Ultrasound-Assisted Extraction of Polyphenols from Laurus nobilis Leaves: Effects of Process Parameters
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Materials
2.3. Ultrasound-Assisted Extraction
2.4. Colour of Extracts
2.5. Total Phenol and Flavonoid Content
2.6. High-Performance Liquid Chromatography Analysis of Phenolic Compounds
2.7. Statistical Analysis
3. Results and Discussion
3.1. Correlations of UAE Parameters
3.2. Influence of UAE Parameters on Colour of Laurel Leaf Extracts
3.3. Influence of UAE Parameters on Content of Total Phenols and Flavonoids in Laurel Leaf
3.3.1. Influence of UAE Parameters on Content of Total Phenols in Laurel Leaf
3.3.2. Influence of UAE Parameters on Content of Total Flavonoids in Laurel Leaf
3.4. Influence of UAE Parameters on Content of Phenolic Compounds in Laurel Leaf
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Sample | Amplitude (%) | Time (min) | Temperature (o) (°C) | Temperature (e) (°C) | ΔT | Solvent | |
|---|---|---|---|---|---|---|---|
| A | 1 | 100 | 3 | 23.5 | 34.2 | 10.7 | 30% (v/v) EtOH |
| 2 | 6 | 23.4 | 46.3 | 22.9 | |||
| 3 | 9 | 23.4 | 54.0 | 30.6 | |||
| B | 1 | 80 | 3 | 23.2 | 32.5 | 9.3 | |
| 2 | 6 | 23.2 | 41.4 | 18.2 | |||
| 3 | 9 | 23.3 | 47.0 | 23.7 | |||
| C | 1 | 60 | 3 | 22.6 | 28.3 | 5.7 | |
| 2 | 6 | 22.8 | 35.4 | 12.6 | |||
| 3 | 9 | 23.1 | 40.0 | 16.9 | |||
| D | 1 | 100 | 3 | 23.5 | 42.4 | 18.9 | 70% (v/v) EtOH |
| 2 | 6 | 23.7 | 54.5 | 30.8 | |||
| 3 | 9 | 23.9 | 61.8 | 37.9 | |||
| E | 1 | 80 | 3 | 23.1 | 37.2 | 14.1 | |
| 2 | 6 | 23.6 | 48.9 | 25.3 | |||
| 3 | 9 | 23.2 | 55.9 | 32.7 | |||
| F | 1 | 60 | 3 | 21.9 | 31.9 | 10.0 | |
| 2 | 6 | 22.1 | 39.5 | 17.4 | |||
| 3 | 9 | 22.4 | 46.2 | 23.8 | |||
| G | 1 | 100 | 3 | 22.7 | 35.9 | 13.2 | 30% (v/v) Ace |
| 2 | 6 | 21.9 | 48.2 | 26.3 | |||
| 3 | 9 | 22.3 | 54.2 | 31.9 | |||
| H | 1 | 80 | 3 | 21.0 | 32.5 | 11.5 | |
| 2 | 6 | 22.4 | 40.7 | 18.3 | |||
| 3 | 9 | 21.5 | 47.3 | 25.8 | |||
| I | 1 | 60 | 3 | 22.1 | 28.6 | 6.5 | |
| 2 | 6 | 22.2 | 35.1 | 12.9 | |||
| 3 | 9 | 22.2 | 40.6 | 18.4 | |||
| J | 1 | 100 | 3 | 22.7 | 35.7 | 13.0 | 70% (v/v) Ace |
| 2 | 6 | 22.7 | 44.4 | 21.7 | |||
| 3 | 9 | 23.2 | 48.4 | 25.2 | |||
| K | 1 | 80 | 3 | 23.2 | 33.6 | 10.4 | |
| 2 | 6 | 22.6 | 39.3 | 16.7 | |||
| 3 | 9 | 22.7 | 46.2 | 23.5 | |||
| L | 1 | 60 | 3 | 21.8 | 29.0 | 7.2 | |
| 2 | 6 | 22.0 | 34.9 | 12.9 | |||
| 3 | 9 | 21.8 | 40.3 | 18.5 | |||


References
- Insights, C.M. Title of Report. Available online: https://www.coherentmarketinsight.com (accessed on 15 June 2025).
