Location Allocation of Corn Stover Pretreatment Facilities in South Korea Under an Agent-Based Simulation Framework
Abstract
1. Introduction
2. Background
2.1. Corn Stover Pretreating Methods for Bioethanol Production
2.2. Location-Allocation Problem and Solving Methods in a Bioethanol Supply Chain
3. Materials and Methods
3.1. Data Collection
3.2. Pretreatment Facility Module
3.2.1. Order Agent
3.2.2. Transport Agent
3.2.3. Pretreatment Agent
3.3. Optimization Module
4. Experiments
4.1. Scenario
4.2. Validation
4.3. Results
4.4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Sets | Description |
---|---|
A set of farms | |
A set of pretreatment facilities | |
A set of refineries | |
Parameters | Description |
Total demand of corn stover | |
Production quantity of gasoline at refinery r for | |
Total corn stover delivered to pretreatment facility p for | |
Production quantity at farm f for | |
Total pretreated corn stover supplied from pretreatment facility p for | |
Refinery capacity for | |
Total capital investment at pretreatment facility p for | |
Building cost | |
Equipment cost | |
Land cost at pretreatment facility p for | |
Total operational expenditure at pretreatment facility p for | |
Labor cost at pretreatment facility p for | |
Cost of pretreatment | |
Total transport cost | |
Transport cost per unit | |
Production rate of gasoline for domestic supply | |
Gasoline conversion rate from corn stover | |
Pretreatment conversion rate | |
Refinery conversion rate | |
Decision variables | Description |
; 1: exists; 0: does not exist | |
References
- Padder, S.A.; Khan, R.; Rather, R.A. Biofuel generations: New insights into challenges and opportunities in their microbe-derived industrial production. Biomass Bioenerg. 2024, 185, 107220. [Google Scholar] [CrossRef]
- EIA (US Energy Information Administration). Biofuels Explained. Available online: https://www.eia.gov/energyexplained/biofuels/ (accessed on 11 February 2025).
- Prasad, S.; Kumar, A.; Muralikrishna, K. Biofuels production: A sustainable solution to combat climate change. Indian J. Agric. Sci. 2014, 84, 1443–1452. [Google Scholar] [CrossRef]
- IEA (International Energy Agency). Renewables 2023; Transport Biofuels. Available online: https://www.iea.org/reports/renewables-2023/transport-biofuels (accessed on 11 February 2025).
- EPA (U.S. Environmental Protection Agency). Energy Policy Act. Available online: https://www.epa.gov/laws-regulations/summary-energy-policy-act (accessed on 14 January 2025).
- EPA (U.S. Environmental Protection Agency). Final Renewable Fuels Standards Rule for 2023, 2024, and 2025. Available online: https://www.epa.gov/renewable-fuel-standard-program/final-renewable-fuels-standards-rule-2023-2024-and-2025#rule-summary (accessed on 11 February 2025).
- Government of Brazil. Lula Enacts Fuel of the Future Law. Available online: https://www.gov.br/planalto/en/latest-news/2024/10/lula-enacts-fuel-of-the-future-law-201cbrazil-will-drive-the-worlds-largest-energy-revolution201d (accessed on 11 February 2025).
- Government of India. Cabinet Approves Amendments to the National Policy on Biofuels—2018. Available online: https://www.pib.gov.in/PressReleasePage.aspx?PRID=1826265 (accessed on 11 February 2025).
- Government of India. Crop Residue Management (CRM) Operational Guidelines. Available online: https://samarth.powermin.gov.in/content/policies/95f84b6e-217d-4bde-a7ff-701ed24d2aff.pdf (accessed on 14 January 2025).
- 2050 Carbon Neutrality and Green Growth Commission. National Strategy for Carbon Neutrality and Green Growth and the First National Basic Plan. Available online: https://www.2050cnc.go.kr/base/board/read?boardManagementNo=60&boardNo=2343&searchCategory=&page=2&searchType=&searchWord=&menuLevel=2&menuNo=96 (accessed on 14 January 2025).
- SFOC (Solution for Our Climate). No Good Oil to Burn: Biofuel Policy in South Korea. Available online: https://forourclimate.org/ko/research/460 (accessed on 4 March 2025).
