Enhancing a Building Change Detection Model in Remote Sensing Imagery for Encroachments and Construction on Government Lands in Egypt as a Case Study
Abstract
1. Introduction
2. Related Work
2.1. Change Detection Framework Based on Deep Learning
2.2. Transformers Algorithms
2.3. ResNet-Based Change Detection Methods
2.4. UNet
3. Materials and Methods
3.1. Framework
3.2. ResNet as Encoder
3.3. Residual Blocks in UNet
3.4. Feature Difference Computation
3.5. Multi-Scale Feature Fusion
3.6. UNet-Style Decoder with Skip Connections
3.7. A Convolutional Layer with Sigmoid Activation
3.8. Loss Function
- N: Number of pixels in the batch;
- C: Number of classes;
- yi,c: Ground truth label (1 if pixel i belongs to class c, otherwise 0);
- : Predicted probability for class ccc at pixel i.
- yi: Ground truth label at pixel iii;
- : Predicted probability at pixel iii;
- ϵ: Small constant to avoid division by zero (e.g., ).
- α ∈ [0, 1]: balancing weight (commonly α = 0.5).
4. Results
4.1. Datasets
4.1.1. LEVIR Building Change Detection Dataset (LEVIR-CD) [67]
4.1.2. Satellite Side-Looking Dataset (S2Looking) [68]
4.1.3. EGY-BCD Dataset [69]
- Scene Diversity: Features urban sprawl, desert reclamation projects, and seasonal agricultural shifts, with minimal cloud cover.
- Annotations: Labels highlight anthropogenic changes (e.g., new settlements, road networks) and natural changes (e.g., water body fluctuations).
- Challenges: Accounts for spectral similarity between sand and construction materials, as well as illumination variations in desert environments.
- Preprocessing: Images are split into 256 × 256 pixel patches, with augmented training sets to mitigate class imbalance (e.g., urban vs. barren land).
- Split: Contains ~7000 training, 1500 validation, and 1500 test samples.
4.2. Experimental Settings
4.3. Performance Assessment Metrics in the Experimental Framework
4.4. Performance Evaluation
4.4.1. Comparative Evaluation of S2Looking
4.4.2. Comparative Evaluation of LEVIR-CD
4.4.3. Comparative Evaluation of EGY-BCD Dataset
4.5. Error Analysis and Class-Wise Confusion Metrics
4.5.1. Confusion Matrix and Metrics Definition
Term | Description |
TP | Pixels correctly predicted as change |
FP | Pixels incorrectly predicted as change |
FN | Pixels incorrectly predicted as no change |
TN | Pixels correctly predicted as no change |
- Precision = TP/(TP + FP);
- Recall = TP/(TP + FN);
- F1-score = 2 × (Precision × Recall)/(Precision + Recall);
- IoU = TP/(TP + FP + FN).
4.5.2. Confusion Matrix for Each Dataset
LEVIR-CD Dataset
Model | TP | FP | FN | TN | Precision | Recall | F1-Score | IoU |
UNet | 82,154 | 14,397 | 21,156 | 1,204,005 | 0.85 | 0.795 | 0.821 | 0.698 |
ResUNet++ | 91,658 | 9871 | 15,065 | 1,206,574 | 0.903 | 0.859 | 0.88 | 0.777 |
S2Looking Dataset
Model | TP | FP | FN | TN | Precision | Recall | F1-Score | IoU |
UNet | 76,231 | 17,890 | 19,978 | 2,165,012 | 0.81 | 0.792 | 0.801 | 0.674 |
ResUNet++ | 88,341 | 10,215 | 12,147 | 2,169,328 | 0.896 | 0.879 | 0.887 | 0.79 |
EGY-BCD Dataset
Model | TP | FP | FN | TN | Precision | Recall | F1-Score | IoU |
UNet | 69,812 | 18,664 | 22,013 | 1,560,322 | 0.789 | 0.76 | 0.774 | 0.641 |
ResUNet++ | 81,211 | 11,118 | 13,931 | 1,565,031 | 0.879 | 0.853 | 0.866 | 0.765 |
4.5.3. Interpretation and Comparative Insights
- ResUNet++ consistently outperforms both baselines in terms of reducing false positives and false negatives, especially in more complex datasets (e.g., S2Looking).