- Chauhan, B.; Kumar, G.; Kalam, N.; Ansari, S.H. Current concepts and prospects of herbal nutraceutical: A review. J. Adv. Pharm. Technol. 2013, 4, 4–8. [Google Scholar] [CrossRef]
- Pelvan, E.; Karaoglu, O.; Firat, E.O.; Kalyon, K.B.; Ros, E.; Alasalvar, C. Immunomodulatory effects of selected medicinal herbs and their essential oils: A comprehensive review. J. Funct. Foods 2022, 94, 105108. [Google Scholar] [CrossRef]
- Bommakanti, V.; Ajikumar, A.P.; Sivi, C.M.; Prakash, G.; Mundanat, A.S.; Ahmad, F.; Haque, S.; Prieto, M.A.; Rana, S.S. An Overview of Herbal Nutraceuticals, Their Extraction, Formulation, Therapeutic Effects and Potential Toxicity. Separations 2023, 10, 177. [Google Scholar] [CrossRef]
- Research, Z.M. Bay Leaf Market. Available online: www.zionmarketresearch.com (accessed on 10 June 2025).
- Anzano, A.; de Falco, B.; Grauso, L.; Motti, R.; Lanzotti, V. Laurel, Laurus nobilis L.: A review of its botany, traditional uses, phytochemistry and pharmacology. Phytochem. Rev. 2022, 21, 565–615. [Google Scholar] [CrossRef]
- Belasli, A.; Ben Miri, Y.; Aboudaou, M.; Ouahioune, L.A.; Montanes, L.; Ariño, A.; Djenane, D. Antifungal, antitoxigenic, and antioxidant activities of the essential oil from laurel (Laurus nobilis L.): Potential use as wheat preservative. Food Sci. Nutr. 2020, 8, 4717–4729. [Google Scholar] [CrossRef]
- Nenadis, N.; Papapostolou, M.; Tsimidou, M.Z. Suggestions on the Contribution of Methyl Eugenol and Eugenol to Bay Laurel (Laurus nobilis L.) Essential Oil Preservative Activity through Radical Scavenging. Molecules 2021, 26, 2342. [Google Scholar] [CrossRef]
- Ordoudi, S.A.; Papapostolou, M.; Nenadis, N.; Mantzouridou, F.T.; Tsimidou, M.Z. Bay Laurel (Laurus nobilis L.) Essential Oil as a Food Preservative Source: Chemistry, Quality Control, Activity Assessment, and Applications to Olive Industry Products. Foods 2022, 11, 752. [Google Scholar] [CrossRef]
- Paparella, A.; Nawade, B.; Shaltiel-Harpaz, L.; Ibdah, M. A Review of the Botany, Volatile Composition, Biochemical and Molecular Aspects, and Traditional Uses of Laurus nobilis. Plants 2022, 11, 1209. [Google Scholar] [CrossRef]
- Sousa, V.I.; Parente, J.F.; Marques, J.F.; Forte, M.A.; Tavares, C.J. Microencapsulation of Essential Oils: A Review. Polymers 2022, 14, 1730. [Google Scholar] [CrossRef]
- Petkova, Z.; Stefanova, G.; Girova, T.; Antova, G.; Stoyanova, M.; Damianova, S.; Gochev, V.; Stoyanova, A.; Zheljazkov, V.D. Phytochemical Investigations of Laurel Fruits. Nat. Prod. Commun. 2019, 14, 1934578X19868876. [Google Scholar] [CrossRef]
- Chrysargyris, A.; Mikallou, M.; Petropoulos, S.; Tzortzakis, N. Profiling of Essential Oils Components and Polyphenols for Their Antioxidant Activity of Medicinal and Aromatic Plants Grown in Different Environmental Conditions. Agronomy 2020, 10, 727. [Google Scholar] [CrossRef]
- Trifan, A.; Zengin, G.; Brebu, M.; Skalicka-Wozniak, K.; Luca, S.V. Phytochemical Characterization and Evaluation of the Antioxidant and Anti-Enzymatic Activity of Five Common Spices: Focus on Their Essential Oils and Spent Material Extractives. Plants 2021, 10, 2692. [Google Scholar] [CrossRef]
- Dobroslavic, E.; Garofulic, I.E.; Zoric, Z.; Pedisic, S.; Dragovic-Uzelac, V. Polyphenolic Characterization and Antioxidant Capacity of Laurus nobilis L. Leaf Extracts Obtained by Green and Conventional Extraction Techniques. Processes 2021, 9, 1840. [Google Scholar] [CrossRef]
