Association Between Substitutions and Match Running Performance Under Five-Substitution Rule: Evidence from the 2022 FIFA World Cup
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Procedure
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MRP | Match running performance |
EMP | Entire match players |
RP | Replaced players |
SP | Substitute players |
TD | Relative total distance |
WJD | Relative walking and jogging distance |
LID | Relative low-intensity running distance |
MID | Relative mid-intensity running distance |
HID | Relative high-intensity running distance |
SD | Relative sprint distance |
Number of HIR | Relative number of high-intensity runs |
Number of sprints | Relative number of sprints |
LMM | Linear mixed model |
References
- Gabbett, T.J.; Nassis, G.P.; Oetter, E.; Pretorius, J.; Johnston, N.; Medina, D.; Rodas, G.; Myslinski, T.; Howells, D.; Beard, A.; et al. The athlete monitoring cycle: A practical guide to interpreting and applying training monitoring data. Br. J. Sport Med. 2017, 51, 1451–1452. [Google Scholar] [CrossRef]
- Rago, V.; Brito, J.; Figueiredo, P.; Costa, J.; Barreira, D.; Krustrup, P.; Rebelo, A. Methods to collect and interpret external training load using microtechnology incorporating GPS in professional football: A systematic review. Res. Sports Med. 2020, 28, 437–458. [Google Scholar] [CrossRef] [PubMed]
- Andrzejewski, M.; Konefal, M.; Chmura, P.; Kowalczuk, E.; Chmura, J. Match outcome and distances covered at various speeds in match play by elite German soccer players. Int. J. Perf. Anal. Sport 2016, 16, 817–828. [Google Scholar] [CrossRef]
- Andrzejewski, M.; Chmura, P.; Konefal, M.; Kowalczuk, E.; Chmura, J. Match outcome and sprinting activities in match play by elite German soccer players. J. Sports Med. Phys. Fit. 2018, 58, 785–792. [Google Scholar] [CrossRef]
- Gualtieri, A.; Rampinini, E.; Dello Iacono, A.; Beato, M. High-speed running and sprinting in professional adult soccer: Current thresholds definition, match demands and training strategies. A systematic review. Front. Sports Act. Living 2023, 5, 1116293. [Google Scholar] [CrossRef]
- Stolen, T.; Chamari, K.; Castagna, C.; Wisloff, U. Physiology of soccer—An update. Sports Med. 2005, 35, 501–536. [Google Scholar] [CrossRef]
- Aquino, R.; Machado, J.C.; Clemente, F.M.; Praça, G.M.; Gonçalves, L.G.C.; Melli-Neto, B.; Ferrari, J.V.S.; Vieira, L.H.P.; Puggina, E.F.; Carling, C. Comparisons of ball possession, match running performance, player prominence and team network properties according to match outcome and playing formation during the 2018 FIFA World Cup. Int. J. Perf. Anal. Sport 2019, 19, 1026–1037. [Google Scholar] [CrossRef]
- Bradley, P.S. ‘Setting the Benchmark’ Part 1: The Contextualised Physical Demands of Positional Roles in the FIFA World Cup Qatar 2022. Biol. Sport 2024, 41, 261–270. [Google Scholar] [CrossRef]
- Branquinho, L.; de França, E.; Teixeira, J.E.; Paiva, E.; Forte, P.; Thomatieli-Santos, R.V.; Ferraz, R. Relationship between key offensive performance indicators and match running performance in the FIFA Women’s World Cup 2023. Int. J. Perf. Anal. Sport 2024, 25, 580–594. [Google Scholar] [CrossRef]
- Plakias, S.; Michailidis, Y. Factors Affecting the Running Performance of Soccer Teams in the Turkish Super League. Sports 2024, 12, 196. [Google Scholar] [CrossRef]