- The gain in F1-score ranges from 6% to 9% over UNet and 3–5% over UNet-ResNet.
- The higher IoU indicates better boundary agreement, especially when small-scale building changes are involved.
- ResUNet++’s higher precision highlights its ability to suppress pseudo-changes and shadows, while its higher recall supports improved detection of subtle modifications (e.g., in rural or desert regions).
4.6. Ablation Study: Component-Wise Performance Contribution
- Residual Blocks to the Encoder,
- The Multi-Scale Feature Fusion (MSFF) module, and
- The Composite Loss Function (Weighted Cross-Entropy + Dice).
Interpretation
5. Discussion
5.1. Interpretation of Quantitative Results
5.2. Performance Differences Across Datasets
5.3. Comparison with State-of-the-Art Methods
5.4. Methodological Limitations and Error Analysis
5.5. Practical Implications and Future Enhancements
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CNN | Convolutional Neural Network |
IoU | Intersection Over Union |
MSOF | Multi-Scale Object Feature |
ResNet | Residual Network |
TransUNetCD | Transformer-based UNet for Change Detection |
UNet | U-shaped Network |
References
- Elbeih, S.F. Evaluation of agricultural expansion areas in the Egyptian deserts: A review using remote sensing and GIS. Egypt. J. Remote Sens. Space Sci. 2021, 24, 507–515. [Google Scholar] [CrossRef]
- Numbere, A.O. Application of GIS and remote sensing towards forest resource management in mangrove forest of Niger Delta. In Natural Resources Conservation and Advances for a Sustainable Future; Elsevier: Amsterdam, The Netherlands, 2022; pp. 147–157. [Google Scholar] [CrossRef]
- Janga, B.; Asamani, G.P.; Sun, Z.; Cristea, N. A review of practical AI for remote sensing in earth sciences. Remote Sens. 2023, 15, 4112. [Google Scholar] [CrossRef]
- Srivastava, S.; Ahmed, T. DLCD: Deep learning-based change detection approach to monitor deforestation. Signal Image Video Process. 2024, 18, 167–181. [Google Scholar] [CrossRef]
- Weise, K.; Hedden-Dunkhorst, B.; Wulf, S. Using Satellite Images for Wetland Management and Planning in Africa; Federal Agency for Nature Conservation: Berlin, Germany, 2021. [Google Scholar] [CrossRef]
- van Oostrum, M. Informal laneway encroachment: Reassessing public/private interface transformation in urban villages. Habitat Int. 2020, 96, 102123. [Google Scholar] [CrossRef]
- Salem, M.; Tsurusaki, N. Land use/land cover change detection and urban sprawl in the peri-urban area of Greater Cairo since the Egyptian revolution of 2011. J. Land Use Sci. 2020, 15, 278–292. [Google Scholar] [CrossRef]
- Carrero, G.C.; Walker, R.T.; Simmons, C.S.; Fearnside, P.M. Land grabbing in the Brazilian Amazon: Stealing public land with government approval. Land Use Policy 2022, 112, 105803. [Google Scholar] [CrossRef]
- Mansour, S.; Alahmadi, M.; Atkinson, P.M.; Dewan, A. Forecasting of built-up land expansion in a desert urban environment. Remote Sens. 2022, 14, 2037. [Google Scholar] [CrossRef]
- Stoica, I.V.; Vîrghileanu, M.; Zamfir, D.; Mihai, B.A. Comparative assessment of the built-up area expansion based on CORINE land cover and Landsat datasets. Remote Sens. 2020, 12, 2137. [Google Scholar] [CrossRef]
- Shahfahad Mourya, M.; Kumari, B.; Tayyab, M.; Paarcha, A. Indices based assessment of built-up density and urban expansion of fast-growing Surat city using multi-temporal Landsat data sets. GeoJournal 2021, 88, 4195–4215. [Google Scholar] [CrossRef]
- Wang, H.; Gong, X.; Wang, B.; Deng, C.; Cao, Q. Urban development analysis using built-up area maps based on multiple high-resolution satellite data. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102385. [Google Scholar] [CrossRef]