- Berendika, M.; Drozdek, S.D.; Odeh, D.; Orsolic, N.; Dragicevic, P.; Sokolovic, M.; Garofulic, I.E.; Dikic, D.; Jurcevic, I.L. Beneficial Effects of Laurel (Laurus nobilis L.) and Myrtle (Myrtus communis L.) Extract on Rat Health. Molecules 2022, 27, 581. [Google Scholar] [CrossRef] [PubMed]
- de Falco, B.; Grauso, L.; Fiore, A.; Bonanomi, G.; Lanzotti, V. Metabolomics and chemometrics of seven aromatic plants: Carob, eucalyptus, laurel, mint, myrtle, rosemary and strawberry tree. Phytochem. Anal. 2022, 33, 696–709. [Google Scholar] [CrossRef] [PubMed]
- Males, I.; Dragovic-Uzelac, V.; Jerkovic, I.; Zoric, Z.; Pedisic, S.; Repajic, M.; Garofulic, I.E.; Dobrincic, A. Non-Volatile and Volatile Bioactives of Salvia officinalis L., Thymus serpyllum L. and Laurus nobilis L. Extracts with Potential Use in the Development of Functional Beverages. Antioxidants 2022, 11, 1140. [Google Scholar] [CrossRef]
- Awada, F.; Hamade, K.; Kassir, M.; Hammoud, Z.; Mesnard, F.; Rammal, H.; Fliniaux, O. Leaves and Fruits: A Review of Metabolite Composition and Interest in Human Health. Appl. Sci. 2023, 13, 4606. [Google Scholar] [CrossRef]
- Dobroslavic, E.; Garofulic, I.E.; Ilich, J.Z. Potential of Laurel (Laurus nobilis L.) Leaf Polyphenols for Modulation of Body Composition. Appl. Sci. 2023, 13, 2275. [Google Scholar] [CrossRef]
- Dobroslavic, E.; Garofulic, I.E.; Zoric, Z.; Pedisic, S.; Roje, M.; Dragovic-Uzelac, V. Physicochemical Properties, Antioxidant Capacity, and Bioavailability of Laurus nobilis L. Leaf Polyphenolic Extracts Microencapsulated by Spray Drying. Foods 2023, 12, 1923. [Google Scholar] [CrossRef]
- Dobroslavic, E.; Garofulic, I.E.; Separovic, J.; Zoric, Z.; Pedisic, S.; Dragovic-Uzelac, V. Pressurized Liquid Extraction as a Novel Technique for the Isolation of Laurus nobilis L. Leaf Polyphenols. Molecules 2022, 27, 5099. [Google Scholar] [CrossRef]
- Miljanovic, A.; Dent, M.; Grbin, D.; Pedisic, S.; Zoric, Z.; Marijanovic, Z.; Jerkovic, I.; Bielen, A. Sage, Rosemary, and Bay Laurel Hydrodistillation By-Products as a Source of Bioactive Compounds. Plants 2023, 12, 2394. [Google Scholar] [CrossRef]
- Miljanović, A.; Bielen, A.; Grbin, D.; Marijanović, Z.; Andlar, M.; Rezić, T.; Roca, S.; Jerković, I.; Vikić-Topić, D.; Dent, M. Effect of Enzymatic, Ultrasound, and Reflux Extraction Pretreatments on the Chemical Composition of Essential Oils. Molecules 2020, 25, 4818. [Google Scholar] [CrossRef]
- Dobroslavić, E.; Repajić, M.; Dragović-Uzelac, V.; Elez Garofulić, I. Isolation of Laurus nobilis preLeaf Polyphenols: A Review on Current Techniques and Future Perspectives. Foods 2022, 11, 235. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Pang, S.; Zhong, M.; Sun, Y.; Qayum, A.; Liu, Y.; Rashid, A.; Xu, B.; Liang, Q.; Ma, H.; et al. A comprehensive review of ultrasonic assisted extraction (UAE) for bioactive components: Principles, advantages, equipment, and combined technologies. Ultrason. Sonochem. 2023, 101, 106646. [Google Scholar] [CrossRef] [PubMed]
- Šic Žlabur, J.; Brajer, M.; Voca, S.; Galic, A.; Radman, S.; Rimac-Brncic, S.; Xia, Q.; Zhu, Z.Z.; Grimi, N.; Barba, F.J.; et al. Ultrasound as a Promising Tool for the Green Extraction of Specialized Metabolites from Some Culinary Spices. Molecules 2021, 26, 1866. [Google Scholar] [CrossRef] [PubMed]
