Analysis of Controller-Caused Aviation Accidents Based on Association Rule Algorithm and Bayesian Network
Abstract
1. Introduction
2. Research Methodology
2.1. HFACS Analytical Framework
2.2. Association Rule Mining
2.3. Determine the Structure of the Fault Tree
2.4. Bayesian Network Modeling
2.4.1. Bayesian Modeling of Fault Trees
2.4.2. Determining the Prior Probability Table for Bayesian Networks
3. Results and Discussion
3.1. Bayesian Network Forward Inference
3.2. Bayesian Network Reverse Inference
- Path 1: C31 and B23 → X9 → U21
- Path 2: C28, C29, and C25 → X7 → U16
- Path 3: C21 and A22 → X16 → U24
3.3. Sensitivity Analysis
3.4. Model Validation
4. Conclusions and Outlook
4.1. Conclusions
4.2. Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ATC | Air Traffic Control |
HFACS | Human Factors Analysis and Classification System |
FT-BN | Fault Tree Bayesian Network |
AR | Association Rules |
BN | Bayesian Network |
Appendix A
ID | Event | Event Type |
---|---|---|
1 | A310/C421, en route, northeast of Montréal Canada, 2018 | LOS |
2 | A319/C337, St Petersburg-Clearwater USA, 2021 | LB, LOS |
3 | A320 (2)/CRJX (2)/B738 (3)/A332, vicinity Madrid Barajas Spain, 2018 | LOS |
4 | A320/A320, en route, east of Nashik India, 2022 | LB, LOS, |
5 | A320/A320, en route, northeast of Surabaya Indonesia, 2018 | LOS |
6 | A320/B738, Barcelona, Spain, 2022 | LOS |
7 | A320/B738, vicinity Barcelona, Spain 2018 | LOS |
8 | A20N/A320, Amsterdam Netherlands, 2019 | RI |
9 | A20N/Vehicle, Lima Peru, 2022 | RI |
10 | A20N, en-route, northwest Colombia, 2022 | LOC |
11 | A319, Helsinki Finland, 2018 | AW |
12 | A320/DR40, Bordeaux, France, 2022 | RI |
13 | A320/E145, vicinity Barcelona Spain, 2019 | LOS |
14 | A320/E195, vicinity Brussels Belgium, 2018 | LOS |
15 | A320/P28A, Seville Spain, 2022 | RI |
16 | A320/Vehicle, London Gatwick UK, 2018 | RI |
17 | A320, Macau SAR China, 2018 (2) | RI |
18 | A320, Malé Maldives, 2018 | CFIF |
19 | A320, Sharjah UAE, 2018 | RI, RE |
20 | A320, Singapore Changi Singapore, 2021 | GND |
21 | A320, vicinity Karachi Pakistan, 2020 | LOC |
22 | A320, vicinity Paris CDG, France, 2022 | CFIT |
23 | A333/B738, Barcelona Spain, 2022 | RI |
24 | A333/C550, vicinity Madrid Barajas Spain, 2022 | LOS |
25 | A333/GL5T, Dubai UAE, 2024 | RI |
26 | A359, vicinity Paris Orly France, 2020 | LOS |
27 | AT75, vicinity Pokhara, Nepal, 2023 | LOC |
28 | AT76, Canberra Australia, 2019 | RI |
29 | B38M, en-route, northeast of Jakarta Indonesia, 2018 | LOC |
30 | B38M, Helsinki Finland, 2019 | RI |
31 | B712/CRJ7, vicinity Strasbourg France, 2019 | LOS |
32 | B734/Vehicle, Porto Portugal, 2021 | RI |
33 | B737/B738, vicinity Amsterdam Netherlands, 2018 | LOS |
34 | B737/B763, Austin USA, 2023 | LOS, RI |
35 | B738/A320, Edinburgh UK, 2018 | LOS |
36 | B738/A321, Venice Italy, 2022 | RI |
37 | B738/B738/B752, Birmingham UK, 2020 | RI |
38 | B738/B738, en-route, south of Écija Spain, 2019 | LOS |
39 | B738/B738, Malaga Spain, 2019 | RI |
40 | B738/B738, vicinity Sydney Australia, 2023 | LOS |
41 | B738/DV20, vicinity Reus Spain, 2019 | LOS |
42 | B738/E110, Brasilia Brazil, 2018 | RI |
43 | B738/E195, Sao Paulo Congonhas, Brasil, 2020 | RI, LOS |
44 | B738/E75L, San Diego USA, 2021 | RI |
45 | B738/GL5T, Hong Kong China, 2018 | RI |
46 | B738/Vehicle, Kansai, Japan, 2023 | RI |
47 | B738/Vehicle, Palma Spain, 2020 | RI |