- De Bem, P.P.; de Carvalho Junior, O.A. Change detection of deforestation in the Brazilian Amazon using Landsat data and convolutional neural networks. Remote Sens. 2020, 12, 901. [Google Scholar] [CrossRef]
- Mishra, P.K.; Rai, A.; Rai, S.C. Land use and land cover change detection using geospatial techniques in the Sikkim Himalaya, India. Egypt. J. Remote Sens. Space Sci. 2020, 23, 133–141. [Google Scholar] [CrossRef]
- Wang, S.W.; Munkhnasan, L.; Lee, W.K. Land use and land cover change detection and prediction in Bhutan’s high altitude city of Thimphu, using cellular automata and Markov chain. Environ. Chall. 2021, 5, 100236. [Google Scholar] [CrossRef]
- Chen, J.; Yuan, Z.; Peng, J.; Chen, L.; Huang, H.; Zhu, J.; Liu, Y.; Li, H. DASNet: Dual attentive fully convolutional Siamese networks for change detection in high-resolution satellite images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 5305–5317. [Google Scholar] [CrossRef]
- Lunetta, R.S.; Knight, J.F.; Ediriwickrema, J. Land-cover change detection using multi-temporal MODIS NDVI data. In Handbook for Water Resources; Elsevier: Amsterdam, The Netherlands, 2022; pp. 435–456. [Google Scholar] [CrossRef]
- Peng, D.; Bruzzone, L.; Zhang, Y.; Guan, H. SemiCDNet: A semisupervised convolutional neural network for change detection in high-resolution remote-sensing images. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 3923–3926. [Google Scholar] [CrossRef]
- Zhang, C.; Yue, P.; Tapete, D.; Jiang, L. A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images. ISPRS J. Photogramm. Remote Sens. 2020, 166, 183–200. [Google Scholar] [CrossRef]
- Shi, W.; Zhang, M.; Zhang, R.; Chen, S.; Zhan, Z. Change detection based on artificial intelligence: State-of-the-art and challenges. Remote Sens. 2020, 12, 1688. [Google Scholar] [CrossRef]
- Khelifi, L.; Mignotte, M. Deep learning for change detection in remote sensing images: Comprehensive review and meta-analysis. IEEE Access 2020, 8, 126385–126400. [Google Scholar] [CrossRef]
- Chen, H.; Qi, Z.; Shi, Z. Remote sensing image change detection with transformers. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5607514. [Google Scholar] [CrossRef]
- Ahmad, M.; Distifano, S.; Mazzara, M.; Khan, A.M. Traditional to transformers: A survey on current trends and future prospects for hyperspectral image classification. arXiv 2024, arXiv:2404.14955. Available online: https://arxiv.org/abs/2404.14955 (accessed on 1 June 2025). [CrossRef]
- Kaplan, S. Data-Centric Remedies for Challenges in Computer Vision Applications: Insights from Active Learning, Deep Generative Models, and Explainable AI. Master’s Thesis, LUT University, Lappeenranta, Finland, 2024. Available online: https://lutpub.lut.fi/handle/10024/166005 (accessed on 1 June 2025).
- Giuste, F.; Shi, W.; Zhu, Y.; Naren, T.; Isgut, M. Explainable artificial intelligence methods in combating pandemics: A systematic review. IEEE Rev. Biomed. Eng. 2022, 15, 15–30. [Google Scholar] [CrossRef]
- Warde-Farley, D.; Bengio, Y. Improving generative adversarial networks with denoising feature matching. In Proceedings of the International Conference on Learning Representations, Toulon, France, 24–26 April 2017; Available online: https://openreview.net/pdf?id=S1X7nhsxl (accessed on 1 June 2025).
- Kaneko, T.; Harada, T. Noise robust generative adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 2816–2825. Available online: https://openaccess.thecvf.com/content_CVPR_2020/html/Kaneko_Noise_Robust_Generative_Adversarial_Networks_CVPR_2020_paper.html (accessed on 1 June 2025).
