Efficient Three-Dimensional Marine Controlled-Source Electromagnetic Modeling Using Coordinate Transformations and Adaptive High-Order Finite Elements
Abstract
1. Introduction
2. Methodology
2.1. MCSEM Boundary Value Problem Under Coordinate Transformations
2.2. Adaptive High-Order Finite-Element Discretization
3. Numerical Experiments and Analysis
3.1. Application to Domain Compression
3.1.1. 1D Marine Hydrocarbon Scenario
3.1.2. 3D Anticline Trap with Bathymetry
3.2. Application to High-Resolution Models
3.2.1. Depth-Varying Seawater Conductivity Profile
3.2.2. Marlim R3D
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Key, K. Marine electromagnetic studies of seafloor resources and tectonics. Surv. Geophys. 2012, 33, 135–167. [Google Scholar] [CrossRef]
- Zhdanov, M.S.; Endo, M.; Yoon, D.; Čuma, M.; Mattsson, J.; Midgley, J. Anisotropic 3D inversion of towed-streamer electromagnetic data: Case study from the Troll West Oil Province. Interpretation 2014, 2, SH97–SH113. [Google Scholar] [CrossRef]
- Zhdanov, M.S.; Endo, M.; Cox, L.H.; Čuma, M.; Linfoot, J.; Anderson, C.; Black, N.; Gribenko, A.V. Three-dimensional inversion of towed streamer electromagnetic data. Geophys. Prospect. 2014, 62, 552–572. [Google Scholar] [CrossRef]
- Newman, G.A.; Commer, M.; Carazzone, J.J. Imaging CSEM data in the presence of electrical anisotropy. Geophysics 2010, 75, F51–F61. [Google Scholar] [CrossRef]
- Brown, V.; Hoversten, M.; Key, K.; Chen, J. Resolution of reservoir scale electrical anisotropy from marine CSEM data. Geophysics 2012, 77, E147–E158. [Google Scholar] [CrossRef]
- Cook, A.E.; Anderson, B.I.; Malinverno, A.; Mrozewski, S.; Goldberg, D.S. Electrical anisotropy due to gas hydrate-filled fractures. Geophysics 2010, 75, F173–F185. [Google Scholar] [CrossRef]
- Jaysaval, P.; Shantsev, D.V.; de la Kethulle de Ryhove, S.; Bratteland, T. Fully anisotropic 3-D EM modelling on a Lebedev grid with a multigrid pre-conditioner. Geophys. J. Int. 2016, 207, 1554–1572. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Han, B.; Lu, J. Impacts of complex geological structures on marine controlled-source electromagnetic responses. J. Appl. Geophys. 2020, 180, 104126. [Google Scholar] [CrossRef]
- Peng, R.; Hu, X.; Li, J.; Liu, Y. Finite element simulation of 3-D marine controlled source electromagnetic fields in anisotropic media with unstructured tetrahedral grids. Pure Appl. Geophys. 2020, 177, 4871–4882. [Google Scholar] [CrossRef]
- Jaysaval, P.; Shantsev, D.; de la Kethulle de Ryhove, S. Fast multimodel finite-difference controlled-source electromagnetic simulations based on a Schur complement approach. Geophysics 2014, 79, E315–E327. [Google Scholar] [CrossRef]
- Zhdanov, M.; Lee, S.; Yoshioka, K. Integral equation method for 3D modeling of electromagnetic fields in complex structures with inhomogeneous background conductivity. Geophysics 2006, 71, G333–G345. [Google Scholar] [CrossRef]
- Jahandari, H.; Farquharson, C. Finite-volume modelling of geophysical electromagnetic data on unstructured grids using potentials. Geophys. J. Int. 2015, 202, 1859–1876. [Google Scholar] [CrossRef]
