Current Status and Future Direction of Photovoltaics
Abstract
1. Introduction
2. Key Issues for Further Developments of PV
3. Future Direction of PV
3.1. High-Efficiency
3.2. Low-Cost
3.3. Reliability
Material | Degradation Rate (DR) Formula | Reference |
---|---|---|
Perovskite | DR [1/h] = 27,640 × EXP(−0.58eV/kT) (1) | [34] |
Perovskite/Si tandem | DR [1/h] = 63,837 × EXP(−0.60eV/kT) (2) | [35] |
Si | DR [1/h] = 3.05 × EXP(−0.44eV/kT) (3) | [36] |
III-V three-junction | DR = 10,935 × EXP(−0.86eV/kT) (4) | [37,38] |
3.4. Integrated Photovoltaic Applications
Integrated PV | Today’s Necessity [40] | EU Potential [41] | Global Potential [42,43,44,45] |
---|---|---|---|
Agrivoltaics | 944 GWp 1.7 TWp in Germany | ||
Floating PV | 157 GWp | 23.3 TWp | |
Roads and railroads (Transport) | 6.8 TWp | 401 GWp | 19.1 TWp |
Rooftops | 3.2 TWp | 560 GWp | 44 TWp |
Power sector | 13 TWpp | 21.9 TWp | |
Others | 11.4 TWp | ||
Total | 34.4 TWp | 2.06 TWp | >110 TWp |
3.5. Importance of Sustainability
Annual Production | Current (400 GW Production) | 2030 (1.4 TW Production) | 2050 (3 TW Production) | Technology Solutions | |
---|---|---|---|---|---|
In | 2.1 kt | 22.4 kt (16 mg/W) | 22.5 kt (7.5 mg/W) | * Alternative TCO (AZO, etc.) * High-efficiency modules * Recycling of modules | |
Bi | 21 kt | 18.2 kt (13 mg/W) | 4.2 kt (1.4 mg/W) | * Reduction in number of number of wires * Low-temperature solder alloys * High-efficiency modules * Recycling of modules | |
Ag | 29 kt | 4 kt (2022) | 11.9 kt (8.5 mg/W) | 6 kt (2 mg/w) | * Further reduction in Ag * Usage of Cu * High-efficiency modules * Recycling of modules |
Si | 8.5 Mt | 414 kt (2021) | 2.8 Mt (2 g/W) | 4.5 Mt (1.5 g/W) | * Thinning Si * Reduction in Kerf loss High-efficiency modules * Recycling of modules |
Cu | 24.6 Mt | 504 kt (2021) | 3.9 Mt (2.8 g/W) | 5.4 Mt (1.8 g/W) | * Recycling of modules |
Al | 130 Mt | 1.6 Mt (2021) | 12.6 Mt (9 g/W) | 18 Mt (6 g/W) | * Recycling of modules |
Glass | 252 Mt | 7.56 Mt (2021) | 20.5 Mt (single glass) 41 Mt (double glass) | 73.2 MT (single glass) 146 Mt (double glass) | * Thinner glass +Glass foil * Polymer foil * High-efficiency modules * Recycling of modules |
Steel | 1800 Mt | 10.1 Mt (2021) | 18.2 Mt (13 g/W) | 39 Mt (13 g/W) | * Recycling of modules * Green steel (decarbonization of electricity, etc.) |
Concrete | 2040 Mt | 8.46 Mt (2021) | 70 Mt (50 g/W) | 150 Mt (50 g/W) | * Green steel (decarbonization of electricity, etc.) |
4. Summary
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shell. Sky Scenario. Available online: http://www.shell.com (accessed on 11 August 2025).