- 2050 Carbon Neutrality and Green Growth Commission. Public-Private Partnership to Activate Eco-Friendly Biofuels. Available online: https://www.2050cnc.go.kr/base/board/read?boardManagementNo=43&boardNo=1025&page=4&searchCategory=&searchType=&searchWord=&menuLevel=2&menuNo=16 (accessed on 14 January 2025).
- Searle, S. Palm Oil Is the Elephant in the Greenhouse. Available online: https://theicct.org/palm-oil-is-the-elephant-in-the-greenhouse/ (accessed on 14 January 2025).
- Enerdata. Biofuel Evolution Perspectives. Available online: https://www.enerdata.net/publications/executive-briefing/biofuels-market-dynamics.html (accessed on 11 February 2025).
- Aghaei, S.; Alavijeh, M.K.; Shafiei, M.; Karimi, K. A comprehensive review on bioethanol production from corn stover: Worldwide potential, environmental importance, and perspectives. Biomass Bioenerg. 2022, 161, 106447. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, R.; Song, Y.; Miu, X.; Zhang, Q.; Qu, J.; Sun, Y. Enhanced enzymatic saccharification and ethanol production of corn stover via pretreatment with urea and steam explosion. Bioresour. Technol. 2023, 376, 128856. [Google Scholar] [CrossRef]
- Khan, M.F.S.; Akbar, M.; Xu, Z.; Wang, H. A review on the role of pretreatment technologies in the hydrolysis of lignocellulosic biomass of corn stover. Biomass Bioenerg. 2021, 155, 106276. [Google Scholar] [CrossRef]
- Zhang, J.; Mohammadi, M.; Gong, H.; Hodge, D.B.; Tumuluru, J.; da Costa Sousa, L.; Dale, B.; Balan, V. High throughput pretreatment of corn stover using compacted biomass with recycled ammonia (COBRA) process. Chem. Eng. J. 2025, 505, 159731. [Google Scholar] [CrossRef]
- Gu, Y.M.; Kim, S.; Sung, D.; Sang, B.-I.; Lee, J.H. Feasibility of continuous pretreatment of corn stover: A comparison of three commercially available continuous pulverizing devices. Energies 2019, 12, 1422. [Google Scholar] [CrossRef]
- Bioenergy International. REG Invests in European Feedstock Pretreatment Expansion. Available online: https://bioenergyinternational.com/reg-invests-in-european-feedstock-pretreatment-expansion/ (accessed on 14 January 2025).
- Valmet Forward. Valmet’s New Pilot Facility Is Now in Operation at Its Fiber Technology Center in Sundsvall, Sweden. Available online: https://www.valmet.com/media/news/press-releases/2021/valmets-new-pilot-facility-is-now-in-operation-at-its-fiber-technology-center-in-sundsvall-sweden/ (accessed on 14 January 2025).
- Kim, S.; Kim, Y.; On, Y.; So, J.; Yoon, C.Y.; Kim, S. Hybrid performance modeling of an agrophotovoltaic system in South Korea. Energies 2022, 15, 6512. [Google Scholar] [CrossRef]
- Kim, H.; Ahn, S.; Ulfarsson, G.F. Impacts of transportation and industrial complexes on establishment-level productivity growth in Korea. Transp. Policy 2021, 100, 89–97. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S. Hybrid simulation framework for the production management of an ethanol biorefinery. Renew. Sust. Energ. Rev. 2022, 155, 111911. [Google Scholar] [CrossRef]
- Fansuri, H.; Purwandari, U.; Putra, S.; Adhiksana, A.; Junianto, I.D.; Oktavian, R.; Cordiner, J. A review of the technological aspects and process optimization of bioethanol production from corn stover biomass: Pretreatment process, hydrolysis, fermentation, purification process, and future perspective. Environ. Qual. Manag. 2024, 34, e22336. [Google Scholar] [CrossRef]
- Yu, J.; Xu, Z.; Liu, L.; Chen, S.; Wang, S.; Jin, M. Process integration for ethanol production from corn and corn stover as mixed substrates. Bioresour. Technol. 2019, 279, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Prasad, A.; Sotenko, M.; Blenkinsopp, T.; Coles, S.R. Life cycle assessment of lignocellulosic biomass pretreatment methods in biofuel production. Int. J. Life Cycle Assess. 2016, 21, 44–50. [Google Scholar] [CrossRef]