- Modric, T.; Versic, S.; Stojanovic, M.; Chmura, P.; Andrzejewski, M.; Konefał, M.; Sekulic, D. Factors affecting match running performance in elite soccer: Analysis of UEFA Champions League matches. Biol. Sport 2023, 40, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Modric, T.; Versic, S.; Morgans, R.; Sekulic, D. Match running performance characterizing the most elite soccer match-play. Biol. Sport 2023, 40, 949–958. [Google Scholar] [CrossRef]
- Trewin, J.; Meylan, C.; Varley, M.C.; Cronin, J. The influence of situational and environmental factors on match-running in soccer: A systematic review. Sci. Med. Football. 2017, 1, 183–194. [Google Scholar] [CrossRef]
- Errekagorri, I.; Castellano, J.; Echeazarra, I.; Lago-Peñas, C. The effects of the Video Assistant Referee system (VAR) on the playing time, technical-tactical and physical performance in elite soccer. Int. J. Perf. Anal. Sport 2020, 20, 808–817. [Google Scholar] [CrossRef]
- Wei, X.B.; Shu, Y.; Liu, J.J.; Chmura, P.; Randers, M.B.; Krustrup, P. Analysing substitutions in recent World Cups and European Championships in male and female elite football—Influence of new substitution rules. Biol. Sport 2024, 41, 267–274. [Google Scholar] [CrossRef]
- Pan, P.Y.; Li, F.B.; Han, B.; Yuan, B.; Liu, T.B. Exploring the impact of professional soccer substitute players on physical and technical performance. BMC Sports Sci. Med. Rehabil. 2023, 15, 143. [Google Scholar] [CrossRef]
- Hills, S.P.; Barwood, M.J.; Radcliffe, J.N.; Cooke, C.B.; Kilduff, L.P.; Cook, C.J.; Russell, M. Profiling the Responses of Soccer Substitutes: A Review of Current Literature. Sports Med. 2018, 48, 2255–2269. [Google Scholar] [CrossRef]
- Dijkhuis, T.B.; Kempe, M.; Lemmink, K.A.P.M. Early Prediction of Physical Performance in Elite Soccer Matches-A Machine Learning Approach to Support Substitutions. Entropy 2021, 23, 952. [Google Scholar] [CrossRef]
- Sydney, M.G.; Wollin, M.; Chapman, D.; Ball, N.; Mara, J.K. Substitute running outputs in elite youth male soccer players: Less peak but greater relative running outputs. Biol. Sport 2023, 40, 241–248. [Google Scholar] [CrossRef]
- Castillo-Rodríguez, A.; González-Téllez, J.L.; Figueiredo, A.; Chinchilla-Minguet, J.L.; Onetti-Onetti, W. Starters and non-starters soccer players in competition: Is physical performance increased by the substitutions? BMC Sports Sci. Med. Rehabil. 2023, 15, 33. [Google Scholar] [CrossRef]
- García-Aliaga, A.; Martín-Castellanos, A.; Nieto, M.M.; Solana, D.M.; Resta, R.; del Campo, R.L.; Mon-López, D.; Refoyo, I. Effect of Increasing the Number of Substitutions on Physical Performance during Periods of Congested Fixtures in Football. Sports 2023, 11, 25. [Google Scholar] [CrossRef]
- Linke, D.; Link, D.; Lames, M. Football-specific validity of TRACAB’s optical video tracking systems. PLoS ONE 2020, 15, e0230179. [Google Scholar] [CrossRef] [PubMed]
- FIFA. Electronic Performance and Tracking Systems—Certified Systems; FIFA: Zürich, Switzerland, 2022. [Google Scholar]
- Wei, X.B.; Zhang, R.; Maitiniyazi, A.; Chmura, P.; Randers, M.B.; Krustrup, P. Running performance of substitutes in the FIFA World Cup after the change in substitution rule: Influence of match outcome, playing position and sex. Int. J. Perform. Anal. Sport 2024, 24, 666–680. [Google Scholar] [CrossRef]
- Ma, N. Analysis on ‘Overlength Additional Time’ of 2022 Qatar FIFA World Cup. Bull. Sport Sci. Technol. 2023, 31, 12–13+16. [Google Scholar]