- Breyer, C.; Bogdanov, D.; Gulagi, A.; Aghahosseini, A.; Barbosa, L.S.; Koskinen, O.; Barasa, M.; Caldera, U.; Afanasyeva, S.; Child, M.; et al. On the role of solar photovoltaics in global energy transition scenarios. Prog. Photovolt. 2017, 25, 727–745. [Google Scholar] [CrossRef]
- Haegel, N.M.; Verlinden, P.; Victoria, M.; Altermatt, P.; Atwater, H.; Barnes, T.; Breyer, C.; Case, C.; De Wolf, S.; Deline, C.; et al. Photovoltaics at multi-terawatt scale: Waiting is not an option. Science 2023, 380, 39–42. [Google Scholar] [CrossRef]
- VDMA. International Technology Roadmap for Photovoltaics (ITRPV), 15th ed.; VDMA: Frankfurt am Main, Germany, 2024. [Google Scholar]
- Victoria, M.; Haegel, N.; Peters, I.M.; Sinton, R.; Jäger-Waldau, A.; del Cañizo, C.; Breyer, C.; Stocks, M.; Blakers, A.; Kaizuka, I.; et al. Solar photovoltaics is ready to power a sustainable future. Joule 2021, 5, 1041–1056. [Google Scholar] [CrossRef]
- Choudhary, P.; Srivastava, R.K. Sustainability perspectives- a review for solar photovoltaic trends and growth opportunities. J. Clean. Prod. 2019, 227, 589–612. [Google Scholar] [CrossRef]
- IRENA. Future of Solar Photovoltaics; IRENA: Abu Dhabi, United Arab Emirates, 2019; ISBN 978-92-9260-156-0. [Google Scholar]
- Topic, M.; Drozdowski, R.; Sinke, W. European Strategic Research & Innovation Agenda (SRIA) for Photovoltaics –fit for 55% and climate neutrality. In Proceedings of the 38th European Photovoltaic Conference and Exhibition, Online, 6–10 September 2021. [Google Scholar]
- Gervais, E.; Herceg, S.; Nold, S.; Weiß, K.A. Sustainability strategies for PV: Framework, status and needs. EPJ Photovolt. 2021, 12, 5. [Google Scholar] [CrossRef]
- Goldschmidt, J.C.; Wagner, L.; Pietzcker, R.; Friedrich, L. Technological learning for resource efficient terawatt scale photovoltaics. Energy Environ. Sci. 2021, 14, 5147–5160. [Google Scholar] [CrossRef]
- Jones-Albertus, B. Technologies for a Solar-Powered Future. In Proceedings of the 49th IEEE Photovoltaic Specialists Conference, Philadelphia, PA, USA, 5–10 June 2022. [Google Scholar]
- Yamaguchi, M.; Lee, K.-H.; Araki, K.; Kojima, N. A review of recent progress in heterogeneous silicon tandem solar cells. J. Phys. D: Appl. Phys. 2018, 51, 133002. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Dimroth, F.; Geisz, J.F.; Ekins-Daukes, N.J. Multi-junction solar cells paving the way for super high-efficiency. J. Appl. Phys. 2021, 129, 240901. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Siefer, G.; Hao, X.; Jiang, J.Y. Solar Cell Efficiency Tables (Version 65). Prog. Photovolt. 2025, 33, 3–15. [Google Scholar] [CrossRef]
- Richter, A.; Hermle, M.; Glunz, S.W. Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells. IEEE J. Photovolt. 2013, 3, 1184–1191. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Ohshita, Y.; Shibata, H.; Tampo, H.; Nagai, T. Overview and Perspective for High-Efficiency Single-Junction Solar Cells. Sol. RRL 2023, 7, 2300308. [Google Scholar] [CrossRef]
- Amano, C.; Sugiura, H.; Yamamoto, A.; Yamaguchi, M. 20.2% efficiency Al0.4Ga0.6As/GaAs tandem solar cells grown by molecular beam epitaxy. Appl. Phys. Lett. 1987, 51, 1998–2000. [Google Scholar] [CrossRef]