- Cai, H.; Xiong, B.; Han, M.; Zhdanov, M. 3D controlled-source electromagnetic modeling in anisotropic medium using edge-based finite element method. Comput. Geosci. 2014, 73, 164–176. [Google Scholar] [CrossRef]
- Ren, Z.; Kalscheuer, T.; Greenhalgh, S.; Maurer, H. A finite-element-based domain-decomposition approach for plane wave 3D electromagnetic modeling. Geophysics 2014, 79, E255–E268. [Google Scholar] [CrossRef]
- Grayver, A.V.; Kolev, T.V. Large-scale 3D geoelectromagnetic modeling using parallel adaptive high-order finite element method. Geophysics 2015, 80, E277–E291. [Google Scholar] [CrossRef]
- Zhou, F.; Chen, H.; Tang, J.; Zhang, Z.; Yuan, Y.; Wu, Q. A comparison of A-phi formulae for three-dimensional geo-electromagnetic induction problems. J. Geophys. Eng. 2022, 19, 630–649. [Google Scholar] [CrossRef]
- Schwarzbach, C.; Börner, R.U.; Spitzer, K. Three-dimensional adaptive higher order finite element simulation for geo-electromagnetics—A marine CSEM example. Geophys. J. Int. 2011, 187, 63–74. [Google Scholar] [CrossRef]
- Qin, C.; Li, H.; Li, H.; Zhao, N. High-order finite-element forward-modeling algorithm for the 3D borehole-to-surface electromagnetic method using octree meshes. Geophysics 2024, 89, F61–F75. [Google Scholar] [CrossRef]
- Grayver, A.V.; Bürg, M. Robust and scalable 3-D geo-electromagnetic modelling approach using the finite element method. Geophys. J. Int. 2014, 198, 110–125. [Google Scholar] [CrossRef]
- Castillo-Reyes, O.; de la Puente, J.; García-Castillo, L.E.; Cela, J.M. Parallel 3-D marine controlled-source electromagnetic modelling using high-order tetrahedral Nédélec elements. Geophys. J. Int. 2019, 219, 39–65. [Google Scholar] [CrossRef]
- Ren, Z. New Developments in Numerical Modeling of Broadband Geo-Electromagnetic Fields. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2012. [Google Scholar]
- Ren, Z.; Kalscheuer, T.; Greenhalgh, S.; Maurer, H. A hybrid boundary element-finite element approach to modeling plane wave 3D electromagnetic induction responses in the Earth. J. Comput. Phys. 2014, 258, 705–717. [Google Scholar] [CrossRef]
- Bérenger, J.P. Perfectly Matched Layer (PML) for Computational Electromagnetics, 1st ed.; Synthesis Lectures on Computational Electromagnetics; Springer: Cham, Switzerland, 2007; pp. 1–117. [Google Scholar]
- Schwarzbach, C. Stability of Finite Element Solutions to Maxwell’s Equations in Frequency Domain. Ph.D. Thesis, Technische Universität Bergakademie Freiberg, Freiberg, Germany, 2009. [Google Scholar]
- Li, G.; Li, Y.; Han, B.; Liu, Z. Application of the perfectly matched layer in 3-D marine controlled-source electromagnetic modelling. Geophys. J. Int. 2018, 212, 333–344. [Google Scholar] [CrossRef]
- Liu, J.; Xiao, X.; Tang, J.; Ren, Z.; Huang, X.; Zhang, J. Fast 3-D controlled-source electromagnetic modeling combining UPML and rational Krylov method. IEEE Geosci. Remote Sens. Lett. 2022, 19, 3006505. [Google Scholar] [CrossRef]
- de la Kethulle de Ryhove, S.; Mittet, R. 3D marine magnetotelluric modeling and inversion with the finite-difference time-domain method. Geophysics 2014, 79, E269–E286. [Google Scholar] [CrossRef]
- Pendry, J.B.; Schurig, D.; Smith, D.R. Controlling electromagnetic fields. Science 2006, 312, 1780–1782. [Google Scholar] [CrossRef] [PubMed]