48 | B738, Alicante Spain, 2018 | RI |
49 | B738, Amsterdam Netherlands, 2019 | RE |
50 | B738, Calicut (Kozhikode) India, 2020 | RE |
51 | B738, Kuusamo Finland, 2021 | LOC |
52 | B738, Lyon Saint-Exupéry France, 2019 | RI |
53 | B738, vicinity Palma de Mallorca, Spain, 2023 | LOC |
54 | B744/B773/B773, en-route, Delhi India, 2018 | LOS |
55 | B752, Keflavik Iceland, 2019 | CFIT |
56 | B752, Tulsa USA, 2022 | RI |
57 | B763/B737, Tel Aviv Israel, 2018 | GND |
58 | B763, Halifax NS Canada, 2019 | GND, RE |
59 | B772/B739, New York JFK USA, 2023 | RI |
60 | B773/E190, Toronto Canada, 2020 | RI |
61 | B788, en-route, northern UK, 2023 | LOC |
62 | B789/A332, vicinity Sydney Australia, 2022 | LOS |
63 | B789/B744, Amsterdam Netherlands, 2019 | GND |
64 | B78X/A320, Paris CDG France, 2020 | RI |
65 | B78X, vicinity Abu Dhabi UAE, 2020 | CFIT |
66 | C25A/Vehicle, Reykjavik Iceland, 2018 | RE |
67 | CL30/Vehicle, Subang Malaysia, 2019 | RI |
68 | CRJ2/DA40, en-route, east northeast of Sion, Switzerland, 2020 | LOS |
69 | CRJ2/Vehicles, Montréal Canada, 2019 | RI |
70 | CRJX, Nantes France, 2021 | CFIT |
71 | DH8D/P180, en-route, near Kelowna BC Canada, 2019 | LOS |
72 | DH8D, Belagavi India, 2021 | RI |
73 | DH8D, Kathmandu Nepal, 2018 | RE |
74 | E170/A320, vicinity Paris CDG France, 2020 | LOS, LOC |
75 | E170/C525, en-route, south of Auxerre France, 2022 | LB, LOS |
76 | E190/B738, Amsterdam Netherlands, 2018 | RI |
77 | E190, Comodoro Rivadavia Argentina, 2019 | RI |
78 | F100, Paraburdoo Australia, 2021 | CFIT |
79 | L410, Dubrovnik Croatia, 2018 | CFIT |
80 | MD83/AT76, Isfahan Iran, 2018 | RI |
81 | MD83, Port Harcourt Nigeria, 2018 | RE |
82 | SF34/PA27, Nassau Bahamas, 2018 | RI, LOS |
83 | SH36, Ndola Zambia, 2021 | RI |
84 | Vehicle, Singapore Changi Singapore, 2022 | RI |
85 | A320/A333, Shanghai Hongqiao China, 2016 | RI |
Abbreviation | Full Term | Description |
---|---|---|
LOS | Loss of Separation | Simultaneous infringement of both horizontal and vertical separation minima between airborne aircraft operating in controlled airspace, as prescribed by the competent ATS authority in accordance with ICAO standards. |
LB | Level Bust | Any unauthorized vertical deviation of ≥300 ft from the ATC-assigned flight level, or ≥200 ft within Reduced Vertical Separation Minima (RVSM) airspace, by an aircraft under radar or procedural control. |
RI | Runway Incursion | Any occurrence at an aerodrome involving the incorrect presence of an aircraft, vehicle, or person on the protected area of a surface designated for the landing and take-off of aircraft (ICAO definition). |
LOC | Loss of Control | An in-flight event in which an aircraft unintentionally departs from its intended flight envelope or attitude, potentially resulting in an unrecoverable flight condition; LOC-I is a leading cause of fatal aviation accidents. |
AW | Airworthiness Issue | Any condition in which an aircraft, engine, propeller, or component fails to conform to its approved type design or is otherwise in a state unfit for safe operation, as defined by ICAO Annex 8. |
CFIF | Controlled Flight Into Terrain | An accident or serious incident wherein an airworthy aircraft, under the complete control of the flight crew, is unintentionally flown into terrain, water, or an obstacle with no prior awareness of the impending collision. |