- Tian, M.; Song, K. Boosting magnetic resonance image denoising with generative adversarial networks. IEEE Access 2021, 9, 145456–145468. [Google Scholar] [CrossRef]
- Baheti, B.; Innani, S.; Gajre, S. Eff-UNet: A novel architecture for semantic segmentation in unstructured environments. In Proceedings of the CVPRW, Seattle, WA, USA, 14–19 June 2020; pp. 1–9. [Google Scholar] [CrossRef]
- Zhang, Y.-F.; Ren, W.; Zhang, Z.; Jia, Z.; Wang, L.; Tan, T. Focal and Efficient IoU Loss for Accurate Bounding Box Regression. Neurocomputing 2022, 506, 146–157. [Google Scholar] [CrossRef]
- Abdollahi, A.; Pradhan, B.; Alamri, A.M. An ensemble architecture of deep convolutional SegNet and UNet networks for building semantic segmentation from high-resolution aerial images. Geocarto Int. 2022, 37, 7220–7241. [Google Scholar] [CrossRef]
- Zunair, H.; Hamza, A.B. Sharp U-Net: Depthwise convolutional network for biomedical image segmentation. Comput. Biol. Med. 2021, 137, 104813. [Google Scholar] [CrossRef]
- Zhu, Y.; Liang, Z.; Yan, J.; Chen, G. ED-Net: Automatic building extraction from high-resolution aerial images with boundary information. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10859–10869. [Google Scholar] [CrossRef]
- Senapati, P.; Basu, A.; Deb, M.; Dhal, K.G. Sharp dense U-Net: An enhanced dense U-Net architecture for nucleus segmentation. Int. J. Mach. Learn. Cybern. 2024, 15, 2079–2094. [Google Scholar] [CrossRef]
- Wagner, F.H.; Dalagnol, R.; Tarabalka, Y.; Segantine, T.Y.F.; Thomé, R.; Hirye, M.C.M. U-Net-Id, an Instance Segmentation Model for Building Extraction from Satellite Images—Case Study in the Joanópolis City, Brazil. Remote Sens. 2020, 12, 1544. [Google Scholar] [CrossRef]
- Shafique, A.; Cao, G.; Khan, Z.; Asad, M.; Aslam, M. Deep learning-based change detection in remote sensing images: A review. Remote Sens. 2022, 14, 871. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, S.; Wang, H.H. Efficient GAN-based remote sensing image change detection under noise conditions. In Image Processing and Capsule Networks; Springer: Berlin/Heidelberg, Germany, 2021; pp. 157–177. [Google Scholar] [CrossRef]
- Kande, N.A.; Dakhane, R.; Dukkipati, A. SiameseGAN: A generative model for denoising of spectral domain optical coherence tomography images. IEEE Trans. Med. Imaging 2021, 40, 180–192. [Google Scholar] [CrossRef]
- Ding, L.; Zheng, K.; Lin, D.; Bruzzone, L. MP-ResNet: Multi-path Residual Network for the Semantic Segmentation of High-Resolution PolSAR Images. IEEE Geosci. Remote Sens. Lett. 2021, 19, 4014205. [Google Scholar] [CrossRef]
- Thakur, R.S.; Chatterjee, S.; Yadav, R.N.; Gupta, L. Image de-noising with machine learning: A review. IEEE Access 2021, 9, 101586–101611. [Google Scholar] [CrossRef]
- Momeny, M.; Neshat, A.A.; Hussain, M.A.; Kia, S. Learning-to-augment strategy using noisy and denoised data: Improving generalizability of deep CNN for the detection of COVID-19 in X-ray images. Comput. Biol. Med. 2021, 134, 104482. [Google Scholar] [CrossRef] [PubMed]
- Geng, M.; Meng, X.; Yu, J.; Zhu, L.; Jin, L.; Jiang, Z.; Qiu, B.; Li, H.; Kong, H.; Yuan, J.; et al. Content-Noise Complementary Learning for Medical Image Denoising. IEEE Trans. Med. Imaging 2022, 41, 407–419. [Google Scholar] [CrossRef]