- Steinskog, D.J.; Tjostheim, D.B.; Kvamsto, N.G. A cautionary note on the use of the Kolmogorov-Smirnov test for normality. Mon. Weather Rev. 2007, 135, 1151–1157. [Google Scholar] [CrossRef]
- Grabchak, M. How Do We Perform. A Paired -Test. When We Don’t Know How Pair? Am. Stat. 2023, 77, 127–133. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef]
- Bradley, P.S.; Lago-Peñas, C.; Rey, E. Evaluation of the Match Performances of Substitution Players in Elite Soccer. Int. J. Sports Physiol. 2014, 9, 415–424. [Google Scholar] [CrossRef]
- Lorenzo-Martínez, M.; Padrón-Cabo, A.; Rey, E.; Memmert, D. Analysis of Physical and Technical Performance of Substitute Players in Professional Soccer. Res. Q. Exerc. Sport 2021, 92, 599–606. [Google Scholar] [CrossRef]
- López-Valenciano, A.; Moreno-Perez, V.; López-Del Campo, R.; Resta, R.; Del Coso, J. The Five-substitution Option Enhances Teams’ Running Performance at High Speed in Football. Int. J. Sports Med. 2023, 44, 344–351. [Google Scholar] [CrossRef]
- Mohr, M.; Vigh-Larsen, J.F.; Krustrup, P. Muscle Glycogen in Elite Soccer—A Perspective on the Implication for Performance, Fatigue, and Recovery. Front. Sports Act. Living 2022, 4, 876534. [Google Scholar] [CrossRef] [PubMed]
- McLellan, C.P.; Lovell, D.I.; Gass, G.C. Markers of Postmatch Fatigue in Professional Rugby League Players. J. Strength Cond. Res. 2011, 25, 1030–1039. [Google Scholar] [CrossRef]
- Meyer, J.; Klatt, S. Additional substitutions in elite European football. Int. J. Sports Sci. Coach. 2024, 19, 769–778. [Google Scholar] [CrossRef]
- Bradley, P.S.; Archer, D.T.; Hogg, B.; Schuth, G.; Bush, M.; Carling, C.; Barnes, C. Tier-specific evolution of match performance characteristics in the English Premier League: It’s getting tougher at the top. J. Sports Sci. 2016, 34, 980–987. [Google Scholar] [CrossRef]
- Modric, T.; Versic, S.; Sekulic, D.; Liposek, S. Analysis of the Association between Running Performance and Game Performance Indicators in Professional Soccer Players. Int. J. Environ. Res. Public Health 2019, 16, 4032. [Google Scholar] [CrossRef]
- Wallace, J.L.; Norton, K.I. Evolution of World Cup soccer final games 1966–2010: Game structure, speed and play patterns. J. Sci. Med. Sport 2014, 17, 223–228. [Google Scholar] [CrossRef]
- Teixeira, J.E.; Leal, M.; Ferraz, R.; Ribeiro, J.; Cachada, J.M.; Barbosa, T.M.; Monteiro, A.M.; Forte, P. Effects of Match Location, Quality of Opposition and Match Outcome on Match Running Performance in a Portuguese Professional Football Team. Entropy 2021, 23, 973. [Google Scholar] [CrossRef]
- Augusto, D.; Brito, J.; Aquino, R.; Figueiredo, P.; Eiras, F.; Tannure, M.; Veiga, B.; Vasconcellos, F. Contextual Variables Affect Running Performance in Professional Soccer Players: A Brief Report. Front. Sports Act. Living 2021, 3, 778813. [Google Scholar] [CrossRef]
- Low, B.; Rein, R.; Raabe, D.; Schwab, S.; Memmert, D. The porous high-press? An experimental approach investigating tactical behaviours from two pressing strategies in football. J. Sports Sci. 2021, 39, 2199–2210. [Google Scholar] [CrossRef]
- Abreu, C.D.; Morales, J.C.P.; Greco, P.J.; Praça, G.M. Training defensive high-press in soccer: Physical and physiological responses to different small-sided games played by youth athletes. Int. J. Perform. Anal. Sport 2022, 22, 749–760. [Google Scholar] [CrossRef]