RE | Runway Excursion | A veer-off or overrun event in which an aircraft departs the lateral confines or the end of the runway surface during the take-off or landing phase, whether intentional or unintentional (ICAO). |
GND | Ground Operations Event | Any safety-relevant occurrence during aircraft handling, taxiing, or servicing on the airport movement area, excluding active-runway incursions, which poses a risk to personnel, aircraft, or facilities. |
Appendix B
HFCAS Level | Subcategory | Human Factors |
---|---|---|
A-Organizational Influence | A1-Resource Management | A11-Leaks in Equipment Resource Management |
A2-Organizational Climate | A21-Failure to Form an Effective Safety Culture in Control Units | |
A22-Failure to Put Risk Management Efforts in Place | ||
A3-Organizational Procedures | A31-Irrational Control Pre-planning | |
A32-Improvement of Risk Assessment Mechanisms | ||
A33-Improper Definition of Rights with Relevant Units | ||
B -Unsafe Supervision | B1-Inadequate Supervision | B11-Failure to Set Up Monitoring Seats as Required |
B2-Improper Planning | B21-Failure to Reasonably Assign Tasks | |
B22-Improper Flight Plans | ||
B23-Failure to Provide Adequate Controller Training | ||
B24-Improper Shift Matching | ||
B3-Failure to Correct Problems | B31-Monitoring Seats Failure to Detect Controller Erroneous Orders for Timely Correction | |
B32-Controllers Failure to Report Unsafe Trends in a Timely Manner | ||
B33 -Controller fails to correct pilot instruction recitation errors | ||
B4-Supervisory Violations | B41-Failure to supervise as required | |
C-Prerequisites for Unsafe Behavior | C1-Environmental Factors | C11-Equipment malfunctions resulting in poor ground-to-air communications |
C12-Weather Factors | ||
C13-Airfield Bird Damage | ||
C14-Airfield Design Defects | ||
C15-Mechanical Malfunctions | ||
C16-Crew Factors | ||
C17-Ground Handling Factors | ||
C2-Controller Status | C21-Physical/mental fatigue | |
C22-Improper distribution of the controller’s energy not effectively monitoring aircraft dynamics | ||
C23-High load | ||
C24-Misinterpretation of information | ||
C25-Forgotten information | ||
C26-Message confusion/Confusion of information about the aircraft | ||
C27-Misunderstanding of expectations | ||
C28-Negligence/laxity | ||
C29-Weak safety awareness | ||
C3-Controller factor | C31-Lack of experience in control | |
C32-Substandard English proficiency | ||
C33-Poor special case handling | ||
C34-Inadequate operational level | ||
C35-Lack of control qualification | ||
U-Unsafe behavior | U1-Errors in skills | U11-Improper handling of special cases |
U12-Lagging communication with military air traffic control | ||
U13-Erroneous landing/departure clearance | ||
U14-Mislocutionary error in issuing incorrect instructions | ||
U15-Existence of miscommunication with flight crews | ||
U16-Failure to take the necessary intervention measures | ||
U2-Errors in decision-making | U21-Improper allocation of aircraft spacing | |
U22-Improper sequencing scheme | ||
U23-Improper redeployment of flight conflicts | ||
U24-Improper transfer of control | ||
U25-Failure to make a timely decision | ||
U3-Incompliance with regulations | U31-Control terminology violation | |
U32-Failure to carry out a control transfer in accordance with the regulations | ||
U33-Violation of the work rules of the control room | ||