- Kumari, D.; Singh, R. Pretreatment of lignocellulosic wastes for biofuel production: A critical review. Renew. Sust. Energ. Rev. 2018, 90, 877–891. [Google Scholar] [CrossRef]
- Behera, S.; Arora, R.; Nandhagopal, N.; Kumar, S. Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew. Sust. Energ. Rev. 2014, 36, 91–106. [Google Scholar] [CrossRef]
- Kumar, B.; Bhardwaj, N.; Agrawal, K.; Chaturvedi, V.; Verma, P. Current perspective on pretreatment technologies using lignocellulosic biomass: An emerging biorefinery concept. Fuel Process. Technol. 2020, 199, 106244. [Google Scholar] [CrossRef]
- Zabed, H.M.; Akter, S.; Yun, J.; Zhang, G.; Awad, F.N.; Qi, X.; Sahu, J. Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production. Renew. Sust. Energ. Rev. 2019, 105, 105–128. [Google Scholar] [CrossRef]
- Baral, N.R.; Shah, A. Comparative techno-economic analysis of steam explosion, dilute sulfuric acid, ammonia fiber explosion and biological pretreatments of corn stover. Bioresour. Technol. 2017, 232, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Osorio-González, C.S.; Hegde, K.; Brar, S.K.; Kermanshahipour, A.; Avalos-Ramírez, A. Challenges in lipid production from lignocellulosic biomass using Rhodosporidium sp.; A look at the role of lignocellulosic inhibitors. Biofuels Bioprod. Biorefin. 2019, 13, 740–759. [Google Scholar] [CrossRef]
- Eggeman, T.; Elander, R.T. Process and economic analysis of pretreatment technologies. Bioresour. Technol. 2005, 96, 2019–2025. [Google Scholar] [CrossRef]
- Taylor, M.J.; Alabdrabalameer, H.A.; Skoulou, V. Choosing physical, physicochemical and chemical methods of pre-treating lignocellulosic wastes to repurpose into solid fuels. Sustainability 2019, 11, 3604. [Google Scholar] [CrossRef]
- Bhatia, S.K.; Jagtap, S.S.; Bedekar, A.A.; Bhatia, R.K.; Patel, A.K.; Pant, D.; Banu, J.R.; Rao, C.V.; Kim, Y.-G.; Yang, Y.-H. Recent developments in pretreatment technologies on lignocellulosic biomass: Effect of key parameters, technological improvements, and challenges. Bioresour. Technol. 2020, 300, 122724. [Google Scholar] [CrossRef]
- Zhao, Y.; Damgaard, A.; Liu, S.; Chang, H.; Christensen, T.H. Bioethanol from corn stover—Integrated environmental impacts of alternative biotechnologies. Resour. Conserv. Recycl. 2020, 155, 104652. [Google Scholar] [CrossRef]
- Chen, H.; Liu, J.; Chang, X.; Chen, D.; Xue, Y.; Liu, P.; Lin, H.; Han, S. A review on the pretreatment of lignocellulose for high-value chemicals. Fuel Process. Technol. 2017, 160, 196–206. [Google Scholar] [CrossRef]
- Ng, R.T.; Maravelias, C.T. Design of biofuel supply chains with variable regional depot and biorefinery locations. Renew. Energy 2017, 100, 90–102. [Google Scholar] [CrossRef]
- Nazari, A.; Penazzi, S.; Ernst, A.; Dunstall, S.; Bryan, B.; Connor, J.; Nolan, M. An integrated model of land-use trade-offs and expanding agricultural processing centres. In Proceedings of the International Congress on Modelling and Simulation 2015: Partnering with Industry and the Community for Innovation and Impact Through Modelling, Broadbeach, Austrailia, 29 November–4 December 2015. [Google Scholar]
- Lin, C.-C.; Kang, J.-R.; Huang, G.-L.; Liu, W.-Y. Forest biomass-to-biofuel factory location problem with multiple objectives considering environmental uncertainties and social enterprises. J. Clean Prod. 2020, 262, 121327. [Google Scholar] [CrossRef]
