Establishment of a Novel Fragmentation Prediction Model Incorporating Rock’s Response Time to Blasting
Abstract
1. Introduction
2. Study Fields
2.1. Danismen Formation
2.2. Islambeyli Formation
2.3. Thrace Formation
2.4. Pinarhisar Formation
2.5. Sogucak Formation
2.6. Suloglu Formation
3. Field Studies
3.1. Blasting Design Parameters
3.2. Rock Fragmentation by Blasting
3.3. Rock’s Response Time to Blasting
4. Statistical Analysis
4.1. Rock’s Response Time to Blasting (Tmin) Model
4.2. Rock-Size Reduction Ratio (F) Model
4.3. Validation
4.4. Testing
5. Results and Discussion
6. Conclusions
- Advanced geological mapping in each rock mass should be carried out to identify rock mass anomalies (intense fracture/jointed zones, voids, etc.) that are difficult to detect with ordinary and classical methods. It will enable the development of new approaches that increase Tmin prediction accuracy. In this context, the goal is to investigate the direct effect of discontinuities on Tmin with increasing R2 and decreasing MAPE values.
- Future research should focus on integrating the prediction equations for Tmin and F developed in this study into blasting simulation software and optimization algorithms. By inverting these models, the optimal blasting design parameters—such as burden, spacing, specific charge, and stemming length—could be predicted to achieve a targeted fragmentation distribution and post-blasting particle size. It is recommended that such tools be developed to bridge the gap between predictive modeling and operational design, allowing for the optimization of blast parameters and explosive selection based on specific rock mass behavior.
- Unlike this study, it should be planned to quantify the relationship between inter-row delay time and Tmin for optimal fragmentation in scenarios where the specific charge is optimized for a larger but still acceptable particle size. This study will significantly contribute to understanding the practical validity of the range proposed by Chiappetta [8].
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ash, R.L. The Design of Blasting Rounds, Surface Mining; Pfleider, E.P., Ed.; The American Institute of Mining, Metallurgical, and Petroleum Engineers: New York, NY, USA, 1968; pp. 373–397. [Google Scholar]
- Hagan, T.N.; Cameron, A.R. Selecting Explosives Systems and Monitoring Their Performance in Surface Mines. In Mine Planing and Equipment Selection; Pasamehmetoglu, A.G., Eskikaya, S., Karpuz, C., Hizal, T., Eds.; Balkema: Rotterdam, The Netherlands, 1994; pp. 635–641. [Google Scholar]
- Fourney, W.L. Mechanism of Rock Fragmentation by Blasting, Comprehensive Rock Engineering; Hudson, J.A., Ed.; Pergamon Press: Oxford, UK, 1993; Volume 4, pp. 39–69. [Google Scholar]
- Petrosyan, M.I. Rock Breakage by Blasting; A.A. Balkema: Rotterdam, The Netherlands, 1994; 141p. [Google Scholar]