U34-Serious disciplinary violation |
Appendix C
Post-Term | Pre-Term | Support (%) | Confidence (%) | Post-Term | Pre-Term | Support (%) | Confidence (%) |
---|---|---|---|---|---|---|---|
U12 | A33 | 2.35 | 100.00 | U21 | B32 and A21 | 3.53 | 66.67 |
U15 | B33 | 2.35 | 100.00 | U23 | C26 and C16 | 3.53 | 66.67 |
U11 | C15 | 2.35 | 100.00 | U24 | C21 and C28 | 3.53 | 66.67 |
U22 | B11 | 3.53 | 100.00 | U16 | C25 and C16 | 3.53 | 66.67 |
U15 | C32 | 4.71 | 100.00 | U23 | C23 and C27 | 3.53 | 66.67 |
U12 | A33 and A22 | 2.35 | 100.00 | U23 | A11 and C12 | 3.53 | 66.67 |
U12 | A33 and C31 | 2.35 | 100.00 | U23 | A11 and C16 | 3.53 | 66.67 |
U12 | A22 and C31 | 2.35 | 100.00 | U11 | C33 and A31 | 3.53 | 66.67 |
U11 | C15 and C33 | 2.35 | 100.00 | U11 | C33 and B23 | 3.53 | 66.67 |
U11 | C15 and A31 | 2.35 | 100.00 | U13 | A31 and B31 | 3.53 | 66.67 |
U11 | C15 and B23 | 2.35 | 100.00 | U11 | A31 and B23 | 3.53 | 66.67 |
U22 | B11 and C24 | 2.35 | 100.00 | U21 | C21 and A21 | 3.53 | 66.67 |
U22 | B11 and C29 | 2.35 | 100.00 | U21 | A21 and C16 | 3.53 | 66.67 |
U11 | B22 and C12 | 2.35 | 100.00 | U21 | C12 and B23 | 3.53 | 66.67 |
U11 | B22 and C16 | 2.35 | 100.00 | U15 | B24 and A21 | 3.53 | 66.67 |
U21 | B32 and C21 | 2.35 | 100.00 | U23 | B31 and C16 | 3.53 | 66.67 |
U21 | B32 and C16 | 2.35 | 100.00 | U23 | C27 and C16 | 3.53 | 66.67 |
U22 | C24 and C29 | 2.35 | 100.00 | U13 | C27 and C31 | 5.88 | 60.00 |
U23 | C26 and B31 | 2.35 | 100.00 | U11 | C33 | 8.24 | 57.14 |
U15 | C32 and B21 | 2.35 | 100.00 | U13 | C17 | 8.24 | 57.14 |
U15 | C32 and B24 | 2.35 | 100.00 | U21 | C31 and B23 | 10.59 | 55.56 |
U15 | C32 and A21 | 2.35 | 100.00 | U24 | C25 | 11.76 | 50.00 |
U13 | C22 and C34 | 2.35 | 100.00 | U23 | B31 | 11.76 | 50.00 |
U13 | C22 and B23 | 2.35 | 100.00 | U23 | B24 | 11.76 | 50.00 |
U13 | C22 and C16 | 2.35 | 100.00 | U33 | B41 and A21 | 2.35 | 50.00 |
U23 | B21 and C34 | 2.35 | 100.00 | U25 | C11 and C12 | 4.71 | 50.00 |
U15 | B21 and A21 | 2.35 | 100.00 | U31 | C14 and C28 | 2.35 | 50.00 |
U23 | B21 and B31 | 2.35 | 100.00 | U31 | C14 and A21 | 2.35 | 50.00 |
U16 | C11 and C29 | 2.35 | 100.00 | U31 | C14 and B23 | 2.35 | 50.00 |
U13 | C24 and C34 | 2.35 | 100.00 | U23 | C14 and C28 | 2.35 | 50.00 |
U13 | C24 and A21 | 2.35 | 100.00 | U23 | C14 and A21 | 2.35 | 50.00 |
U24 | C25 and C21 | 4.71 | 100.00 | U23 | C14 and B23 | 2.35 | 50.00 |
U24 | C25 and A22 | 3.53 | 100.00 | U22 | A32 and C27 | 2.35 | 50.00 |
U24 | C21 and A22 | 3.53 | 100.00 | U22 | C22 and C31 | 2.35 | 50.00 |
U16 | C29 and C12 | 2.35 | 100.00 | U11 | B41 and A21 | 2.35 | 50.00 |
U16 | C29 and C16 | 2.35 | 100.00 | U31 | C29 and B23 | 2.35 | 50.00 |
U11 | C23 and A22 | 2.35 | 100.00 | U31 | C34 and C16 | 4.71 | 50.00 |
U23 | C23 and B24 | 2.35 | 100.00 | U23 | A32 and C27 | 2.35 | 50.00 |
U23 | C23 and A22 | 2.35 | 100.00 | U11 | C22 and C31 | 2.35 | 50.00 |
U23 | A11 and C33 | 2.35 | 100.00 | U15 | B21 and B24 | 4.71 | 50.00 |
U15 | C17 and A22 | 3.53 | 100.00 | U23 | B21 and B24 | 4.71 | 50.00 |
U13 | C17 and C27 | 2.35 | 100.00 | U16 | C11 and C12 | 4.71 | 50.00 |
U13 | C17 and C31 | 2.35 | 100.00 | U16 | C11 and C16 | 4.71 | 50.00 |
U13 | A31 and C25 | 2.35 | 100.00 | U24 | C29 and B23 | 2.35 | 50.00 |
U13 | A31 and C12 | 2.35 | 100.00 | U24 | C25 and C28 | 4.71 | 50.00 |
U23 | C34 and B31 | 2.35 | 100.00 | U24 | A22 and C28 | 4.71 | 50.00 |