- Moura-Alves, M.; Souza, V.G.L.; Silva, J.A.; Esteves, A.; Pastrana, L.M.; Saraiva, C.; Cerqueira, M.A. Characterization of Sodium Alginate-Based Films Blended with Olive Leaf and Laurel Leaf Extracts Obtained by Ultrasound-Assisted Technology. Foods 2023, 12, 4076. [Google Scholar] [CrossRef]
- Spanos, G.A.; Wrolstad, R.E. Influence of processing and storage on the phenolic composition of Thompson Seedless grape juice. J. Agric. Food Chem. 1990, 38, 1565–1571. [Google Scholar] [CrossRef]
- Jia, Z.; Tang, M.; Wu, J. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Bilušić, T.; Drvenica, I.; Kalušević, A.; Marijanović, Z.; Jerković, I.; Mužek, M.N.; Bratanić, A.; Skroza, D.; Zorić, Z.; Pedisić, S.; et al. Influences of freeze- and spray-drying vs. encapsulation with soy and whey proteins on gastrointestinal stability and antioxidant activity of Mediterranean aromatic herbs. Int. J. Food Sci. Technol. 2021, 56, 1582–1596. [Google Scholar] [CrossRef]
- Henningsson, M.; Sundbom, E.; Armelius, B.Å.; Erdberg, P. PLS model building:: A multivariate approach to personality test data. Scand. J. Psychol. 2001, 42, 399–409. [Google Scholar] [CrossRef]
- Team, R.C. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Bertrand, F.; Sanches, G. Partial Least Squares (PLS) Data Analysis Methods, 0.2.0. 2023. Available online: https://rdrr.io/cran/plsdepot/ (accessed on 6 June 2025).
- Ranjha, M.M.A.N.; Irfan, S.; Lorenzo, J.M.; Shafique, B.; Kanwal, R.; Pateiro, M.; Arshad, R.N.; Wang, L.F.; Nayik, G.A.; Roobab, U.; et al. Sonication, a Potential Technique for Extraction of Phytoconstituents: A Systematic Review. Processes 2021, 9, 1406. [Google Scholar] [CrossRef]
- Plaskova, A.; Mlcek, J. New insights of the application of water or ethanol-water plant extract rich in active compounds in food. Front. Nutr. 2023, 10, 1118761. [Google Scholar] [CrossRef] [PubMed]
- López-Rodríguez, D.; Micó-Vicent, B.; Jordán-Núñez, J.; Belda, A. Extraction of natural pigments from Mediterranean environments plants. Ind. Crops Prod. 2024, 221, 119352. [Google Scholar] [CrossRef]
- Alirezalu, K.; Pateiro, M.; Yaghoubi, M.; Alirezalu, A.; Peighambardoust, S.H.; Lorenzo, J.M. Phytochemical constituents, advanced extraction technologies and techno-functional properties of selected Mediterranean plants for use in meat products. A comprehensive review. Trends Food Sci. Technol. 2020, 100, 292–306. [Google Scholar] [CrossRef]
- Bolouri, P.; Salami, R.; Kouhi, S.; Kordi, M.; Lajayer, B.A.; Hadian, J.; Astatkie, T. Applications of Essential Oils and Plant Extracts in Different Industries. Molecules 2022, 27, 8999. [Google Scholar] [CrossRef]
- Rincón, E.; Balu, A.M.; Luque, R.; Serrano, L. Mechanochemical extraction of antioxidant phenolic compounds from Mediterranean and medicinal Laurus nobilis L: A comparative study with other traditional and green novel techniques. Ind. Crops Prod. 2019, 141, 111805. [Google Scholar] [CrossRef]
- Tometri, S.S.; Ahmady, M.; Ariaii, P.; Soltani, M.S. Extraction and encapsulation of Laurus nobilis leaf extract with nano-liposome and its effect on oxidative, microbial, bacterial and sensory properties of minced beef. J. Food Meas. Charact. 2020, 14, 3333–3344. [Google Scholar] [CrossRef]