- Jimeno, L.C.; Jimeno, E.L.; Carcade, F.J.A. Drilling and Blasting of Rock; A.A. Balkerna: Rotterdam, The Netherlands, 1995. [Google Scholar]
- Borovikov, V.A.; Vanyagin, I.F. Modelling the Effects of Blasting on Rock Breakage; A.A. Balkema: Rotterdam, The Netherlands, 1995; 238p. [Google Scholar]
- Djardjevic, N. A Two-Component Model of Blast Fragmentation. AusIMM Proc. 1999, 304, 9–13. [Google Scholar]
- Chiappetta, R.F. Blast Monitoring Instrumentation and Analysis Techniques, with an Emphasis on Field Applications. FRAGBLAST-Int. J. Blasting Fragm. 1998, 2, 79–122. [Google Scholar] [CrossRef]
- Bauer, A.; Calder, P.N. Open Pit and Blasting; Seminar Mining Engg. Dept. Publication; Queen’s University: Kingston, ON, USA, 1970; p. 3. [Google Scholar]
- Bergmann, O.R.; Wu, F.C.; Edl, J.W. Model rock blasting measures effects of delays and hole patterns on rock fragmentation. Engng. Min. J. 1974, 175, 124–127. [Google Scholar] [CrossRef]
- Winzer, S.R.; Anderson, D.A.; Ritter, A.P. Rock Fragmentation by Explosives. In Proceedings of the First International Symposium on Rock Fragmentation by Blasting, Lulea, Sweden, 23–26 August 1983; pp. 225–249. [Google Scholar]
- Bergmann, O.R. Effect of explosive properties, rock type and delays on fragmentation in large model blasts. In Proceedings of the First International Symposium on Rock Fragmentation by Blasting, Lulea, Sweden, 23–26 August 1983; pp. 71–78. [Google Scholar]
- Fadeev, A.B.; Glosman, L.M.; Kartuzov, M.I.; Safonov, L.V. Seismic control of mine and quarry blasting in the USSR. In Proceedings of the 6th Congress of the International Society for Rock Mechanics, Montreal, QC, Canada, 30 August–4 September 1987; International Society for Rock Mechanics: Montreal, QC, Canada, 1987; pp. 617–619. [Google Scholar]
- Andrews, A.B.S. Design criteria for sequential blasting. In Proceedings of the Seventh Conference on Explosives and Blasting Technique, Phoenix, AZ, USA, 12–23 January 1981; Society of Explosives Engineers: Warrensville Heights, OH, USA, 1981; pp. 173–192. [Google Scholar]
- Stagg, M.S.; Rholl, S.A. Effects of accurate delays on fragmentation for single-row blasting in a 6.7m (22ft) bench. In Proceedings of the Second International Symposium on Rock Fragmentation by Blasting, Keystone, CO, USA, 23–26 August 1987; pp. 210–230. [Google Scholar]
- Stagg, M.S.; Nutting, M.J. Influence of Blast Delay Time on Rock Fragmentation: One-Tenth-Scale Tests; US. Bureau of Mines IC 9135: Minneapolis, MN, USA, 1987; pp. 79–95. [Google Scholar]
- Konya, C.J.; Walter, E.J. Surface Blast Design Englewood Cliffs; Prentice Hall, Inc.: Englewood Cliffs, NJ, USA, 1990. [Google Scholar]
- McKinstry, R.; Bolles, T.; Rantapaa. Implementation of Electronic Detonators at Barrick Goldstike Mines. In Proceedings of the 30th ISEE Annual Conference on Explosives and Blasting Technique, New Orleans, LA, USA, 1–4 February 2004; Volume 1, pp. 349–361. [Google Scholar]