U23 | C34 and B24 | 2.35 | 100.00 | U16 | C25 and C28 | 4.71 | 50.00 |
U13 | C34 and A21 | 2.35 | 100.00 | U16 | C28 and C16 | 4.71 | 50.00 |
U13 | C34 and B23 | 2.35 | 100.00 | U11 | C33 and C12 | 4.71 | 50.00 |
U21 | C21 and C16 | 2.35 | 100.00 | U11 | C33 and C16 | 4.71 | 50.00 |
U21 | B24 and C31 | 2.35 | 100.00 | U23 | C33 and C12 | 4.71 | 50.00 |
U21 | B24 and B23 | 2.35 | 100.00 | U23 | C33 and C16 | 4.71 | 50.00 |
U15 | A22 and B23 | 2.35 | 100.00 | U15 | C17 and C28 | 4.71 | 50.00 |
U13 | C25 and C12 | 2.35 | 100.00 | U15 | C17 and B23 | 4.71 | 50.00 |
U23 | B31 and B24 | 3.53 | 100.00 | U13 | C17 and C28 | 4.71 | 50.00 |
U13 | B31 and C12 | 2.35 | 100.00 | U13 | C17 and B23 | 4.71 | 50.00 |
U23 | B24 and C27 | 2.35 | 100.00 | U13 | C34 and C16 | 4.71 | 50.00 |
U23 | C26 | 4.71 | 75.00 | U21 | C31 and C12 | 4.71 | 50.00 |
U13 | C25 and B31 | 4.71 | 75.00 | U15 | A22 and C28 | 4.71 | 50.00 |
U23 | C23 | 8.24 | 71.43 | U15 | C28 and B23 | 4.71 | 50.00 |
U11 | B22 | 3.53 | 66.67 | U11 | C21 and C27 | 2.35 | 50.00 |
U21 | B32 | 3.53 | 66.67 | U13 | C21 and C27 | 2.35 | 50.00 |
U13 | B23 and C16 | 4.71 | 50.00 |
References
- Chen, M.; Zhang, Y.; Chen, Y. Review on civil aviation safety investment research. In Proceedings of the 2016 11th International Conference on Reliability, Maintainability and Safety (ICRMS), Hangzhou, China, 26–28 October 2016; IEEE: New York, NY, USA, 2016. [Google Scholar]
- Министерствo транспoрта Республики Казахстан, Кoмиссия пo расследoванию авиациoннoгo прoисшествия. Предварительный oтчет пo результатам расследoвания авиациoннoгo прoисшествия (Катастрoфа Embraer ERJ 190-100 IGW, рейс J2-8243)[R/OL]. Available online: https://www.gov.kz/uploads/2025/2/4/84f9ee83af415a658fc3d2830d317889_original.3875924.pdf (accessed on 25 December 2024).
- Aviation and Railway Accident Investigation Board. Aviation Accident Preliminary Report: HL8088 (B737-800) Belly Landing, Runway Overrun and Crash to Embankment[R/OL]. Available online: https://araib.molit.go.kr/LCMS/DWN.jsp?fold=airboard0201&fileName=HL8088+Preliminary+Report%281%29.pdf (accessed on 29 December 2024).
- National Transportation Safety Board (NTSB). Aviation Accident Preliminary Report: Mid-Air Collision Involving PSA Airlines Flight 5342 (CRJ700) and US Army UH-60L Helicopter (DCA25MA108) [R/OL]. Available online: https://data.ntsb.gov/carol-repgen/api/Aviation/ReportMain/GenerateNewestReport/199620/pdf (accessed on 29 January 2025).
- Aviation Safety Network. 2024 Haneda Airport Runway Crash [EB/OL]. Available online: https://asn.flightsafety.org/wikibase/349666 (accessed on 2 January 2024).
- Civil Aviation Administration of China (CAAC). Investigation Report on Runway Incursion Incident at Shanghai Hongqiao International Airport; CAAC: Beijing, China, 2017; Available online: https://skybrary.aero/accidents-and-incidents/a320-a333-shanghai-hongqiao-china-2016 (accessed on 11 October 2016).
- Isaac, A.; Shorrock, S.T.; Kirwan, B. Human error in European air traffic management: The HERA project. Reliab. Eng. Syst. Saf. 2002, 75, 257272. [Google Scholar] [CrossRef]
- Shappell, S.A.; Wiegmann, D.A. The Human Factors Analysis and Classification System--HFACS[J]. 2000. Available online: https://commons.erau.edu/cgi/viewcontent.cgi?article=1777&context=publication (accessed on 11 October 2016).
