinal Plants as Diet Mixtures for Weaned Pigs and Their Effects on Production, Health and Meat Quality. Appl. Sci. 2025, 15, 9696. https://doi.org/10.3390/app15179696
Magklaras G, Tzora A, Bonos E, Zacharis C, Fotou K, Wang J, Grigoriadou K, Giannenas I, Jin L, Skoufos I. Nutritional Use of Greek Medicinal Plants as Diet Mixtures for Weaned Pigs and Their Effects on Production, Health and Meat Quality. Applied Sciences. 2025; 15(17):9696. https://doi.org/10.3390/app15179696
Chicago/Turabian StyleMagklaras, Georgios, Athina Tzora, Eleftherios Bonos, Christos Zacharis, Konstantina Fotou, Jing Wang, Katerina Grigoriadou, Ilias Giannenas, Lizhi Jin, and Ioannis Skoufos. 2025. "Nutritional Use of Greek Medicinal Plants as Diet Mixtures for Weaned Pigs and Their Effects on Production, Health and Meat Quality" Applied Sciences 15, no. 17: 9696. https://doi.org/10.3390/app15179696
APA StyleMagklaras, G., Tzora, A., Bonos, E., Zacharis, C., Fotou, K., Wang, J., Grigoriadou, K., Giannenas, I., Jin, L., & Skoufos, I. (2025). Nutritional Use of Greek Medicinal Plants as Diet Mixtures for Weaned Pigs and Their Effects on Production, Health and Meat Quality. Applied Sciences, 15(17), 9696. https://doi.org/10.3390/app15179696