A Low-Jitter Delay Synchronization System Applied to Ti:sapphire Femtosecond Laser Amplifier
Abstract
1. Introduction
- (1)
- The synchronization timing requirements of the Ti:sapphire femtosecond laser amplifier are complex. The performance of the synchronization pulse directly determines the success of the entire laser pulse amplifier. Therefore, we propose a pulse synchronization system applied to the Ti:sapphire femtosecond laser amplifier.
- (2)
- We propose a hybrid delay scheme of digital coarse-tuning combined with analog fine-tuning. This can achieve nanosecond-magnitude time fine-tuning while maintaining a large-range delay capability, meeting the stringent requirements of the Ti:sapphire femtosecond laser amplifier for high precision.
- (3)
- Regarding the problem of uncertain phase errors in the externally triggered repetition frequency and internal clock jitter, we propose to design a jitter compensation circuit to compensate for the uncertainty of the trigger timing through analog delay, which greatly improves the stability of the delayed pulse.
2. Materials and Methods
2.1. The Overall Design of the High-Precision and Low-Jitter Femtosecond Laser Delay Synchronization System
2.2. Design of the System’s Coarse-Delay and Precision-Delay Modules
2.2.1. Design of the Course-Delay Module
2.2.2. Design of the Precision-Delay Module
2.3. Design of the Jitter Compensation Module
3. Experiment and Result Analysis
3.1. System Performance Testing
3.2. System Delay Function Testing
3.3. System Output Jitter Stability Testing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, J.; He, F.; Guo, X.; Zheng, X.; Zhang, H.; Qiu, L.; Li, Y.; Ma, T.; Zhang, X.; Shkurinov, A.P.; et al. Frequency noise in Terahertz dual-comb spectroscopy using two repetition-frequency stabilized and synchronized femtosecond lasers. Infrared Phys. Technol. 2025, 147, 105796. [Google Scholar] [CrossRef]
- Fleisher, A.J.; Long, D.A.; Reed, Z.D.; Hodges, J.T.; Plusquellic, D.F. Coherent cavity-enhanced dual-comb spectroscopy. Opt. Express 2016, 24, 10424–10434. [Google Scholar] [CrossRef] [PubMed]
- Gronfier, C. Efficacy of a single sequence of intermittent bright light pulses for delaying circadian phase in humans. Am. J. Physiol.-Endocrinol. Metab. 2004, 287, E174. [Google Scholar] [CrossRef] [PubMed]
- Mevert, R.; Binhammer, Y.; Dietrich, C.M.; Beichert, L.; de Andrade, J.R.C.; Binhammer, T.; Fan, J.; Morgner, U. Widely tunable, high-power, femtosecond noncollinear optical parametric oscillator in the visible spectral range. Photon. Res. 2021, 9, 1715–1718. [Google Scholar] [CrossRef]
- Tarasov, A.; Chu, H. Engineering of Ti:Sapphire Lasers for Dermatology and Aesthetic Medicine. Appl. Sci. 2021, 11, 10539. [Google Scholar] [CrossRef]
- Zheng, H.Y.; Jiang, Z.W. Femtosecond laser micromachining of silicon with an external electric field. J. Micromech. Microeng. 2009, 20, 017001. [Google Scholar] [CrossRef]
- Awasthi, S.; Kang, S. Revolutionizing 3D electronics: Single-step femtosecond laser fabrication of conductive embedded structures and circuitry. Mater. Today Adv. 2025, 25, 100544. [Google Scholar] [CrossRef]
- Kawanaka, J.; Yamakawa, K.; Nishioka, H.; Ueda, K.I. 30-mJ, diode-pumped, chirped-pulse Yb:YLF regenerative amplifier. Opt. Lett. 2003, 28, 2121–2123. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Zhang, J.; Xia, J.; Feng, B.; Zhang, X.; Qiu, Y. Highly efficient TW multipass Ti:sapphire laser system. Sci. China 2000, 43, 1083–1087. [Google Scholar] [CrossRef]
- Cao, H.; Shen, J.; Yan, R.; Zhao, Y.; Xu, W.; Geng, L. More robust high precision time synchronization system. In Proceedings of the 2024 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control, and Communication (ISPCS), Tokyo, Japan, 7–11 October 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Xu, H.; Wu, H.; Hou, D.; Lu, H.; Li, Z.; Zhao, J. Yoctosecond Timing Jitter Sensitivity in Tightly Synchronized Mode-Locked Ti:Sapphire Lasers. Photonics 2022, 9, 569. [Google Scholar] [CrossRef]
- Xiao, Y.; Chen, T.; Liu, B.; Huang, Z.; Pang, M.; Leng, Y.; Feng, C. Isolated Attosecond Free-Electron Laser Based on a Subcycle Driver from Hollow Capillary Fibers. Ultrafast Sci. 2025, 5, 0099. [Google Scholar] [CrossRef]
- Grychtol, P.; Rivas, D.E.; Baumann, T.M.; Boll, R.; De Fanis, A.; Erk, B.; Ilchen, M.; Liu, J.; Mazza, T.; Montaño, J.; et al. Timing and X-ray pulse characterization at the Small Quantum Systems instrument of the European X-ray Free Electron Laser. Opt. Express 2021, 29, 37429–37442. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Droste, S.; Frisch, J.; Kim, K.; May, J.; Ruckman, L.; Winkle, D.V.; Weaver, M.; Xu, C.; Young, A. SLAC Femtosecond Laser Timing Synchronization System. In Proceedings of the 2022 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Milano, Italy, 5–12 November 2022; pp. 1–3. [Google Scholar] [CrossRef]