- Xu, R.; Luo, F.; Chen, G.; Zhou, F.; Abdulahi, E.W. Application of HFACS and grounded theory for identifying risk factors of air traffic controllers’ unsafe acts. Int. J. Ind. Ergon. 2021, 86, 103228. [Google Scholar] [CrossRef]
- Zhu, S.; Chen, J. A study on human errors of air traffic controllers based on HFACSAHP. J. Comput. Methods Sci. Eng. 2023, 23, 28672878. [Google Scholar] [CrossRef]
- Xu, R.; Luo, F. Research on simulation of risk control strategy for air traffic controllers’ unsafe acts. Saf. Sci. 2022, 151, 105728. [Google Scholar] [CrossRef]
- Xu, R.; Luo, F. Risk prediction and early warning for air traffic controllers’ unsafe acts using association rule mining and random forest. Saf. Sci. 2021, 135, 105125. [Google Scholar] [CrossRef]
- Li, Y.; Cheng, Z.; Yip, T.L.; Fan, X.; Wu, B. Use of HFACS and Bayesian network for human and organizational factors analysis of ship collision accidents in the Yangtze River. Marit. Policy Manag. 2022, 49, 1169–1183. [Google Scholar] [CrossRef]
- Xiao, Q.; Li, Y.; Luo, F.; Liu, H. Analysis and assessment of risks to public safety from unmanned aerial vehicles using fault tree analysis and Bayesian network. Technol. Soc. 2023, 73, 102229. [Google Scholar] [CrossRef]
- Chiremsel, Z.; Nait Said, R.; Chiremsel, R. Probabilistic fault diagnosis of safety instrumented systems based on fault tree analysis and Bayesian network. J. Fail. Anal. Prev. 2016, 16, 747–760. [Google Scholar] [CrossRef]
- Marcot, B.G.; Penman, T.D. Advances in Bayesian network modelling: Integration of modelling technologies. Environ. Model. Softw. 2019, 111, 386393. [Google Scholar] [CrossRef]
- Zhang, X.; Mahadevan, S. Bayesian network modeling of accident investigation reports for aviation safety assessment. Reliab. Eng. Syst. Saf. 2021, 209, 107371. [Google Scholar] [CrossRef]
- Shi, L.; Liu, Y.; Zhang, Y.; Liang, J. Datadriven bayesian network analysis of railway accident risk. IEEE Access 2024, 12, 38631–38645. [Google Scholar] [CrossRef]
- Sakar, C.; Toz, A.C.; Buber, M.; Koseoglu, B. Risk analysis of grounding accidents by mapping a fault tree into a Bayesian network. Appl. Ocean. Res. 2021, 113, 102764. [Google Scholar] [CrossRef]
- Kotsiantis, S.; Kanellopoulos, D. Association rules mining: A recent overview. GESTS Int. Trans. Comput. Sci. Eng. 2006, 32, 7182. [Google Scholar]
- Zhou, Y.; Li, C.; Ding, L.; Sekula, P.; Love, P.E.; Zhou, C. Combining association rules mining with complex networks to monitor coupled risks. Reliab. Eng. Syst. Saf. 2019, 186, 194208. [Google Scholar] [CrossRef]
- Hong, J.; Tamakloe, R.; Park, D. Application of association rules mining algorithm for hazardous materials transportation crashes on expressway. Accid. Anal. Prev. 2020, 142, 105497. [Google Scholar] [CrossRef]
- Stanton, N.A.; Li, W.C.; Harris, D. Ergonomics and human factors in aviation. Ergonomics 2019, 62, 131137. [Google Scholar] [CrossRef]
- Chen, F.; Shen, R.; Yang, S. Human Error Risk Assessment of Air Traffic Controllers Based on Pythagorean Fuzzy Set and Improved TOPSIS. J. Saf. Environ. 2021, 21, 2093–2100. [Google Scholar] [CrossRef]
- Agrawal, R.; Imieliński, T.; Swami, A. Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington, DC, USA, 25–28 May 1993; pp. 207–216. [Google Scholar]