- Michailidis, Y.; Papadopoulos, P.; Mandroukas, A.; Metaxas, I.; Metaxas, T. The characteristics of counterattacks in the Spanish league (La Liga) in 2021–2022. J. Sports Med. Phys. Fit. 2024, 64, 37–44. [Google Scholar] [CrossRef]
- González-Rodenas, J.; Aranda-Malaves, R.; Tudela-Desantes, A.; Nieto, F.; Usó, F.; Aranda, R. Playing tactics, contextual variables and offensive effectiveness in English Premier League soccer matches. A multilevel analysis. PLoS ONE 2020, 15, e0226978. [Google Scholar] [CrossRef]
- González-Ródenas, J.; Aranda, R.; Aranda-Malaves, R. The effect of contextual variables on the attacking style of play in professional soccer. J. Hum. Sport Exerc. 2021, 16, 399–410. [Google Scholar] [CrossRef]
- Padrón-Cabo, A.; Rey, E.; Vidal, B.; García-Nuñez, J. Work-rate Analysis of Substitute Players in Professional Soccer: Analysis of Seasonal Variations. J. Human Kinet. 2018, 65, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Kobal, R.; Aquino, R.; Carvalho, L.; Serra, A.; Sander, R.; Gomes, N.; Concon, V.; Ramos, G.P.; Barroso, R. Does the Number of Substitutions Used during the Matches Affect the Recovery Status and the Physical and Technical Performance of Elite Women’s Soccer? Int. J. Environ. Res. Public Health 2022, 19, 11541. [Google Scholar] [CrossRef]
- Linke, D.; Link, D.; Weber, H.; Lames, M. Decline in Match Running Performance in Football is affected by an Increase in Game Interruptions. J. Sports Sci. Med. 2018, 17, 662–667. [Google Scholar]
- Zhao, Y.Q.; Zhang, H. Investigating the inter-country variations in game interruptions across the Big-5 European football leagues. Int. J. Perform. Anal. Sport 2021, 21, 180–196. [Google Scholar] [CrossRef]
- Liang, J.W.; Guo, Z.G. A quantitative study and impact analysis of the phenomenon of extra-long extra time at the Qatar World Cup in the context of the development of the FIFA extra time rule. In Proceedings of the 13th National Congress of Sport Science, Tianjin, China, 3–5 November 2023. [Google Scholar]
Type | Variables | Abbreviation | Definition | Unit |
---|---|---|---|---|
Independent variables | Substitutions | Total in-match number of substitutions (including concussion substitutions) | - | |
Dependent variables | Relative total distance | TD | Total distance covered per minute | m |
Relative walking and jogging distance | WJD | Speed range: 0–7 km·h−1 Distance covered per minute | m | |
Relative low-intensity running distance | LID | Speed range: 7–15 km·h−1 Distance covered per minute | m | |
Relative mid-intensity running distance | MID | Speed range: 15–20 km · h−1 Distance covered per minute | m | |
Relative high-intensity running distance | HID | Speed range: 20–25 km · h−1 Distance covered per minute | m | |
Relative sprint distance | SD | Speed range: ≥25 km · h−1 Distance covered per minute | m | |
Relative number of high-intensity runs | Number of HIR | Times of high-intensity running per minute | - | |
Relative number of sprints | Number of sprints | Times of sprints running per minute [24] | - | |
Covariates | Match stages | 1 = group stages 1; 2 = group stages 2; 3 = group stages 3; 4 = round of 16; 5 = quarter-finals; 6 = semi-finals; 7 = final/3rd place | - | |
Team quality | Elo-based ratings: https://eloratings.net/2022 (accessed on 26 April 2025) | - | ||
Opponent quality | - | |||