- Ranisau, J.; Ogbe, E.; Traino, A.; Barbouti, M.; Elsholkami, M.; Elkamel, A.; Fowler, M. Optimization of biofuel production from corn stover under supply uncertainty in Ontario. Biofuel Res. J. 2017, 4, 721–729. [Google Scholar] [CrossRef]
- Habibi, F.; Asadi, E.; Sadjadi, S.J. A location-inventory-routing optimization model for cost effective design of microalgae biofuel distribution system: A case study in Iran. Energy Strateg. Rev. 2018, 22, 82–93. [Google Scholar] [CrossRef]
- Costa, Y.; Duarte, A.; Sarache, W. A decisional simulation-optimization framework for sustainable facility location of a biodiesel plant in Colombia. J. Clean Prod. 2017, 167, 174–191. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S.; Kiniry, J.R. Two-phase simulation-based location-allocation optimization of biomass storage distribution. Simul. Model. Pract. Theory 2018, 86, 155–168. [Google Scholar] [CrossRef]
- Singh, A.; Chu, Y.; You, F. Biorefinery supply chain network design under competitive feedstock markets: An agent-based simulation and optimization approach. Ind. Eng. Chem. Res. 2014, 53, 15111–15126. [Google Scholar] [CrossRef]
- Bai, Y.; Ouyang, Y.; Pang, J.-S. Biofuel supply chain design under competitive agricultural land use and feedstock market equilibrium. Energy Econ. 2012, 34, 1623–1633. [Google Scholar] [CrossRef]
- Winston, W.L. Operations Research: Applications and Algorithm; Thomson Learning, Inc.: Stanford, CT, USA, 2004. [Google Scholar]
- De Meyer, A.; Cattrysse, D.; Rasinmäki, J.; Van Orshoven, J. Methods to optimise the design and management of biomass-for-bioenergy supply chains: A review. Renew. Sust. Energ. Rev. 2014, 31, 657–670. [Google Scholar] [CrossRef]
- Helo, P.; Rouzafzoon, J. An agent-based simulation and logistics optimization model for managing uncertain demand in forest supply chains. Supply Chain Anal. 2023, 4, 100042. [Google Scholar] [CrossRef]
- Chan, W.K.V.; Son, Y.-J.; Macal, C.M. Agent-Based Simulation Tutorial-Simulation of Emergent Behavior and Differences between Agent-Based Simulation and Discrete-Event Simulation. In Proceedings of the 2010 Winter Simulations Conference (WSC), Baltimore, MD, USA, 5–8 December 2010. [Google Scholar]
- STEPI (Science and Technology Policy Institute). A Study on the Diffusion of New Technology and Knowledge Using Agent-Based Modeling. Available online: https://library.stepi.re.kr/%24/10110/contents/5998703 (accessed on 14 January 2025).
- KOSIS (Korean Statistical Information Service). Corn Production by Region in our South Korea—2023. Available online: https://kosis.kr/edu/visualStats/detail.do (accessed on 14 January 2025).
- Farm Energy. Corn Stover for Biofuel Production. Available online: https://farm-energy.extension.org/corn-stover-for-biofuel-production/ (accessed on 14 January 2025).
- Oil and gas Club. List of Refineries. Available online: https://www.oilandgasclub.com/worlds-largest-refineries (accessed on 14 January 2025).
- Hyundai Oilbank. Refining Business. Available online: https://www.hd-hyundaioilbank.co.kr/eng/business-domain/business/contentsid/650/index.do?linkTab (accessed on 14 January 2025).
- SK Seagate. Refining Buisness Areas. Available online: https://skseagate.skinnovation.com/view/seagate/abo/company/company01 (accessed on 14 January 2025).
- Open Data Portal. Domestic Petroleum Product Production Status. Available online: https://www.data.go.kr/data/15054601/fileData.do (accessed on 14 January 2025).
- KNOC (Korea National Oil Corporation). 2023 Domestic Oil Supply and Demand Statistics. Available online: https://www.knoc.co.kr/sub11/sub11_1.jsp?page=1&num=824&mode=view&field=&text=&bid=NEWS&ses=USERSESSION (accessed on 14 January 2025).