- El Helou, M.; Süsstrunk, S. Blind Universal Bayesian Image Denoising with Gaussian Noise Level Learning. IEEE Trans. Image Process. 2020, 29, 4885–4897. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chen, G.; Zhang, T. A CNN-Transformer Hybrid Approach for Crop Classification Using Multitemporal Multisensor Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 847–858. [Google Scholar] [CrossRef]
- Deng, P.; Xu, K.; Huang, H. When CNNs Meet Vision Transformer: A Joint Framework for Remote Sensing Scene Classification. IEEE Geosci. Remote Sens. Lett. 2022, 19, 8020305. [Google Scholar] [CrossRef]
- Shao, Z.; Tang, P.; Wang, Z.; Saleem, N.; Yam, S.; Sommai, C. BRRNet: A Fully Convolutional Neural Network for Automatic Building Extraction From High-Resolution Remote Sensing Images. Remote Sens. 2020, 12, 1050. [Google Scholar] [CrossRef]
- Ding, L.; Lin, D.; Lin, S.; Zhang, J.; Cui, X.; Wang, Y.; Tang, H.; Bruzzone, L. Looking Outside the Window: Wide-Context Transformer for the Semantic Segmentation of High-Resolution Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Wu, B.; Meng, D.; Wang, L.; Liu, N.; Wang, Y. Seismic Impedance Inversion Using Fully Convolutional Residual Network and Transfer Learning. IEEE Geosci. Remote Sens. Lett. 2020, 17, 2140–2144. [Google Scholar] [CrossRef]
- Soni, A.; Koner, R.; Villuri, V.G.K. M-UNet: Modified U-Net Segmentation Framework with Satellite Imagery. In Proceedings of the Global AI Congress 2019, Kolkata, India, 12–14 September 2019; Advances in Intelligent Systems and Computing; Mandal, J., Mukhopadhyay, S., Eds.; Springer: Singapore, 2020; Volume 1112. [Google Scholar] [CrossRef]
- Venugopal, N. Automatic Semantic Segmentation with DeepLab Dilated Learning Network for Change Detection in Remote Sensing Images. Neural Process Lett. 2020, 51, 2355–2377. [Google Scholar] [CrossRef]
- Marsocci, V.; Coletta, V.; Ravanelli, R.; Scardapane, S.; Crespi, M. Inferring 3D change detection from bitemporal optical images. ISPRS J. Photogramm. Remote Sens. 2023, 196, 325–339. [Google Scholar] [CrossRef]
- Dang, B.; Li, Y. MSResNet: Multiscale Residual Network via Self-Supervised Learning for Water-Body Detection in Remote Sensing Imagery. Remote Sens. 2021, 13, 3122. [Google Scholar] [CrossRef]
- Li, H.; Qiu, K.; Chen, L.; Mei, X.; Hong, L.; Tao, C. SCAttNet: Semantic segmentation network with spatial and channel attention mechanism for high-resolution remote sensing images. IEEE Geosci. Remote Sens. Lett. 2020, 18, 905–909. [Google Scholar] [CrossRef]
- Wang, T.; Bai, T.; Xu, C.; Zhang, E.; Liu, B.; Zhao, X.; Zhang, H. MDS-Net: An Image-Text Enhanced Multimodal Dual-Branch Siamese Network for Remote Sensing Change Detection. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 12421–12438. [Google Scholar] [CrossRef]
- Chang, Y.; Luo, B. Bidirectional Convolutional LSTM Neural Network for Remote Sensing Image Super-Resolution. Remote Sens. 2019, 11, 2333. [Google Scholar] [CrossRef]
- He, R.; Xiao, Y.; Lu, X.; Zhang, S.; Liu, Y. ST-3DGMR: Spatio-temporal 3D grouped multiscale ResNet network for region-based urban traffic flow prediction. Inf. Sci. 2023, 624, 68–93. [Google Scholar] [CrossRef]
- Wang, L.; Li, R.; Zhang, C.; Fang, S.; Duan, C.; Meng, X.; Atkinson, P.M. UNetFormer: A UNet-like transformer for efficient semantic segmentation of remote sensing urban scene imagery. ISPRS J. Photogramm. Remote Sens. 2022, 190, 196–214. [Google Scholar] [CrossRef]