- Otterness, R.E.; Stagg, M.S.; Rholl, S.A.; Smith, N.S. Correlation of shot design parameters to fragmentation. In Proceedings of the 7th Annual Symposium on Explosives and Blasting Technology, Las Vegas, NV, USA, 6–7 February 1991; International Society of Explosives Engineers (ISEE): Cleveland, OH, USA, 1991; pp. 179–190. [Google Scholar]
- Chung, S.; Katsabanis, P.D. An Integrated Approach for Estimation of Fragmentation. In Proceedings of the 27th ISEE Annual Conference on Explosives and Blasting Technique, Orlando, FL, USA, 28–31 January 2001; Volume 1, pp. 247–256. [Google Scholar]
- Katsabanis, P.D.; Tawadrous, A.; Braun, C.; Kennedy, C. Timing effects on the fragmentation of small scale blocks of granodiorite. Fragblast 2006, 10, 83–93. [Google Scholar] [CrossRef]
- Onederra, I.; Esen, S. Selection of inter hole and inter row timing for surface blasting- an approach based on burden relief analysis. In Proceedings of the EFEE Second World Conference on Explosives and Blasting Technique, Prague, Czech Republic, 10–12 September 2003; Swets and Zeitlinger: Lisse, The Netherlands, 2003. [Google Scholar]
- Segarra, P.; Sanchidrián, J.A.; López, L.; Pascual, J.A.; Ortiz, R.; Gómez, A.; Smoech, B. Analysis of bench face movement in quarry blasting. In Proceedings of the Second World Conference on Explosives and Blasting Technique, Prague, Czech Republic, 10–12 September 2003; Holmberg, R., Ed.; Balkema: Rotterdam, The Netherlands, 2003; pp. 485–495. [Google Scholar]
- Sanchidrián, J.A.; Segarra, P.; López, L.M. On the relation of rock face response time and initial velocity with blasting parameters Brighton Conference Proceedings. In Proceedings of the 3rd EFEE World Conference on Explosives and Blasting, Brighton, UK, 14–16 September 2005; European Federation of Explosives Engineers: Kraków, Poland, 2005. ISBN 0-9550290-0-7. [Google Scholar]
- Onederra, I. Delay timing factor for empirical fragmentation models. Min. Technol. 2007, 116, 176–179. [Google Scholar] [CrossRef]
- Voulgarakis, A.G.; Michalakopoulos, T.N.; Panagiotou, G.N. The minimum response time in rock blasting: A dimensional analysis of full-scale experimental data. Min. Technol. 2016, 125, 242–248. [Google Scholar] [CrossRef]
- Sunnetcioglu, M.A. A Sequence Stratigraphic Approach to the Depositional History Analysis of the Upper Eocene Sedimentary Succession, Northwest of the Thrace Basin, Turkey. Ph.D. Thesis, Middle East Technical University, Ankara, Türkiye, 2008. [Google Scholar]
- Yurtsever, A. 1/ 200.000 Scale Exploratory Thrace Geological Map Promotion Report; MTA Arts & Design: Istanbul, Turkey, 1996; 52p. [Google Scholar]
- Guler, O.; İskan, B. Kırklareli Province–Vize District–Evrencik Village, TRAÇİM Çimento San. And Trade. Inc. Vize Cement Factory Geological and Hydrogeological Research of Mining License Areas (IR 64145, IR 20062296, IR 20062297, IR 20062298) and their Surroundings; Technical Report; Environmental Laboratory, Artek Engineering, Environmental Measurement and Consulting Services Trade Inc.: Vize, Turkey, 2021. (In Turkish) [Google Scholar]