- Xiao, Q.; Luo, F.; Li, Y.; Pan, D. Risk prediction and early warning of pilots’ unsafe behaviors using association rule mining and system dynamics. J. Air Transp. Manag. 2023, 110, 102422. [Google Scholar] [CrossRef]
- Li, X.; Chen, C.; Hong, Y.; Yang, F. Exploring hazardous chemical explosion accidents with association rules and Bayesian networks. Reliab. Eng. Syst. Saf. 2023, 233, 109099. [Google Scholar] [CrossRef]
- Lee, W.S.; Grosh, D.L.; Tillman, F.A.; Lie, C.H. Fault tree analysis, methods, and applications ߝ a review. IEEE Trans. Reliab. 1985, 34, 194203. [Google Scholar]
- Lan, H.; Ma, X.; Ma, L.; Qiao, W. Pattern investigation of total loss maritime accidents based on association rule mining. Reliab. Eng. Syst. Saf. 2023, 229, 108893. [Google Scholar] [CrossRef]
- Ruijters, E.; Stoelinga, M. Fault tree analysis: A survey of the stateoftheart in modeling, analysis and tools. Comput. Sci. Rev. 2015, 15, 2962. [Google Scholar] [CrossRef]
- Amirkhani, H.; Rahmati, M.; Lucas, P.J.F.; Hommersom, A. Exploiting experts’ knowledge for structure learning of Bayesian networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 39, 21542170. [Google Scholar] [CrossRef] [PubMed]
- Khakzad, N.; Khan, F.; Amyotte, P. Safety analysis in process facilities: Comparison of fault tree and Bayesian network approaches. Reliab. Eng. Syst. Saf. 2011, 96, 925932. [Google Scholar] [CrossRef]
- Sui, D.; Han, M.; Dong, X.; Wang, S. Study on the Cognitive Reliability of Air Traffic Controllers. J. Nanjing Univ. Aeronaut. Astronaut. 2007, 384–387. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, M. Study on the Impact of Control Sessions on Controller Fatigue Based on EEG Data. J. Saf. Sci. Technol. 2021, 31, 173–178. [Google Scholar]
- Zhang, R.; Liang, X. Research on Fatigue Detection Methods for Aviation Personnel. Comput. Eng. Appl. 2024, 60, 84–95. [Google Scholar] [CrossRef]
- Wang, L.; Ma, Y. Controller Scheduling Optimization Based on Sector Opening and Closing. Sci. Technol. Eng. 2024, 24, 1707–1714. [Google Scholar]
- Duan, C.; Hu, M.; Yang, L. Study on the Intelligent Scheduling Method for Controllers Based on Task Balance. Aviat. Comput. Technol. 2025, 55, 49–53+58. [Google Scholar]
- Chang, Z.; He, X.; Fan, H.; Guan, W.; He, L. Leverage Bayesian network and fault tree method on risk assessment of LNG maritime transport shipping routes: Application to the China–Australia route. J. Mar. Sci. Eng. 2023, 11, 1722. [Google Scholar] [CrossRef]
Post-Term | Pre-Term | Percent Support | Percent Confidence | Gain |
---|---|---|---|---|
U23 | C35 | 1.1765 | 100.0000 | 6.0714 |
U23 | C26 | 4.7059 | 75.0000 | 4.5536 |
U23 | C23 | 8.2353 | 71.4286 | 4.3367 |
U23 | B31 | 11.7647 | 50.0000 | 3.0357 |
U23 | B24 | 11.7647 | 50.0000 | 3.0357 |
U23 | B21 | 5.8824 | 40.0000 | 2.4286 |
Association Rule | Percent Support | Percent Confidence | Gain |
---|---|---|---|
C26 and C23→U23 | 1.1764 | 100.0000 | 6.0714 |
B21, B31 and B24→U23 | 2.3529 | 100.0000 | 6.0714 |
Event | Priori Probability | Event | Priori Probability |
---|---|---|---|
U14 | 1.1628 | U16 | 6.9767 |
U34 | 1.1628 | A11 | 6.9767 |
U32 | 1.1628 | C23 | 8.1395 |
C13 | 1.1628 | C33 | 8.1395 |
U33 | 1.1628 | C17 | 8.1395 |
C35 | 1.1628 | A31 | 8.1395 |
U12 | 2.3256 | C29 | 9.3023 |