- Olson, J.M.; Kurtz, S.R.; Kibbler, A.E.; Faine, P. A 27.3% efficient Ga0.5In0.5P/GaAs tandem solar cell. Appl. Phys. Lett. 1990, 56, 623–625. [Google Scholar] [CrossRef]
- Takamoto, T.; Ikeda, E.; Kurita, H.; Ohmori, M. Over 30% efficient InGaP/GaAs tandem solar cells. Appl. Phys. Lett. 1997, 70, 118419. [Google Scholar] [CrossRef]
- Bett, A.W.; Dimroth, F.; Lange, G.; Meusel, M.; Beckert, R.; Hein, M.; Riesen, S.V.; Schubert, U. 0% monolithic tandem concentrator solar cells for concentrations exceeding 1000 suns. In Proceedings of the 28th IEEE Photovoltaic Specialists Conference, New York, NY, USA, 15–20 September 2000; p. 15. [Google Scholar] [CrossRef]
- King, R.R.; Law, D.C.; Edmondson, K.M.; Fetzer, C.M.; Kinsey, G.S.; Yoon, H.; Sherif, R.A.; Karam, N.H. 40% efficient metamorphic GaInP∕GaInAs∕Ge multijunction solar cells. Appl. Phys. Lett. 2007, 90, 183516. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Luque, A. High efficiency and high concentration in photovoltaics. IEEE Trans. Electron Devices. 1999, ED-46, 2139. [Google Scholar] [CrossRef]
- Swanson, R.M. The Promise of Concentrators. Prog. Photovolt. 2000, 8, 93. [Google Scholar] [CrossRef]
- Essig, S.; Allebe, C.; Remo, T.; Geisz, J.F.; Steiner, M.A.; Horowitz, K.; Barraud, L.; Ward, J.S.; Schnabel, M.; Descoeudres, A.; et al. Raising the one-sun conversion efficiency of III–V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions. Nat. Energy 2017, 2, 17144. [Google Scholar] [CrossRef]
- Schygulla, P.; Müller, R.; Lackner, D.; Höhn, O.; Hauser, H.; Bläsi, B.; Predan, F.; Benick, J.; Hermle, M.; Glunz, S.W.; et al. Two-Terminal III–V//Si Triple-Junction Solar Cell with Power Conversion Efficiency of 35.9% at AM1.5g. Prog. Photovolt. 2022, 30, 869–879. [Google Scholar] [CrossRef]
- Benda, V.; Cerna, L. A Note on Limits and Trends in PV Cells and Modules. Appl. Sci. 2022, 12, 3363. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, D.; Altermatt, P.P.; Zhang, S.; Wang, L.; Zhang, X.; Xu, J.; Feng, Z.; Shen, H.; Verlinden, P.J. The Silver Learning Curve for Photovoltaics and Projected Silver Demand for Net-Zero Emissions by 2050. Prog. Photovolt. 2023, 31, 1194–1204. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Nakamura, K.; Ozaki, R.; Kojima, N.; Ohshita, Y.; Masuda, T.; Okumura, K.; Satou, A.; Nakado, T.; Yamada, K.; et al. Analysis for the Potential of High-Efficiency and Low-Cost Vehicle-Integrated Photovoltaics. Sol. RRL 2022, 7, 2200556. [Google Scholar] [CrossRef]
- Sofia, S.E.; Wang, H.; Bruno, A.; Cruz-Campa, J.L.; Buonassisi, T.; Peters, I.M. Roadmap for cost-effective, commercially-viable perovskite silicon tandems for the current and future PV market. Sustain. Energy Fuels 2020, 4, 852–862. [Google Scholar] [CrossRef]
- Oshima, R.; Makita, K.; Ubukata, A.; Sugaya, T. Improvement of Heterointerface Properties of GaAs Solar Cells Grown with InGaP Layers by Hydride Vapor-Phase Epitaxy. IEEE J. Photovolt. 2019, 9, 154. [Google Scholar] [CrossRef]
- Horowitz, K.A.W.; Remo, T.; Smith, B.; Ptak, A. A Techno-Economic Analysis and Cost Reduction Roadmap for III-V Solar Cells; National Renewable Energy Laboratory: Golden, CO, USA, 2018. [Google Scholar]