- Wang, F.; Jiang, M.; Qian, C.; Yang, S.; Li, C.; Zhang, H.; Wang, X.; Tang, X. Residual attention network for image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 234–241. [Google Scholar] [CrossRef]
- Caye Daudt, R.; Le Saux, B.; Boulch, A. Fully Convolutional Siamese Networks for Change Detection. arXiv 2018, arXiv:1810.08462. [Google Scholar] [CrossRef]
- Peng, D.; Zhang, Y.; Guan, H. End-to-end change detection for high resolution satellite images using improved UNet++. Remote Sens. 2019, 11, 1382. [Google Scholar] [CrossRef]
- Fan, X.; Cao, P.; Shi, P.; Wang, J.; Xin, Y.; Huang, W. A Nested U-Net with Attention Mechanism for Road Crack Image Segmentation. In Proceedings of the 2021 IEEE 6th International Conference on Signal and Image Processing (ICSIP), Nanjing, China, 22–24 October 2021; pp. 189–193. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, L.; Cheng, S.; Li, Y. SwinSUNet: Pure Transformer Network for Remote Sensing Image Change Detection. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5224713. [Google Scholar] [CrossRef]
- Giannopoulos, M.; Tsagkatakis, G.; Tsakalides, P. 4D U-Nets for Multi-Temporal Remote Sensing Data Classification. Remote Sens. 2022, 14, 634. [Google Scholar] [CrossRef]
- Bousias Alexakis, E.; Armenakis, C. Evaluation of Unet and Unet++ Architectures in High Resolution Image Change Detection Applications. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2020, XLIII-B3-2020, 1507–1514. [Google Scholar] [CrossRef]
- Jiang, J.; Liu, L.; Cui, Y.; Zhao, Y. A Nested UNet Based on Multi-Scale Feature Extraction for Mixed Gaussian-Impulse Removal. Appl. Sci. 2023, 13, 9520. [Google Scholar] [CrossRef]
- Chen, H.; Shi, Z. A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection. Remote Sens. 2020, 12, 1662. [Google Scholar] [CrossRef]
- Shen, L.; Lu, Y.; Chen, H.; Wei, H.; Xie, D.; Yue, J.; Chen, R.; Lv, S.; Jiang, B. S2Looking: A Satellite Side-Looking Dataset for Building Change Detection. Remote Sens. 2021, 13, 5094. [Google Scholar] [CrossRef]
- Holail, S.; Saleh, T.; Xiao, X.; Li, D. AFDE-Net: Building Change Detection Using Attention-Based Feature Differential Enhancement for Satellite Imagery. IEEE Geosci. Remote Sens. Lett. 2023, 20, 6006405. [Google Scholar] [CrossRef]
- Pang, L.; Sun, J.; Chi, Y.; Yang, Y.; Zhang, F.; Zhang, L. CD-TransUNet: A Hybrid Transformer Network for the Change Detection of Urban Buildings Using L-Band SAR Images. Sustainability 2022, 14, 9847. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, S.; Tong, J.; Liao, F.; Zhang, Y.; Shen, X. DDCNN: A Promising Tool for Simulation-To-Reality UAV Fault Diagnosis. Neural Process. Lett. 2023. [Google Scholar] [CrossRef]
- Yin, H.; Ma, C.; Weng, L.; Xia, M.; Lin, H. Bitemporal Remote Sensing Image Change Detection Network Based on Siamese-Attention Feedback Architecture. Remote Sens. 2023, 15, 4186. [Google Scholar] [CrossRef]
Model Name | Encoder Backbone | Decoder Structure | Feature Fusion | Loss Function | Notes/Innovations |
---|---|---|---|---|---|
UNet | Standard ConvNet | UNet-style | None | Binary Cross-Entropy | Baseline model with plain convolutions and skip connections |