- KRCC (Korea Rural Community Corporation). Current Status of Agricultural Land Transaction Prices. Available online: https://www.fbo.or.kr/fmtd/flti/FltiList.do?menuId=060050 (accessed on 14 January 2025).
- KOSIS (Korean Statistical Information Service). Labor Cost. Available online: https://kosis.kr/search/search.do (accessed on 14 January 2025).
- Kwon, O.; Son, M.; Kim, J.; Han, J.-h. Organic waste derived bioethanol supply chain network: Multiobjective snapshot model with a real-Korea case study. J. Environ. Manag. 2023, 342, 118279. [Google Scholar] [CrossRef]
- Smith, W.A.; Wendt, L.M.; Bonner, I.J.; Murphy, J.A. Effects of storage moisture content on corn stover biomass stability, composition, and conversion efficacy. Front. Bioeng. Biotechnol. 2020, 8, 716. [Google Scholar] [CrossRef] [PubMed]
- Chundawat, S.P.; Venkatesh, B.; Dale, B.E. Effect of particle size based separation of milled corn stover on AFEX pretreatment and enzymatic digestibility. Biotechnol. Bioeng. 2007, 96, 219–231. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Damgaard, A.; Christensen, T.H. Bioethanol from corn stover—a review and technical assessment of alternative biotechnologies. Prog. Energy Combust. Sci. 2018, 67, 275–291. [Google Scholar] [CrossRef]
- KEA (Korea Energy Agency). Renewable Fuel Standard. Available online: https://www.knrec.or.kr/biz/introduce/new_policy/intro_rfs.do?gubun=A (accessed on 14 January 2025).
- Yoo, C.G.; Kim, H.; Lu, F.; Azarpira, A.; Pan, X.; Oh, K.K.; Kim, J.S.; Ralph, J.; Kim, T.H. Understanding the physicochemical characteristics and the improved enzymatic saccharification of corn stover pretreated with aqueous and gaseous ammonia. BioEnergy Res. 2016, 9, 67–76. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, J.; Xia, L. Comparison of four different chemical pretreatments of corn stover for enhancing enzymatic digestibility. Biomass Bioenerg. 2009, 33, 1381–1385. [Google Scholar] [CrossRef]
- Lau, M.W.; Gunawan, C.; Dale, B.E. The impacts of pretreatment on the fermentability of pretreated lignocellulosic biomass: A comparative evaluation between ammonia fiber expansion and dilute acid pretreatment. Biotechnol. Biofuels 2009, 2, 30. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Ding, W.; Chen, F.; Cheng, C.; Shao, Q. Effects of compositional changes of AFEX-treated and H-AFEX-treated corn stover on enzymatic digestibility. Bioresour. Technol. 2014, 155, 34–40. [Google Scholar] [CrossRef]
- Kim, S.; Mungle, S.; Son, Y.-J. An Agent-Based Simulation Approach for Dual Toll Pricing of Hazardous Material Transportation. In Proceedings of the 2013 Winter Simulations Conference (WSC), Washington DC, USA, 8–11 December 2013. [Google Scholar]
- Yang, Q.; Zhu, H.X. Supply chain coordination mechanism logistics cost optimization analysis. Adv. Mater. Res. 2013, 785, 1473–1476. [Google Scholar] [CrossRef]
- Santibañez-Aguilar, J.E.; Flores-Tlacuahuac, A.; Betancourt-Galvan, F.; Lozano-García, D.F.; Lozano, F.J. Facilities location for residual biomass production system using geographic information system under uncertainty. ACS Sustain. Chem. Eng. 2018, 6, 3331–3348. [Google Scholar] [CrossRef]
- Integrated Energy and Greenhouse Gas Information Platform. Oil Equivalent (Toe) and Emission Calculator. Available online: https://tips.energy.or.kr/popup/toe.do (accessed on 25 August 2025).