- Thome, F.T.; Meßmer, P.; Mock, S.; Schrabel, E.; Schindler, F.; Kwopil, W.; Schubert, M.C. Enhanced Power Generation from PV Array Under Partial Shading Conditions by Shade Dispersion Using Su Do Ku Configuration. Sol. RRL 2024, 8, 2400628. [Google Scholar] [CrossRef]
- Sinha, A.; Qian, J.; Moffitt, S.L.; Hurst, K.; Terwilliger, K.; Miller, D.C.; Schelhas, L.T.; Hacke, P. UV-induced degradation of high-efficiency silicon PV modules with different cell architectures. Prog. Photovolt. 2023, 31, 36–51. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhu, K. Rapid advances enabling high-performance inverted perovskite solar cells. Nat. Rev. Mater. 2024, 9, 399. [Google Scholar] [CrossRef]
- Jean, J. Tandems and more at TW4. In Proceedings of the 4th Terawatt Workshop, Asilomar, CA, USA, 6–8 June 2024. [Google Scholar]
- Praventtoni, M.; Rajpud, A.S. On the metastability of silicon heterojunction solar photovoltaic modules. MRS Bull. 2023, 48, 80. [Google Scholar] [CrossRef]
- Matsuda, S.; Otoda, M.; Mitsui, K.; Kato, M.; Hokuo, S.; Yoshida, S. Recent Progress of Amorphous Silicon Solar Cell Technology. In Proceedings of the 17th IEEE Photovoltaic Specialists Conference, New York, NY, USA, 1–4 May 1984; p. 97. [Google Scholar]
- Yamaguchi, M.; Takamoto, T.; Araki, K.; Kojima, N. Recent results for concentrator photovoltaics in Japan. Jpn. J. Appl. Phys. 2016, 55, 04EA05. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Ota, Y.; Masuda, T.; Thiel, C.; Tsakalidis, A.; Jaeger-Waldau, A.; Araki, K.; Nishioka, K.; Takamoto, T.; Nakado, T.; et al. Analysis for Effects of Temperature Rise of PV Modules upon Driving Distance of Vehicle Integrated Photovoltaic Electric Vehicles. Energy Power Eng. 2024, 16, 131–150. [Google Scholar] [CrossRef]
- Chatzipanagi, A.; Kakoulaki, G.; Szabó, S.; Jager-Waldau, A. Overview and Perspective of Integrated Photovoltaics with a Focus on the European Union. Appl. Sci. Appl. Sci. 2024, 14, 10628. [Google Scholar] [CrossRef]
- Verlinden, P. Going to Multi-Terawatt Annual Production with Which Cell Technology. In Proceedings of the 34th International Photovoltaic Science and Engineering Conference (PVSEC-34), Shenzhen, China, 6–10 November 2023. [Google Scholar]
- Breyer, C.; Khalili, S.; Bogdanov, D. Solar photovoltaic capacity demand for a sustainable transport sector to fulfil the Paris Agreement by 2050. Prog. Photovol. 2019, 27, 978. [Google Scholar] [CrossRef]
- Breyer, C.; Bogdanov, D.; Aghahosseini, A.; Gulagi, A.; Child, M.; Oyewo, A.S.; Farfan, J.; Sadovskaia, K.; Vainikka, P. Solar photovoltaics demand for the global energy transition in the power sector. Prog. Photovol. 2018, 26, 505. [Google Scholar] [CrossRef]
- Molnar, G.; Ürge-Vorsatz, D.; Chatterjee, S.J. Residential energy use and its determinants: Evidence from a large-scale survey in Hungary. Clean. Prod. 2022, 375, 134133. [Google Scholar]
- Reindl, T. 100% Renewable Energy Scenario—What Are the Options to Deploy All the Solar Panels? In Proceedings of the 8th World Solar Energy Conversion (WCPEC-8), Milan, Italy, 26–30 September 2022. [Google Scholar]
- Zhang, Y.; Kim, M.; Wang, L.; Verlinden, P.; Hallam, B. Design considerations for multi-terawatt scale manufacturing of existing and future photovoltaic technologies: Challenges and opportunities related to silver, indium and bismuth consumption. Energy Environ. Sci. 2021, 14, 5587–5610. [Google Scholar] [CrossRef]