- Ozgun, O.; Kuzuoglu, M. Form invariance of Maxwell’s equations: The pathway to novel metamaterial specifications for electromagnetic reshaping. IEEE Antennas Propag. Mag. 2010, 52, 51–65. [Google Scholar] [CrossRef]
- Shyroki, D.M.; Ivinskaya, A.M.; Lavrinenko, A.V. Free-space squeezing assists perfectly matched layers in simulations on a tight domain. IEEE Antennas Wirel. Propag. Lett. 2010, 9, 389–392. [Google Scholar] [CrossRef]
- Kamm, J.; Becken, M.; Abreu, R. Electromagnetic modelling with topography on regular grids with equivalent materials. Geophys. J. Int. 2020, 220, 2021–2038. [Google Scholar] [CrossRef]
- Chen, H.; Xiong, B.; Lu, Y.; Jiang, Q.; Huang, L.; Zhou, S. Three-dimensional modeling of marine controlled source electromagnetic using a new high-order finite element method with an absorption boundary condition. IEEE Trans. Geosci. Remote Sens. 2023, 61, 2001909. [Google Scholar] [CrossRef]
- Weidelt, P. 3D conductivity models: Implications of electrical anisotropy. In Three-Dimensional Electromagnetics; Oristaglio, M., Spies, B., Eds.; Society of Exploration Geophysicists: Houston, TX, USA, 1999. [Google Scholar]
- Kottke, C.; Farjadpour, A.; Johnson, S.G. Perturbation theory for anisotropic dielectric interfaces, and application to subpixel smoothing of discretized numerical methods. Phys. Rev. E 2008, 77, 036611. [Google Scholar] [CrossRef]
- Schurig, D.; Pendry, J.B.; Smith, D.R. Calculation of material properties and ray tracing in transformation media. Opt. Express 2006, 14, 9794–9804. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Huang, Y.; Yang, W. An adaptive edge finite element method for electromagnetic cloaking simulation. J. Comput. Phys. 2013, 249, 216–232. [Google Scholar] [CrossRef]
- Rochlitz, R.; Seidel, M.; Börner, R.U. Evaluation of three approaches for simulating 3-D time-domain electromagnetic data. Geophys. J. Int. 2021, 227, 1980–1995. [Google Scholar] [CrossRef]
- Ren, Z.; Kalscheuer, T.; Greenhalgh, S.; Maurer, H. A goal-oriented adaptive finite-element approach for plane wave 3-D electromagnetic modelling. Geophys. J. Int. 2013, 194, 700–718. [Google Scholar] [CrossRef]
- Anderson, R.; Andrej, J.; Barker, A.; Bramwell, J.; Camier, J.S.; Cerveny, J.; Dobrev, V.; Dudouit, Y.; Fisher, A.; Kolev, T.; et al. MFEM: A modular finite element methods library. Comput. Math. Appl. 2021, 81, 42–74. [Google Scholar] [CrossRef]
- Si, H. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw. 2015, 41, 1–36. [Google Scholar] [CrossRef]
- Amestoy, P.R.; de la Kethulle de Ryhove, S.; L’Excellent, J.Y.; Moreau, G.; Shantsev, D.V. Efficient use of sparsity by direct solvers applied to 3D controlled-source EM problems. Comput. Geosci. 2019, 23, 1237–1258. [Google Scholar] [CrossRef]
- Streich, R.; Becken, M. Sensitivity of controlled-source electromagnetic fields in planarly layered media. Geophys. J. Int. 2011, 187, 705–728. [Google Scholar] [CrossRef]
- Davydycheva, S.; Frenkel, M.A. The impact of 3D tilted resistivity anisotropy on marine CSEM measurements. Lead. Edge 2013, 32, 1374–1381. [Google Scholar] [CrossRef]
- Zheng, Z.; Fu, Y.; Liu, K.; Xiao, R.; Wang, X.; Shi, H. Three-stage vertical distribution of seawater conductivity. Sci. Rep. 2018, 8, 9916. [Google Scholar] [CrossRef]