- Fu, H.; Zhang, H.; Yao, X.; Zhou, L.; Pan, G. Can corn stover bioethanol production substantially contribute to China’s carbon neutrality ambition? Resour. Conserv. Recyl. Adv. 2022, 15, 200111. [Google Scholar]
- 2050 Carbon Neutrality and Green Growth Commission. 2030 National Greenhouse Gas Reduction Target. Available online: https://www.2050cnc.go.kr/base/contents/view?contentsNo=59&menuLevel=2&menuNo=109 (accessed on 25 August 2025).
- Galvan, M.J.; Badin, F.; Cabrera, M.; Martinez, D.; Dantur, A. GHG emissions intensity analysis. Case study: Bioethanol plant with cogeneration and partial CO2 recovery. Energy Sustain. Dev. 2024, 83, 101598. [Google Scholar] [CrossRef]
Method | Physical | Chemical | Physicochemical | Biological |
---|---|---|---|---|
Techniques | Milling, Ultrasonic, Hydrothermal | Acid, Alkaline, Solvent | Steam explosion, Liquid hot water, Ammonia-based processing | Brown fungi, White fungi, Soft-rot fungi |
CO2 Emission (kg/kg of sugar) | - | 385 | 14.30 | - |
Cost (USD/liter) | - | 1.28 | 2.11 | 4.82 |
Bioethanol Yield (kg/ton) | - | 149–195 | 178–216 | 155 |
Time Consumption | 90 min–96 h | 20 min–90 min | 5 min–60 min | 90 min–30 days |
Additional Equipment | Milling machine | Reactors | Reactors | - |
Reference | Decision Variables | Methodologies | Case Study |
---|---|---|---|
Ng and Maravelias (2017) [39] | Regional depot location, Biorefinery location | MILP | United States |
Nazari et al. (2015) [40] | Facility location, Area allocation | MILP | Australia |
Lin et al. (2020) [41] | Biofuel plant location | MOLP | Taiwan |
Ranisau et al. (2017) [42] | Biorefinery location, Biomass and biofuel transportation volume | MILP | Canada |
Habibi et al. (2018) [43] | Distribution center location, Distribution center quantity, Inventory policy optimization for distribution centers | GA, SA, FA | Iran |
Costa et al. (2017) [44] | Siting of biodiesel manufacturing plants | Process Simulation, MILP | Colombia |
Kim et al. (2018) [45] | Siting of biomass storage centers, Biomass transportation volume | ABS | United States |
Singh et al. (2014) [46] | Siting of biorefineries, Biorefinery capacity optimization | ABS, GA | United States |
Site | Latitude (°N) | Longitude (°W) | Corn Quantity (ton) | Corn Stover Quantity (ton) |
---|---|---|---|---|
Gyeonggi | 37.27 | 127.44 | 11,636 | 11,636 |
Gangwon | 37.49 | 127.98 | 30,334 | 30,334 |
Chungbuk | 36.79 | 127.58 | 20,346 | 20,346 |
Chungnam | 36.89 | 126.65 | 2142 | 2142 |
Jeonbuk | 35.8 | 126.88 | 2783 | 2783 |
Jeonnam | 34.8 | 126.7 | 11,935 | 11,935 |
Gyeongbuk | 36.8 | 128.62 | 4060 | 4060 |
Gyeongnam | 35.32 | 128.26 | 6138 | 6138 |
Location | Latitude (°N) | Longitude (°W) | Capacity (kL) |
---|---|---|---|
Ulsan | 35.51 | 129.35 | 241,680 |
Yeosu | 34.85 | 127.71 | 116,070 |
Seosan | 37.00 | 126.40 | 109,710 |
Incheon | 37.51 | 126.66 | 43,725 |
Location | Land Cost (USD/m2/Year) | Labor Cost (USD/Year) |