- Uz, B. Study and Evaluation Report of the Geological/Structural, Mineralogical-Petrographical and Physico-Mechanical Properties of the Crushed Stone Quarry of Akdağlar Madencilik A.Ş; Ayazağa Village Cendere Locality, ITU Mining Faculty Geological Engineering Department, Mineralogy Pertography Department: Istanbul, Turkey, 2007. (In Turkish) [Google Scholar]
- Keskin, C. Geology of the Pınarhisar Area. Türkiye Jeol. Bülteni 1971, 14, 31–83. (In Turkish) [Google Scholar]
- Uçankuş, T.; Koyuncu, F.T.; Göveli, A.; Büyüktanir, S.A.; Taştan, F.; Dursun, K. Limak Batı Cement San. ve Tic. A.S. Limestone Quarry, License No 200901722, Final EIA Report; Ankatek Çevre Mad. Eng. Co.: Ankara, Turkey, 2014. (In Turkish) [Google Scholar]
- Atalık, E. Depositional Systems of the Osmancık Formation in the Thrace Basin: METU. Ph.D. Thesis, The Graduate School of Natural and Applied Sciences, Atasehir, Turkey, 1992; 366p. [Google Scholar]
- Atalık, E. Thrace Basin Soğucak Formation Sedimentary Environments and Microfacies Analysis: TPAO Exploration Group Archive; Unpublished Technical Report, no: 2305; 1987; 92p. [Google Scholar]
- Celikkurt, K.C. The Sedimentology of Coal and Uranium Bearing Sequences in the Saray and Vize Area. Master’s Thesis, Istanbul University-Cerrahpasa, Institute of Graduate Studies, Department of Geological Engineering, Istanbul, Türkiye, 2020. [Google Scholar]
- Langefors, U.; Kihlströn, B. The Modern Technique of Rock Blasting, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1962; ISBN 10: 047151571X; ISBN 13: 9780471515715. [Google Scholar]
- Olofsson, S.O. Applied Explosives Technology for Construction and Mining, 2nd ed.; Applex: Arla, Sweden, 1988. [Google Scholar]
No | Adress | Formation | Unit | UCS * (MPa) | Rock Classification ** | ρ * (t/m3) | D *** (Mm) | ||
---|---|---|---|---|---|---|---|---|---|
Min. | Mean (D50) | Max. | |||||||
1 | Kirklareli | Pinarhisar | Limestone | 89 | Strong | 2.54 | 1030 | 2515 | 5635 |
2 | Kirklareli | Pinarhisar | Limestone | 98 | Strong | 2.52 | 930 | 3355 | 7520 |
3 | Kirklareli | Pinarhisar | Limestone | 71 | Strong | 2.52 | 755 | 3665 | 4690 |
4 | Kirklareli | Suloglu | Sandstone | 95 | Strong | 2.55 | 365 | 3600 | 1865 |
5 | Kirklareli | Sogucak | Limestone | 48 | Strong | 2.50 | 520 | 3430 | 2960 |
6 | Kirklareli | Sogucak | Limestone | 42 | Strong | 2.44 | 1580 | 2705 | 4970 |
7 | Kirklareli | Thrace | Limestone | 76 | Strong | 2.51 | 310 | 1925 | 3395 |
8 | Kirklareli | Suloglu | Sandstone | 55 | Strong | 2.50 | 330 | 1660 | 3200 |
9 | Kirklareli | Islambeyli | Marn | 130 | Very Strong | 2.55 | 310 | 2170 | 4360 |
10 | Istanbul | Thrace | Sandstone | 126 | Very Strong | 2.54 | 420 | 2110 | 3930 |