- Correa, J.L.; Menezes, P.T.L. Marlim R3D: A realistic model for controlled-source electromagnetic simulations — Phase 2: The controlled-source electromagnetic data set. Geophysics 2019, 84, E293–E299. [Google Scholar] [CrossRef]
- Werthmüller, D.; Rochlitz, R.; Castillo-Reyes, O.; Heagy, L. Towards an open-source landscape for 3-D CSEM modelling. Geophys. J. Int. 2021, 227, 644–659. [Google Scholar] [CrossRef]
- Liu, Z.; Yao, H.; Wang, F. Performance investigations of auxiliary-space Maxwell solver preconditioned iterative algorithm for controlled-source electromagnetic induction problems with electrical anisotropy. Geophys. Prospect. 2024, 72, 2861–2879. [Google Scholar] [CrossRef]
AFEM-CT-P2 | AFEM-P1 | AFEM-P2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
km3 | km3 | km3 | ||||||||||
Frequency (Hz) | 0.1 | 0.25 | 1 | 10 | 0.1 | 0.25 | 1 | 10 | 0.1 | 0.25 | 1 | 10 |
AFEM steps | 6 | 7 | 6 | 8 | 13 | 13 | 13 | 14 | 0 | 0 | 0 | 0 |
Elements | 373,568 | 375,050 | 218,112 | 192,130 | 3,298,259 | 2,909,945 | 2,655,371 | 2,674,748 | 1,787,181 | 1,787,181 | 1,787,181 | 1,787,181 |
DoFs | 2,384,808 | 2,391,656 | 1,393,634 | 1,225,292 | 3,830,210 | 3,381,016 | 3,086,587 | 3,109,081 | 11,323,722 | 11,323,722 | 11,323,722 | 11,323,722 |
CPU time (s) | 512 | 576 | 364 | 447 | 1665 | 1560 | 1495 | 1597 | – | – | – | – |
Memory (GB) | 82 | 81 | 43 | 36 | 118 | 94 | 75 | 68 | – | – | – | – |
AFEM-CT-P2 | AFEM-P1 | AFEM-P2 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
km3 | km3 | km3 | ||||||||||
Frequency (Hz) | 0.1 | 0.25 | 1 | 10 | 0.1 | 0.25 | 1 | 10 | 0.1 | 0.25 | 1 | 10 |
AFEM steps | 5 | 5 | 5 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Elements | 485,915 | 449,031 | 370,881 | 347,303 | 7,549,120 | 7,549,120 | 7,549,120 | 7,549,120 | 7,549,120 | 7,549,120 | 7,549,120 | 7,549,120 |
DoFs | 3,100,168 | 2,864,300 | 2,366,002 | 2,214,098 | 8,772,487 | 8,772,487 | 8,772,487 | 8,772,487 | 47,775,376 | 47,775,376 | 47,775,376 | 47,775,376 |
CPU time (s) | 708 | 667 | 605 | 677 | – | – | – | – | – | – | – | – |
Memory (GB) | 121 | 104 | 84 | 72 | – | – | – | – | – | – | – | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, F.; Cheng, S. Efficient Three-Dimensional Marine Controlled-Source Electromagnetic Modeling Using Coordinate Transformations and Adaptive High-Order Finite Elements. Appl. Sci. 2025, 15, 9626. https://doi.org/10.3390/app15179626
Wang F, Cheng S. Efficient Three-Dimensional Marine Controlled-Source Electromagnetic Modeling Using Coordinate Transformations and Adaptive High-Order Finite Elements. Applied Sciences. 2025; 15(17):9626. https://doi.org/10.3390/app15179626
Chicago/Turabian StyleWang, Feiyan, and Song Cheng. 2025. "Efficient Three-Dimensional Marine Controlled-Source Electromagnetic Modeling Using Coordinate Transformations and Adaptive High-Order Finite Elements" Applied Sciences 15, no. 17: 9626. https://doi.org/10.3390/app15179626
APA StyleWang, F., & Cheng, S. (2025). Efficient Three-Dimensional Marine Controlled-Source Electromagnetic Modeling Using Coordinate Transformations and Adaptive High-Order Finite Elements. Applied Sciences, 15(17), 9626. https://doi.org/10.3390/app15179626