- Lamb, T.; Bock, M.; Bousonville, M.; Felber, M.; Gessler, P.; Janas, E.; Ludwig, F.; Ruzin, S.; Schlarb, H.; Schmidt, B.; et al. Femtosecond stable laser-to-RF phase detection using optical modulators. In Proceedings of the FEL2011, Shanghai, China, 22–26 August 2011. [Google Scholar]
- Datta, S.; Banerjee, A.; Tripathi, A.; Kang, D.; Leesunghyuck; Lim, H.; Yu, W.; Vishnu, K.; Jeong, C.; Chakkirala, S.; et al. A 45-fsrms Accumulated Jitter PLL Using Advanced Design Techniques for PCIe Gen6 Reference Clock Generation in 2 nm MBCFET Technology. In Proceedings of the 2024 IEEE Asian Solid-State Circuits Conference (A-SSCC), Hiroshima, Japan, 18–21 November 2024; pp. 1–3. [Google Scholar] [CrossRef]
- Sharma, A.; Sun, Y.; Simpson, O. Design and Implementation of a Re-Configurable Versatile Direct Digital Synthesis-Based Pulse Generator. IEEE Trans. Instrum. Meas. 2021, 70, 2005314. [Google Scholar] [CrossRef]
- Ye, J.; Zhou, G.; Liu, H. Design and Research of Improved Digital Phase-Locked Loop Based on FPGA. Procedia Eng. 2012, 29, 547–552. [Google Scholar] [CrossRef]
- Lim, J.; Kim, H.; Jackson, T.N.; Choi, K.; Kenny, D. An ultra-compact and low-power oven-controlled crystal oscillator design for precision timing applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2010, 57, 1906–1914. [Google Scholar] [CrossRef] [PubMed]
- Heydari, P. Analysis of the PLL jitter due to power/ground and substrate noise. IEEE Trans. Circuits Syst. I Regul. Pap. 2004, 51, 2404–2416. [Google Scholar] [CrossRef]
- Qin, K.; Fan, B.; Liu, H.; Tang, J.; Li, M. A High-Precision, Low-Temperature Drift Relaxation Oscillator Design. In Proceedings of the 2024 5th International Conference on Electronic Communication and Artificial Intelligence (ICECAI), Shenzhen, China, 31 May–2 June 2024; pp. 176–179. [Google Scholar] [CrossRef]
- Lima, F.M.S. A Better Criterion for the Discharging Time in an RC Circuit. Phys. Teach. 2015, 53, 44–45. [Google Scholar] [CrossRef]
- Paul, S.; Schlaffer, A.; Nossek, J. Optimal charging of capacitors. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2000, 47, 1009–1016. [Google Scholar] [CrossRef]
Jitter Range (T) | Interval Spacing (t) | Interval Midpoint (x) | Number of Distributions (f) |
---|---|---|---|
T1 | 1.75–1.80 ns | 1.775 | 5 |
T2 | 1.80–1.85 ns | 1.825 | 41 |
T3 | 1.85–1.90 ns | 1.875 | 251 |
T4 | 1.90–1.95 ns | 1.925 | 520 |
T5 | 1.95–2.00 ns | 1.975 | 495 |
T6 | 2.00–2.05 ns | 2.025 | 249 |
T7 | 2.05–2.10 ns | 2.075 | 90 |
T8 | 2.10–2.15 ns | 2.125 | 26 |
T9 | 2.15–2.20 ns | 2.175 | 12 |
T10 | 2.20–2.25 ns | 2.225 | 0 |
Discrete Intervals | Interval Spacing | Standard Value | Actual Value | Whether It Meets |
---|---|---|---|---|
[1.827, 2.053] | 68.27% | 93.54% | meets | |
[1.714, 2.166] | 95.45% | 99.29% | meets | |
[1.601, 2.279] | 99.73% | 100.00% | meets |
Name | Range | Resolution | Delay Accuracy | Jitter | Frequency Division |
---|---|---|---|---|---|
Delay synchronization system | 10 ns → 100 s | 2.5 ps | <1 ns | <113 ps | Yes |
Model 765 | 300 ps → (period-300 ps) | 10 ps | ±(0.1% + 30 ps) | <10 ps | No |
MC100EP196 | 2.4 ns → 12.4 ns | 10 ps | <2 ns | <1 ns | No |
Model 577 | 0 s → 1000 s | 250 ps | 1 ns + (0.0001 × delay setting) | <250 ps | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, M.; Liu, G.; He, M.; Shu, W.; Jiao, Y.; Li, H.; Yao, W.; Liang, X. A Low-Jitter Delay Synchronization System Applied to Ti:sapphire Femtosecond Laser Amplifier. Appl. Sci. 2025, 15, 9424. https://doi.org/10.3390/app15179424
Wu M, Liu G, He M, Shu W, Jiao Y, Li H, Yao W, Liang X. A Low-Jitter Delay Synchronization System Applied to Ti:sapphire Femtosecond Laser Amplifier. Applied Sciences. 2025; 15(17):9424. https://doi.org/10.3390/app15179424
Chicago/Turabian StyleWu, Mengyao, Guodong Liu, Meixuan He, Wenjun Shu, Yunpeng Jiao, Haojie Li, Weilai Yao, and Xindong Liang. 2025. "A Low-Jitter Delay Synchronization System Applied to Ti:sapphire Femtosecond Laser Amplifier" Applied Sciences 15, no. 17: 9424. https://doi.org/10.3390/app15179424
APA StyleWu, M., Liu, G., He, M., Shu, W., Jiao, Y., Li, H., Yao, W., & Liang, X. (2025). A Low-Jitter Delay Synchronization System Applied to Ti:sapphire Femtosecond Laser Amplifier. Applied Sciences, 15(17), 9424. https://doi.org/10.3390/app15179424