11 | Kirklareli | Suloglu | Limestone | 186 | Very Strong | 2.60 | 1430 | 1990 | 6135 |
12 | Tekirdag | Danismen | Claystone | 37 | Moderate | 2.50 | 860 | 1820 | 5025 |
Field No | Shot No | Zone | Bmax (m) | S (m) | K (m) | d (mm) | Explosive | Ib (kg/m) | n | U (m) | H (m) | ho (m) | VoD (m/s) | Q (kg) | q (kg/m3) | Inter-Hole Delay (ms) | Inter-Row Delay (ms) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | - | 3.45 | 3 | 9 | 89 | ANFO | 4.97 | 13 | 2 | 10 | 2.8 | 4905 | 36.82 | 0.31 | 25/500 | 17 |
2 | Left | 4 | 3.2 | 9 | 89 | ANFO | 4.97 | 20 | 0.5 | 9.5 | 2 | 4905 | 38.31 | 0.42 | 25/500 | 17 | |
Middle | 3.25 | 3.05 | 9 | 89 | ANFO | 4.97 | 20 | 0.5 | 9.5 | 2 | 4905 | 38.31 | 0.39 | 25/500 | 17 | ||
Right | 2.25 | 2.47 | 9 | 89 | ANFO | 4.97 | 20 | 0.5 | 9.5 | 2 | 4905 | 38.31 | 0.45 | 25/500 | 17 | ||
5 | 9 | Left | 2.75 | 2.7 | 8 | 89 | ANFO | 4.97 | 43 | 2 | 10 | 2.5 | 4905 | 38.31 | 0.52 | 25/500 | 17 |
Right | 2.9 | 2.7 | 8 | 89 | ANFO | 4.97 | 40 | 2 | 10 | 2.5 | 4905 | 38.31 | 0.47 | 25/500 | 17 | ||
6 | 10 | Left | 3.9 | 2,5 | 8 | 89 | Emulsion | 7.77 | 25 | 1 | 9 | 3 | 5450 | 46.63 | 0.46 | 17/500 | 25 |
Right | 3.95 | 2,9 | 8 | 89 | Emulsion | 7.77 | 20 | 1 | 9 | 3 | 5450 | 46.63 | 0.46 | 17/500 | 25 | ||
8 | 12 | Left | 4.15 | 4.1 | 9 | 102 | ANFO | 6.53 | 35 | 1 | 10 | 3 | 4905 | 46.74 | 0.38 | 25/500 | 17 |
Middle | 4.25 | 3.6 | 9 | 102 | ANFO | 6.53 | 40 | 1 | 10 | 3 | 4905 | 46.74 | 0.4 | 25/500 | 17 | ||
Right | 3.35 | 3.5 | 9 | 102 | ANFO | 6.53 | 40 | 1 | 10 | 3 | 4905 | 46.74 | 0.46 | 25/500 | 17 | ||
9 | 13 | Left | 3.15 | 3.3 | 10 | 127 | ANFO | 10.13 | 44 | 1 | 11 | 3 | 4830 | 82.03 | 0.38 | 33/500 | 42 |
Right | 2.8 | 3.7 | 10 | 127 | ANFO | 10.13 | 40 | 1 | 11 | 3 | 4830 | 82.03 | 0.32 | 33/500 | 42 | ||
16 | Left | 2.95 | 3.4 | 8 | 127 | ANFO | 10.13 | 36 | 1 | 9 | 3 | 4830 | 61.77 | 0.62 | 33/500 | 42 | |
Right | 3.3 | 3.5 | 8 | 127 | ANFO | 10.13 | 36 | 1 | 9 | 3 | 4830 | 61.77 | 0.61 | 33/500 | 42 |
Field No | Shot No | Zone | q (kg/m3) | D20 (mm) | D50 (mm) | D80 (mm) | D100 (mm) | P20 (mm) | P50 (mm) | P80 (mm) | P100 (mm) | F (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | - | 0.31 | 1341 | 1843 | 2730 | 3681 | 139 | 269 | 459 | 777 | 85.38 |
2 | Left | 0.42 | 3170 | 5269 | 9012 | 11,761 | 358 | 729 | 1204 | 1800 | 86.17 | |
Middle | 0.39 | 2389 | 3875 | 5476 | 8445 | 341 | 634 | 955 | 1442 | 83.65 | ||
Right | 0.45 | 2014 | 3125 | 5344 | 6295 | 218 | 450 | 1157 | 1625 | 85.60 | ||
5 | 9 | Left | 0.52 | 2025 | 3293 | 4935 | 6790 | 154 | 237 | 332 | 482 | 92.80 |
Right | 0.47 | 1721 | 2439 | 3268 | 4654 | 118 | 227 | 354 | 658 | 90.69 | ||
6 | 10 | Left | 0.46 | 2355 | 4043 | 5764 | 8511 | 90 | 143 | 209 | 330 | 96.47 |
Right | 0.46 | 3003 | 5143 | 7257 | 11,054 | 118 | 212 | 367 | 644 | 95.88 | ||
8 | 12 | Left | 0.38 | 1509 | 2452 | 3681 | 4952 | 205 | 339 | 545 | 892 | 86.19 |