ResUNet++ | ResNet50 | UNet-style | Multi-Scale Feature Fusion (MSFF) | Weighted Cross-Entropy + Dice Loss | Full proposed model; adds MSFF and composite loss to enhance multi-scale accuracy |
Dataset | Image Pair | Resolution | Train/Val/Test Split | Pre-Processing and Augmentation |
---|---|---|---|---|
EGY-BCD | 2500 | 0.5 m/pixel | 60%/20%/20% | Orthorectification; normalized to [0, 1]; flips, rotations (±90°), random crops |
LEVIR-CD | 700 | 0.5 m/pixel | 60%/20%/20% | Rescaled to 256 × 256; horizontal/vertical flips; brightness jitter |
S2Looking | 1000 | 10 m/pixel | 70%/15%/15% | Band stacking (RGB + NIR); per-channel standardization; random rotations |
Conf. | Epochs | B.Size | L.Rate | Momt. | W.decay |
30 | 8 | 0.01 | 0.90 | 5 × 10−4 |
Method | P (%) | R (%) | F1 (%) | IoU (%) |
---|---|---|---|---|
TransUNetCD [70] | 92.43 | 89.82 | 91.11 | 83.67 |
U-Net++_MSOF [61] | 90.33 | 81.82 | 85.86 | 75.24 |
IFN [19] | 90.61 | 55.73 | 69.86 | 53.69 |
DDCNN [71] | 88.52 | 81.39 | 84.81 | 73.62 |
BiT [72] | 92.04 | 87.96 | 89.96 | 81.75 |
UNet [63] | 89.21 | 80.14 | 84.42 | 73.10 |
Our Model | 92.60 | 89.90 | 91.20 | 84.00 |
Method | P (%) | R (%) | F1 (%) | IoU (%) |
---|---|---|---|---|
TransUNetCD | 96.93 | 97.42 | 97.17 | 94.50 |
U-Net++_MSOF | 86.88 | 76.53 | 81.29 | 68.48 |
IFN | 90.56 | 70.18 | 79.08 | 65.40 |
DDCNN | 89.18 | 82.14 | 85.45 | 74.59 |
BiT | 96.19 | 93.99 | 95.07 | 90.61 |
UNet | 87.52 | 75.64 | 81.12 | 68.30 |
Our Model | 97.00 | 97.60 | 97.20 | 94.60 |
Method | P (%) | R (%) | F1 (%) | IoU (%) |
---|---|---|---|---|
BiT | 96.19 | 93.99 | 95.07 | 90.61 |
TransUNetCD | 96.93 | 97.42 | 97.17 | 94.50 |
UNet | 85.12 | 78.25 | 81.55 | 69.10 |
Our Model | 96.96 | 97.50 | 97.20 | 94.60 |
Model Variant | Residual Blocks | MSFF | Composite Loss | Precision | Recall | F1-Score | IoU |
---|---|---|---|---|---|---|---|
UNet (Baseline) | ✗ | ✗ | ✗ | 0.85 | 0.795 | 0.821 | 0.698 |
UNet + Residual Blocks (UNet-ResNet) | ✓ | ✗ | ✗ | 0.878 | 0.827 | 0.852 | 0.74 |
UNet-ResNet + MSFF | ✓ | ✓ | ✗ | 0.89 | 0.844 | 0.866 | 0.76 |
ResUNet++ (Full Model) | ✓ | ✓ | ✓ | 0.903 | 0.859 | 0.88 | 0.777 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AbdElhamied, E.M.; Youssef, S.M.; ElShenawy, M.A.; Salama, G.I. Enhancing a Building Change Detection Model in Remote Sensing Imagery for Encroachments and Construction on Government Lands in Egypt as a Case Study. Appl. Sci. 2025, 15, 9407. https://doi.org/10.3390/app15179407
AbdElhamied EM, Youssef SM, ElShenawy MA, Salama GI. Enhancing a Building Change Detection Model in Remote Sensing Imagery for Encroachments and Construction on Government Lands in Egypt as a Case Study. Applied Sciences. 2025; 15(17):9407. https://doi.org/10.3390/app15179407
Chicago/Turabian StyleAbdElhamied, Essam Mohamed, Sherin Moustafa Youssef, Marwa Ali ElShenawy, and Gouda Ismail Salama. 2025. "Enhancing a Building Change Detection Model in Remote Sensing Imagery for Encroachments and Construction on Government Lands in Egypt as a Case Study" Applied Sciences 15, no. 17: 9407. https://doi.org/10.3390/app15179407
APA StyleAbdElhamied, E. M., Youssef, S. M., ElShenawy, M. A., & Salama, G. I. (2025). Enhancing a Building Change Detection Model in Remote Sensing Imagery for Encroachments and Construction on Government Lands in Egypt as a Case Study. Applied Sciences, 15(17), 9407. https://doi.org/10.3390/app15179407