Match outcome | 1 = win; 0 = draw; −1 = loss | - | ||
Stoppage time | The seven main types of match interruptions covered are player substitutions, injury treatment, time wasting, disciplinary penalties, medical time-outs (hydration/cooling), VAR review delays, and other obvious delays in resuming play [25]. | min | ||
Possession | Possession control shows the percentage of time each team is in possession of the ball [10]. | % | ||
Formation | 1 = 5-3-2; 2 = 5-4-1; 3 = 4-3-3; 4 = 4-4-2; 5 = 4-5-1; 6 = 3-4-3; 7 = 3-5-2 | - | ||
Counterattack | Following a loss of possession of the ball, the out-of-possession team immediately aims to regain the ball through aggressive pressure on the opponent [10]. | % | ||
High press | The defensive team engages the opposition high up the pitch and attempts to aggressively apply defensive pressure against the attacking team [10]. | % |
Coefficients | SE | df | t Value | p | 95% CI | ||
---|---|---|---|---|---|---|---|
lower | upper | ||||||
Model 1 (TD) | |||||||
(Intercept) | 111.055 | 12.3517 | 88.91 | 8.99 | <0.001 | 86.51 | 135.60 |
Substitutions | 2.364 | 0.5020 | 93.79 | 4.71 | <0.001 | 1.37 | 3.36 |
[Results = −1] | −2.754 | 1.1954 | 87.75 | −2.30 | 0.024 | −5.13 | −0.38 |
[Results = 0] | −0.129 | 1.1281 | 84.55 | −0.12 | 0.909 | −2.37 | 2.11 |
[Results = 1] | − | − | − | − | − | − | − |
Stoppage time | −0.781 | 0.1217 | 100.78 | −6.42 | <0.001 | −1.02 | −0.54 |
Others | NS | ||||||
Model 2 (WJD) | |||||||
(Intercept) | 35.254 | 3.4502 | 86.33 | 10.22 | <0.001 | 28.40 | 42.11 |
[stage = 1] | −1.659 | 0.6530 | 81.54 | −2.54 | 0.013 | −2.96 | −0.36 |
[stage = 2] | −1.392 | 0.6641 | 81.90 | −2.10 | 0.039 | −2.71 | −0.07 |
[stage = 3] | −0.899 | 0.6608 | 81.36 | −1.36 | 0.178 | −2.21 | 0.42 |
[stage = 4] | −0.623 | 0.6830 | 81.58 | −0.91 | 0.364 | −1.98 | 0.74 |
[stage = 5] | 0.847 | 0.7473 | 80.38 | 1.13 | 0.26 | −0.64 | 2.33 |
[stage = 6] | −0.877 | 0.8184 | 77.20 | −1.07 | 0.287 | −2.51 | 0.75 |
[stage = 7] | − | − | − | − | − | − | − |
[Results = −1] | −0.919 | 0.3259 | 86.86 | −2.82 | 0.006 | −1.57 | −0.27 |
[Results = 0] | 0.164 | 0.3071 | 83.14 | 0.53 | 0.595 | −0.45 | 0.77 |
[Results = 1] | − | − | − | − | − | − | − |
Stoppage time | −0.071 | 0.0334 | 98.98 | −2.12 | 0.037 | −0.14 | 0.00 |
Possession % | 0.034 | 0.0170 | 102.02 | 2.02 | 0.046 | 0.00 | 0.07 |
High Press | −0.220 | 0.0466 | 98.54 | −4.73 | <0.001 | −0.31 | −0.13 |
Others | NS | ||||||
Model 3 (LID) | |||||||
(Intercept) | 49.220 | 8.2665 | 85.35 | 5.95 | <0.001 | 32.78 | 65.65 |
Substitutions | 1.543 | 0.3271 | 90.47 | 4.72 | <0.001 | 0.89 | 2.19 |
[stage = 1] | 3.212 | 1.5466 | 81.33 | 2.08 | 0.041 | 0.13 | 6.29 |
[stage = 2] | 1.566 | 1.5731 | 81.65 | 1.00 | 0.322 | −1.56 | 4.70 |
[stage = 3] | 2.926 | 1.5652 | 81.10 | 1.87 | 0.065 | −0.19 | 6.04 |
[stage = 4] | 0.652 | 1.6177 | 81.33 | 0.40 | 0.688 | −2.57 | 3.87 |
[stage = 5] | 1.922 | 1.7698 | 80.23 | 1.09 | 0.281 | −1.60 | 5.44 |
[stage = 6] | 0.584 | 1.9370 | 77.31 | 0.30 | 0.764 | −3.27 | 4.44 |
[stage = 7] | − | − | − | − | − | − | − |
Stoppage Time | −0.548 | 0.0786 | 99.53 | −6.97 | <0.001 | −0.70 | −0.39 |
Others | NS | ||||||
Model 4 (MID) | |||||||
(Intercept) | 18.567 | 4.1801 | 85.35 | 4.44 | <0.001 | 10.26 | 26.88 |
Substitutions | 0.357 | 0.1643 | 90.53 | 2.18 | 0.032 | 0.03 | 0.68 |
Stoppage Time | −0.125 | 0.0399 | 97.96 | −3.13 | 0.002 | −0.20 | −0.05 |