A33 | 2.3256 | C34 | 10.4651 |
B33 | 2.3256 | U21 | 10.4651 |
C15 | 2.3256 | U15 | 12.7907 |
U25 | 3.4884 | C25 | 11.6279 |
B11 | 3.4884 | B31 | 11.6279 |
B22 | 3.4884 | U11 | 12.7907 |
C14 | 3.4884 | C21 | 12.7907 |
B32 | 3.4884 | B24 | 11.6279 |
U22 | 4.6512 | A22 | 12.7907 |
B41 | 4.6512 | C28 | 13.9535 |
C26 | 4.6512 | C27 | 16.2791 |
C32 | 4.6512 | C31 | 16.2791 |
U31 | 5.8140 | U23 | 16.2791 |
A32 | 4.6512 | U13 | 17.4419 |
C22 | 5.8140 | A21 | 18.6047 |
B21 | 5.8140 | C12 | 19.7674 |
C24 | 6.9767 | B23 | 23.2558 |
U24 | 6.9767 | C16 | 34.8837 |
C11 | 8.1395 |
A32 | C29 | C22 | Y | N |
---|---|---|---|---|
Y | Y | Y | 0.0003 | 0.9997 |
N | 0.0048 | 0.9952 | ||
N | Y | 0.0030 | 0.9970 | |
N | 0.0441 | 0.9559 | ||
N | Y | Y | 0.0060 | 0.9940 |
N | 0.0877 | 0.9123 | ||
N | Y | 0.0546 | 0.9454 | |
N | 0.2006 | 0.7994 |
X11 | X12 | B11 | Y | N |
---|---|---|---|---|
Y | Y | Y | 0.0008 | 0.9992 |
N | 0.0178 | 0.9822 | ||
N | Y | 0.0063 | 0.9937 | |
N | 0.1482 | 0.8518 | ||
N | Y | Y | 0.0036 | 0.9964 |
N | 0.0849 | 0.9151 | ||
N | Y | 0.0301 | 0.9699 | |
N | 0.2916 | 0.7084 |
Unsafe Behavior | Association Rule Support (%) | Bayesian Edge Probability (%) |
---|---|---|
U21 | 10.47 | 30.51 |
U16 | 6.98 | 28.41 |
U24 | 6.98 | 27.84 |
U33 | 1.16 | 26.84 |
U32 | 1.16 | 26.50 |
U23 | 16.28 | 26.01 |
U12 | 2.33 | 24.43 |
U34 | 1.16 | 22.59 |
U14 | 1.16 | 20.95 |
U13 | 17.44 | 20.08 |
U15 | 12.79 | 17.42 |
U11 | 12.79 | 13.62 |
U31 | 5.81 | 13.28 |
U25 | 3.49 | 9.52 |
U22 | 4.65 | 6.25 |
Parent Node | Child Node | Average | Maximum | Weighting |
---|---|---|---|---|
B11 | U22 | 0.679402 | 0.679402 | 0.679402 |
A33 | U12 | 0.228852 | 0.235704 | 0.228852 |
X8 | U16 | 0.213833 | 0.247061 | 0.213833 |
B23 | X9 | 0.198181 | 0.238372 | 0.198181 |
C26 | U14 | 0.176473 | 0.186217 | 0.176473 |
B32 | U21 | 0.17641 | 0.367788 | 0.17641 |
A21 | U34 | 0.172898 | 0.19186 | 0.172898 |
A21 | U32 | 0.159512 | 0.19186 | 0.159512 |
X17 | U33 | 0.15829 | 0.19186 | 0.15829 |
C35 | U23 | 0.157962 | 0.321531 | 0.157962 |
Evidence Node | Change in U22 Probability (%) | Evidence Node | Change in U22 Probability (%) |
---|---|---|---|
X11 | 29 | C22 | 16 |
X12 | 36 | B22 | 14 |
B11 | 46 | C24 | 18 |
A32 | 15 | C29 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, W.; Li, Y.; Jiang, Y.; Wang, R.; Feng, Y.; Xv, G. Analysis of Controller-Caused Aviation Accidents Based on Association Rule Algorithm and Bayesian Network. Appl. Sci. 2025, 15, 9690. https://doi.org/10.3390/app15179690
Pan W, Li Y, Jiang Y, Wang R, Feng Y, Xv G. Analysis of Controller-Caused Aviation Accidents Based on Association Rule Algorithm and Bayesian Network. Applied Sciences. 2025; 15(17):9690. https://doi.org/10.3390/app15179690
Chicago/Turabian StylePan, Weijun, Yinxuan Li, Yanqiang Jiang, Rundong Wang, Yujiang Feng, and Gaorui Xv. 2025. "Analysis of Controller-Caused Aviation Accidents Based on Association Rule Algorithm and Bayesian Network" Applied Sciences 15, no. 17: 9690. https://doi.org/10.3390/app15179690
APA StylePan, W., Li, Y., Jiang, Y., Wang, R., Feng, Y., & Xv, G. (2025). Analysis of Controller-Caused Aviation Accidents Based on Association Rule Algorithm and Bayesian Network. Applied Sciences, 15(17), 9690. https://doi.org/10.3390/app15179690