- Hallam, B.; Kim, M.; Underwood, R.; Drury, S.; Wang, L.; Dias, P. A Polysilicon Learning Curve and the Material Requirements for Broad Electrification with Photovoltaics by 2050. Sol. RRL 2022, 6, 2200458. [Google Scholar] [CrossRef]
- Lennon, A.; Lunardi, M.; Hallam, B.; Dias, P.R. The aluminium demand risk of terawatt photovoltaics for net zero emissions by 2050. Nat. Sustain. 2022, 5, 357–363. [Google Scholar] [CrossRef]
- Underwood, R.; Kim, M.; Drury, S.; Zhang, Y.; Wang, L.; Chan, C.; Hallam, B. Abundant Material Consumption Based on a Learning Curve for Photovoltaic toward Net-Zero Emissions by 2050. Sol. RRL 2023, 7, 2200705. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Araki, K. Concentrated Solar Cells. In Encyclopedia of Sustainability Science and Technology; Meyers, R.A., Ed.; Springer Nature: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Ward, J.S.; Egaas, B.; Noufi, R.; Contreras, M.; Ramanathan, K.; Osterwald, C.; Emery, K. Cu(In,Ga)Se2 solar cells measured under low flux optical concentration. In Proceedings of the 40th IEEE Photovoltaic Specialists Conference, New York, NY, USA, 08–13 June 2014; p. 2934. [Google Scholar] [CrossRef]
- Slade, A.; Garboushain, V. Investigation of high efficiency silicon solar cells. In Proceedings of the Technical Digest of the 15th International Photovoltaic Science and Engineering Conference, Shanghai, China, 10–15 October 2005; p. 701. Available online: https://www.researchgate.net/publication/267779112 (accessed on 11 August 2025).
- Schilling, C.L.; Hohn, O.; Micha, D.N.; Heckelmann, S.; Klinger, V.; Oliva, E.; Glunz, S.W.; Dimroth, F. An eye-tracking study of cueing effects in multimedia learning. IEEE J. Photovolt. 2018, 8, 348–354. [Google Scholar] [CrossRef]
- Sasaki, K.; Agui, T.; Nakaido, K.; Takahashi, N.; Onitsuka, R.; Takamoto, T. Development of Advanced Silicon Solar Cells and Their Module Integration. AIP Conf. Proc. 2013, l556, 22. [Google Scholar]
Challenge | Items | Objectives |
---|---|---|
1 | Performance enhancement and cost reduction |
|
2 | Lifetime, reliability and sustainability enhancements |
|
3 | New applications through integration of photovoltaics | Physical integration of PV into other applications, infrastructure, products and environments/landscapes |
4 | Smart energy system integration of photovoltaics | Intelligent, improved energy system integration |
5 | Socio-economic aspects of high contribution of PV |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamaguchi, M. Current Status and Future Direction of Photovoltaics. Appl. Sci. 2025, 15, 9416. https://doi.org/10.3390/app15179416
Yamaguchi M. Current Status and Future Direction of Photovoltaics. Applied Sciences. 2025; 15(17):9416. https://doi.org/10.3390/app15179416
Chicago/Turabian StyleYamaguchi, Masafumi. 2025. "Current Status and Future Direction of Photovoltaics" Applied Sciences 15, no. 17: 9416. https://doi.org/10.3390/app15179416
APA StyleYamaguchi, M. (2025). Current Status and Future Direction of Photovoltaics. Applied Sciences, 15(17), 9416. https://doi.org/10.3390/app15179416