Middle | 0.4 | 1921 | 2971 | 4902 | 6386 | 179 | 329 | 514 | 842 | 88.93 | ||
Right | 0.46 | 2105 | 2950 | 4376 | 6219 | 150 | 303 | 464 | 666 | 89.74 | ||
9 | 13 | Left | 0.38 | 1905 | 3230 | 4634 | 6476 | 206 | 497 | 748 | 1107 | 84.61 |
Right | 0.32 | 1620 | 2536 | 4158 | 4978 | 189 | 338 | 697 | 890 | 86.69 | ||
16 | Left | 0.62 | 2945 | 3917 | 6842 | 8369 | 285 | 468 | 655 | 928 | 88.06 | |
Right | 0.61 | 3332 | 4799 | 6757 | 10,793 | 343 | 556 | 845 | 1345 | 88.41 |
Field No | Shot No | Zone | h (m) | VoD (m/sn) | (ms) | (ms) | k | Tmin (ms) | ||
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | - | 7.2 | 4905 | 25 | 500 | 0.12 | 742 | 1.47 | 152.53 |
2 | Left | 7.5 | 4905 | 25 | 500 | 0.12 | 738 | 1.53 | 148.47 | |
Middle | 7.5 | 4905 | 25 | 500 | 0.12 | 727 | 1.53 | 137.47 | ||
Right | 7.5 | 4905 | 25 | 500 | 0.12 | 724 | 1.53 | 134.47 | ||
5 | 9 | Left | 7.5 | 4905 | 25 | 500 | 0.04 | 640 | 1.53 | 92.47 |
Right | 7.5 | 4905 | 25 | 500 | 0.04 | 646 | 1.53 | 98.47 | ||
6 | 10 | Left | 6 | 5450 | 17 | 500 | 0.16 | 712 | 1.10 | 26.46 |
Right | 6 | 5450 | 17 | 500 | 0.16 | 711 | 1.10 | 25.46 | ||
8 | 12 | Left | 7 | 4905 | 25 | 500 | 0.04 | 636 | 1.43 | 88.57 |
Middle | 7 | 4905 | 25 | 500 | 0.04 | 636 | 1.43 | 88.57 | ||
Right | 7 | 4905 | 25 | 500 | 0.04 | 644 | 1.43 | 96.57 | ||
9 | 13 | Left | 8 | 4830 | 33 | 500 | 0.10 | 632 | 1.66 | 44.04 |
Right | 8 | 4830 | 33 | 500 | 0.10 | 621 | 1.66 | 33.04 | ||
16 | Left | 6 | 4830 | 33 | 500 | 0.10 | 627 | 1.24 | 39.46 | |
Right | 6 | 4830 | 33 | 500 | 0.10 | 621 | 1.24 | 33.46 |
Bmax (m) | Ib (kg/m) | ρ (t/m3) | ho (m) | VoD (m/s) | UCS (MPa) | U (m) | D50 (mm) | P50 (mm) | q (kg/m3) | Tmin (ms) | F (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Min. | 1.5 | 3.97 | 2.44 | 1.00 | 4750 | 37 | 0 | 624 | 92 | 0.18 | 32.84 | 83.02 |
Mean | 3.10 | 6.59 | 2.53 | 2.58 | 4866 | 98 | 0.68 | 3038 | 387 | 0.44 | 93.36 | 86.76 |
Max. | 4.85 | 10.13 | 2.60 | 4.00 | 4905 | 186 | 2 | 6869 | 832 | 0.76 | 183.89 | 96.47 |
Model | R | R Square | Adjusted R Square | Std. Error |
---|---|---|---|---|
1 | 0.888 a | 0.789 | 0.760 | 20.34720 |
Model | Sum of Squares | df | Mean Square | F | Sig. | |
---|---|---|---|---|---|---|
1 | Regression | 68,075.908 | 6 | 11,345.985 | 27.405 | <0.001 b |
Residual | 18,216.373 | 44 | 414.008 | |||
Total | 86,292.280 | 50 | ||||
Coefficients a | ||||||
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | ||
B | Std. Error | Beta | ||||
1 | (Constant) | −1837.383 | 586.365 | −3.134 | 0.003 | |
B (m) | 18.851 | 4.222 | 0.339 | 4.465 | 0.000 | |
Ib (kg/m) | −9.507 | 1.750 | −0.524 | −5.432 | 0.001 | |
ρ (kg/m3) | 2495.127 | 379.389 | 1.631 | 6.577 | 0.002 | |
ho (m) | −21.917 | 5.653 | −0.319 | −3.877 | 0.001 | |
VoD (m/ms) | −0.839 | 0.154 | −0.887 | −5.467 | 0.003 | |
UCS (MPa) | −2.425 | 0.342 | −1.971 | −7.091 | 0.001 |
Model | R | R Square | Adjusted R Square | Std. Error of the Estimate |
---|---|---|---|---|