---|---|---|
Gyeonggi | 186.03 | 193,231 |
Gangwon | 41.16 | 31,620 |
Chungbuk | 50.52 | 32,790 |
Chungnam | 46.6 | 41,514 |
Jeonbuk | 31.04 | 31,771 |
Jeonnam | 23.41 | 41,812 |
Gyeongbuk | 35.17 | 55,884 |
Gyeongnam | 50.31 | 54,864 |
Farm | Potential Pretreatment Facility Sites | |||||||
---|---|---|---|---|---|---|---|---|
Gyeonggi | Gangwon | Chungbuk | Chungnam | Jeonbuk | Jeonnam | Gyeongbuk | Gyeongnam | |
Gyeonggi | 47 | 127 | 88 | 131 | 204 | 342 | 161 | 302 |
Gangwon | 111 | 60 | 146 | 198 | 267 | 400 | 151 | 333 |
Chungbuk | 101 | 184 | 22 | 103 | 145 | 285 | 113 | 264 |
Chungnam | 83 | 191 | 99 | 33 | 165 | 267 | 239 | 340 |
Jeonbuk | 199 | 307 | 138 | 120 | 22 | 133 | 268 | 253 |
Jeonnam | 314 | 443 | 254 | 249 | 141 | 33 | 349 | 248 |
Gyeongbuk | 184 | 182 | 145 | 251 | 279 | 388 | 37 | 226 |
Gyeongnam | 340 | 385 | 248 | 302 | 186 | 223 | 197 | 51 |
Refinery | Potential Pretreatment Facility Sites | |||||||
---|---|---|---|---|---|---|---|---|
Gyeonggi | Gangwon | Chungbuk | Chungnam | Jeonbuk | Jeonnam | Gyeongbuk | Gyeongnam | |
Ulsan | 352 | 385 | 257 | 352 | 313 | 337 | 199 | 104 |
Yeosu | 321 | 450 | 261 | 269 | 152 | 140 | 288 | 131 |
Seosan | 108 | 221 | 127 | 63 | 183 | 285 | 261 | 367 |
Incheon | 60 | 142 | 165 | 133 | 241 | 365 | 253 | 396 |
Pretreatment Process Design | Types of Pretreatment Methods | Corn Stover Quantity (kg) | Pretreated Corn Stover (kg) | Bioethanol Yield (kg) |
---|---|---|---|---|
Acid | Chemical | 100 | 14.8 | 3.6 |
Alkaline | Chemical | 100 | 15.7 | 4.6 |
Solvent based | Chemical | 100 | 20.1 | 3.5 |
Steam explosion | Physicochemical | 100 | 16.2 | 2.9 |
Liquid hot water | Physicochemical | 100 | 12.9 | 4.1 |
Ammonia based | Physicochemical | 100 | 17.2 | 4.7 |
Fungi | Biological | 100 | 22.6 | 2.5 |
Combined | Physical, Chemical | 100 | 24.6 | 5.1 |
Simulated | Observed | t-Statistics | p-Value | |||
---|---|---|---|---|---|---|
Mean | Standard Deviation | Mean | Standard Deviation | |||
Paired t-test | 211.59 | 311.37 | 198.13 | 291.28 | 1.1364 | 0.3383 |
Category | 4% Blending Scenario | 8% Blending Scenario | |||||||
---|---|---|---|---|---|---|---|---|---|
Number of Pretreatment Facilities | Number of Pretreatment Facilities | ||||||||
1 | 2 | 4 | 8 | 1 | 2 | 4 | 8 | ||
Capital cost (million USD) | Land cost | 0.02 | 0.03 | 0.06 | 0.18 | 0.02 | 0.03 | 0.06 | 0.18 |
Building expenditure | 1.34 | 2.67 | 5.34 | 10.69 | 1.34 | 2.67 | 5.34 | 10.69 | |
Equipment expenditure | 0.96 | 1.93 | 3.86 | 7.72 | 0.96 | 1.93 | 3.86 | 7.72 | |
Operating cost (million USD) | Labor expenses | 1.37 | 1.35 | 1.69 | 2.53 | 2.75 | 2.70 | 2.89 | 5.07 |
Transport cost | 1.53 | 1.59 | 1.24 | 1.16 | 3.77 | 3.86 | 3.26 | 2.73 | |
Pretreatment expenditure | 1.08 | 1.08 | 1.08 | 1.08 | 2.16 | 2.16 | 2.16 | 2.16 | |
Total cost (million USD/year) | 6.30 | 8.65 | 13.27 | 23.36 | 11.00 | 13.35 | 17.57 | 28.55 |
Farm | 4% Blending Scenario | 8% Blending Scenario | ||||||