Counterattack | 0.378 | 0.1708 | 93.77 | 2.21 | 0.03 | 0.04 | 0.72 |
High Press | 0.224 | 0.0557 | 97.97 | 4.02 | <0.001 | 0.11 | 0.33 |
Others | NS |
Coefficients | SE | df | t Value | p | 95% CI | ||
---|---|---|---|---|---|---|---|
lower | upper | ||||||
Model 5 (HID) | |||||||
(Intercept) | 6.852 | 2.1705 | 92.18 | 3.16 | 0.002 | 2.54 | 11.16 |
Substitutions | 0.222 | 0.0928 | 98.44 | 2.39 | 0.019 | 0.04 | 0.41 |
High Press | 0.129 | 0.0310 | 101.82 | 4.16 | <0.001 | 0.07 | 0.19 |
Others | NS | ||||||
Model 6 (SD) | |||||||
(Intercept) | 1.331 | 1.0488 | 103.00 | 1.27 | 0.207 | −0.75 | 3.41 |
[stage = 1] | 0.613 | 0.2325 | 103.00 | 2.64 | 0.01 | 0.15 | 1.07 |
[stage = 2] | 0.727 | 0.2359 | 103.00 | 3.08 | 0.003 | 0.26 | 1.20 |
[stage = 3] | 0.506 | 0.2349 | 103.00 | 2.16 | 0.033 | 0.04 | 0.97 |
[stage = 4] | 0.480 | 0.2427 | 103.00 | 1.98 | 0.05 | 0.00 | 0.96 |
[stage = 5] | 0.618 | 0.2678 | 103.00 | 2.31 | 0.023 | 0.09 | 1.15 |
[stage = 6] | 0.728 | 0.2997 | 103.00 | 2.43 | 0.017 | 0.13 | 1.32 |
[stage = 7] | − | − | − | − | − | − | − |
[Results = −1] | −0.243 | 0.1149 | 103.00 | −2.12 | 0.037 | −0.47 | −0.02 |
[Results = 0] | 0.040 | 0.1086 | 103.00 | 0.37 | 0.714 | −0.18 | 0.26 |
[Results = 1] | − | − | − | − | − | − | − |
Counterattack | 0.127 | 0.0481 | 103.00 | 2.65 | 0.009 | 0.03 | 0.22 |
High Press | 0.035 | 0.0155 | 103.00 | 2.28 | 0.025 | 0.00 | 0.07 |
Others | NS | ||||||
Model 7 (number of HIR) | |||||||
(Intercept) | 1.5461 | 0.2928 | 86.48 | 5.28 | <0.001 | 0.96 | 2.13 |
Substitutions | 0.0375 | 0.0116 | 91.29 | 3.22 | 0.002 | 0.01 | 0.06 |
Stoppage Time | −0.0134 | 0.0028 | 98.74 | −4.75 | <0.001 | −0.02 | −0.01 |
Counterattack | 0.0303 | 0.0121 | 94.47 | 2.51 | 0.014 | 0.01 | 0.05 |
High Press | 0.0149 | 0.0039 | 98.48 | 3.78 | <0.001 | 0.01 | 0.02 |
Others | NS | ||||||
Model 8 (number of sprints) | |||||||
(Intercept) | 0.5755 | 0.1303 | 93.63 | 4.42 | <0.001 | 0.32 | 0.83 |
Substitutions | 0.0169 | 0.0057 | 102.86 | 2.95 | 0.004 | 0.01 | 0.03 |
[Results = −1] | −0.0313 | 0.0140 | 91.93 | −2.24 | 0.027 | −0.06 | 0.00 |
[Results = 0] | −0.0067 | 0.0132 | 93.22 | −0.51 | 0.611 | −0.03 | 0.02 |
[Results = 1] | − | − | − | − | − | − | − |
Stoppage Time | −0.0033 | 0.0013 | 95.26 | −2.49 | 0.014 | −0.01 | 0.00 |
Team quality | −0.0001 | 0.0000 | 38.00 | −2.79 | 0.008 | 0.00 | 0.00 |
High Press | 0.0074 | 0.0019 | 102.90 | 3.89 | <0.001 | 0.00 | 0.01 |
Others | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhai, Y. Association Between Substitutions and Match Running Performance Under Five-Substitution Rule: Evidence from the 2022 FIFA World Cup. Appl. Sci. 2025, 15, 9540. https://doi.org/10.3390/app15179540
Wang J, Zhai Y. Association Between Substitutions and Match Running Performance Under Five-Substitution Rule: Evidence from the 2022 FIFA World Cup. Applied Sciences. 2025; 15(17):9540. https://doi.org/10.3390/app15179540
Chicago/Turabian StyleWang, Jibing, and Yujia Zhai. 2025. "Association Between Substitutions and Match Running Performance Under Five-Substitution Rule: Evidence from the 2022 FIFA World Cup" Applied Sciences 15, no. 17: 9540. https://doi.org/10.3390/app15179540
APA StyleWang, J., & Zhai, Y. (2025). Association Between Substitutions and Match Running Performance Under Five-Substitution Rule: Evidence from the 2022 FIFA World Cup. Applied Sciences, 15(17), 9540. https://doi.org/10.3390/app15179540