1 | 0.896 a | 0.803 | 0.786 | 1.24798 |
Model | Sum of Squares | df | Mean Square | F | Sig. | ||
---|---|---|---|---|---|---|---|
1 | Regression | 308.415 | 4 | 77.104 | 46.952 | <0.001 b | |
Residual | 75.540 | 46 | 1.642 | ||||
Total | 383.955 | 50 | |||||
Coefficients a | |||||||
Model | Unstandardized Coefficients | Standardized Coefficients | t | Sig. | |||
B | Std. Error | Beta | |||||
1 | (Constant) | 87.389 | 1.385 | 63.094 | 0.000 | ||
q (kg/m3) | 8.011 | 1.659 | 0.345 | 4.828 | 0.000 | ||
UCS (MPa) | −0.035 | 0.007 | −0.416 | −4.686 | 0.001 | ||
Tmin (ms) | −0.022 | 0.006 | −0.313 | −3.840 | 0.005 | ||
U (m) | 1.442 | 0.228 | 0.497 | 6.317 | 0.000 |
Equation | Equation (7) | Equation (8) | Equation (9) * |
---|---|---|---|
Target | Tmin (s) | F (%) | P50 (mm) |
Minimum Error (%) | 0.45 | 0.04 | 0.21 |
Maximum Error (%) | 59.02 | 7.20 | 34.12 |
Mean Square Error (MSE) | 357.32 | 7.93 | 2397.63 |
Mean Absolute Percentage Error (MAPE) | 16.56 | 2.62 | 8.37 |
Root Mean Square Error (RMSE) | 18.90 | 2.82 | 48.97 |
Correlation Coefficient (R2) | 0.789 | 0.803 | 0.837 |
Field No | Zone | Bmax (m) | S (m) | K (m) | d (mm) | Explosive | Ib (kg/m) | n | U (m) | H (m) | ho (m) | VoD (m/s) | Q (kg) | q (kg/m3) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
7 | Left | 2.2 | 3.3 | 11 | 89 | ANFO | 4.97 | 11 | 1 | 12 | 2 | 4905 | 50.74 | 0.39 |
Middle | 3.1 | 2.35 | 11 | 89 | ANFO | 4.97 | 14 | 1 | 12 | 2 | 4905 | 50.74 | 0.49 |
Field Measures | Predictions | Error (%) | ||||
---|---|---|---|---|---|---|
Region | Left | Middle | Left | Middle | Left | Middle |
Tmin (ms) | 79.96 | 105.96 | 85.17 | 102.13 | 6.5 | 3.6 |
F (%) | 85.74 | 86.16 | 88.99 | 89.22 | 3.8 | 3.5 |
P50 (mm) | 437 | 267 | 395 | 244 | 9.6 | 8.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozyurt, M.C.; Karadogan, A.; Kalayci Sahinoglu, U.; Ozer, U.; Mutlu, H.E.; Odabasi, T.C. Establishment of a Novel Fragmentation Prediction Model Incorporating Rock’s Response Time to Blasting. Appl. Sci. 2025, 15, 9447. https://doi.org/10.3390/app15179447
Ozyurt MC, Karadogan A, Kalayci Sahinoglu U, Ozer U, Mutlu HE, Odabasi TC. Establishment of a Novel Fragmentation Prediction Model Incorporating Rock’s Response Time to Blasting. Applied Sciences. 2025; 15(17):9447. https://doi.org/10.3390/app15179447
Chicago/Turabian StyleOzyurt, Meric Can, Abdulkadir Karadogan, Ulku Kalayci Sahinoglu, Umit Ozer, Hilal Erem Mutlu, and Taki Can Odabasi. 2025. "Establishment of a Novel Fragmentation Prediction Model Incorporating Rock’s Response Time to Blasting" Applied Sciences 15, no. 17: 9447. https://doi.org/10.3390/app15179447
APA StyleOzyurt, M. C., Karadogan, A., Kalayci Sahinoglu, U., Ozer, U., Mutlu, H. E., & Odabasi, T. C. (2025). Establishment of a Novel Fragmentation Prediction Model Incorporating Rock’s Response Time to Blasting. Applied Sciences, 15(17), 9447. https://doi.org/10.3390/app15179447