---|---|---|---|---|---|---|---|---|
Number of Pretreatment Facilities | Number of Pretreatment Facilities | |||||||
1 | 2 | 4 | 8 | 1 | 2 | 4 | 8 | |
Gangwon (ton) | - | 20,451 | 10,225 | 5113 | 30,334 | 30,334 | 27,124 | 22,763 |
Chungbuk (ton) | 20,346 | 20,346 | 10,225 | 9136 | 20,346 | 20,346 | 20,345 | 20,346 |
Gyeonggi (ton) | 11,636 | 105 | - | 5113 | 11,636 | 11,636 | 11,636 | 11,636 |
Gyeongnam (ton) | - | - | 6138 | 5113 | 6138 | 6138 | 5733 | 6138 |
Jeonnam (ton) | - | - | 10,254 | 7442 | 4364 | 4364 | 11,935 | 11,935 |
Gyeongbuk (ton) | 3995 | - | 4060 | 4060 | 4060 | 4060 | 105 | 4060 |
Jeonbuk (ton) | 2783 | - | - | 2783 | 2783 | 2783 | 2783 | 2783 |
Chungnam (ton) | 2142 | - | - | 2142 | 2142 | 2142 | 2142 | 2142 |
Total transport quantity (ton) | 40,902 | 40,902 | 40,902 | 40,902 | 81,803 | 81,803 | 81,803 | 81,803 |
Total distance (km) | 529,596 | 336,848 | 482,918 | 425,188 | 1,943,694 | 1,502,609 | 1,483,663 | 1,340,422 |
Total transport cost (million USD) | 0.43 | 0.27 | 0.39 | 0.34 | 1.57 | 1.22 | 1.20 | 1.09 |
Number of Pretreatment Facilities | Refineries | Total Transport Quantity (ton) | Average Distance (km/Refinery) | Total Distance (km) | Total Transport Cost (Million USD) | ||||
---|---|---|---|---|---|---|---|---|---|
Ulsan (ton) | Yeosu (ton) | Seosan (ton) | Incheon (ton) | ||||||
4% blending scenario | 1 | 14,484 | 6956 | 6575 | 2620 | 30,635 | 340,368 | 1,361,471 | 1.10 |
2 | 7242 | 3478 | 3288 | 1310 | 30,635 | 407,516 | 1,630,063 | 1.32 | |
4 | 3621 | 1739 | 1644 | 655 | 30,635 | 263,246 | 1,052,984 | 0.85 | |
8 | 1811 | 870 | 822 | 328 | 30,635 | 254,154 | 1,016,614 | 0.82 | |
8% blending scenario | 1 | 28,968 | 13,912 | 13,150 | 5241 | 61,271 | 680,629 | 2,722,516 | 2.20 |
2 | 14,484 | 6956 | 6575 | 2621 | 61,271 | 814,770 | 3,259,081 | 2.64 | |
4 | 7242 | 3478 | 3288 | 1310 | 61,271 | 635,577 | 2,542,306 | 2.06 | |
8 | 3621 | 1739 | 1644 | 655 | 61,271 | 508,207 | 2,032,826 | 1.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.; Seo, J.; Kim, S. Location Allocation of Corn Stover Pretreatment Facilities in South Korea Under an Agent-Based Simulation Framework. Appl. Sci. 2025, 15, 9488. https://doi.org/10.3390/app15179488
Kim Y, Seo J, Kim S. Location Allocation of Corn Stover Pretreatment Facilities in South Korea Under an Agent-Based Simulation Framework. Applied Sciences. 2025; 15(17):9488. https://doi.org/10.3390/app15179488
Chicago/Turabian StyleKim, Youngjin, Junyoung Seo, and Sojung Kim. 2025. "Location Allocation of Corn Stover Pretreatment Facilities in South Korea Under an Agent-Based Simulation Framework" Applied Sciences 15, no. 17: 9488. https://doi.org/10.3390/app15179488
APA StyleKim, Y., Seo, J., & Kim, S. (2025). Location Allocation of Corn Stover Pretreatment Facilities in South Korea Under an Agent-Based Simulation Framework. Applied Sciences, 15(17), 9488. https://doi.org/10.3390/app15179488