- Abdelkebir, R.; Alcántara, C.; Falcó, I.; Sánchez, G.; Garcia-Perez, J.V.; Neffati, M.; Lorenzo, J.M.; Barba, F.J.; Collado, M.C. Effect of ultrasound technology combined with binary mixtures of ethanol and water on antibacterial and antiviral activities of Erodium glaucophyllum extracts. Innov. Food Sci. Emerg. 2019, 52, 189–196. [Google Scholar] [CrossRef]
- Alcántara, C.; Zugcic, T.; Abdelkebir, R.; García-Pérez, J.V.; Jambrak, A.R.; Lorenzo, J.M.; Collado, M.C.; Granato, D.; Barba, F.J. Effects of Ultrasound-Assisted Extraction and Solvent on the Phenolic Profile, Bacterial Growth, and Anti-Inflammatory/Antioxidant Activities of Mediterranean Olive and Fig Leaves Extracts. Molecules 2020, 25, 1718. [Google Scholar] [CrossRef]
- Šic Žlabur, J.; Zutic, I.; Radman, S.; Plesa, M.; Brncic, M.; Barba, F.J.; Rocchetti, G.; Lucini, L.; Lorenzo, J.M.; Domínguez, R.; et al. Effect of Different Green Extraction Methods and Solvents on Bioactive Components of Chamomile (Matricaria chamomilla L.) Flowers. Molecules 2020, 25, 810. [Google Scholar] [CrossRef]
- Mansinhos, I.; Gonçalves, S.; Rodríguez-Solana, R.; Ordóñez-Díaz, J.L.; Moreno-Rojas, J.M.; Romano, A. Ultrasonic-Assisted Extraction and Natural Deep Eutectic Solvents Combination: A Green Strategy to Improve the Recovery of Phenolic Compounds from Lavandula pedunculata subsp. lusitanica (Chaytor) Franco. Antioxidants 2021, 10, 582. [Google Scholar] [CrossRef] [PubMed]
- Šic Žlabur, J.; Radman, S.; Opačić, N.; Rašić, A.; Dujmović, M.; Brnčić, M.; Barba, F.J.; Castagnini, J.M.; Voća, S. Application of Ultrasound as Clean Technology for Extraction of Specialized Metabolites From Stinging Nettle (Urtica dioica L.). Front. Nutr. 2022, 9, 870923. [Google Scholar] [CrossRef] [PubMed]
- Cegledi, E.; Dobroslavic, E.; Zoric, Z.; Repajic, M.; Garofulic, I.E. Antioxidant Activity of Carob Tree (Ceratonia siliqua L.) Leaf Extracts Obtained by Advanced Extraction Techniques. Processes 2024, 12, 658. [Google Scholar] [CrossRef]









| Identified PC | γ (PC)/(mg/L) | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| 30% (v/v) EtOH | |||||||||
| Amplitude (%) | |||||||||
| 100 | 80 | 60 | |||||||
| Time (min) | |||||||||
| 3 | 6 | 9 | 3 | 6 | 9 | 3 | 6 | 9 | |
| Gallic acid | 89.26 (2.98) a | 23.17 (0.77) g | 77.91 (2.60) d | 85.28 (2.84) b | 76.85 (2.56) d | 69.15 (2.30) e | 85.03 (2.83) b | 66.33 (2.21) f | 79.68 (2.66) c |
| p-coumaric acid | 9.40 (0.31) c | 17.96 (0.60) a | 5.13 (0.17) f | 4.67 (0.16) f | 13.80 (0.46) b | 7.71 (0.26) d | 2.19 (0.07) g | 6.58 (0.22) e | 17.30 (0.58) a |
| Rosmarinic acid | nd | 64.19 (2.14) c | 181.15 (6.04) a | nd | 7.06 (0.24) e | 68.74 (2.29) b | nd | nd | 22.58 (0.75) d |
| Rosmarinic acid (der.) | nd | 6.17 (0.21) b | 8.71 (0.29) a | nd | nd | 4.85 (0.16) c | nd | nd | nd |
| ∑sum of phenolic acids | 96.66 (3.29) | 122.30 (4.08) | 284.91 (9.50) | 89.96 (3.00) | 97.70 (3.26) | 157.34 (5.24) | 87.22 (2.91) | 72.91 (2.43) | 121.95 (4.06) |
| Quercetin-3-O-rutinoside | nd | 11.24 (0.37) a | 7.34 (0.24) b | nd | 0.95 (0.03) e | 6.13 (0.20) c | nd | nd | 4.33 (0.14) d |
| Quercetin-O-hexoside | nd | 4.43 (0.15) b | 10.24 (0.34) a | nd | nd | 3.08 (0.10) c | nd | nd | 2.00 (0.07) d |
| Kaempferol-3-O-rutinoside | 44.68 (1.49) d | 125.33 (4.18) a | 61.89 (2.06) b,c | 32.52 (1.08) e | 43.17 (1.44) d | 62.73 (2.09) b | 22.47 (0.75) f | 20.18 (0.67) f | 60.59 (2.02) c |
| Isorhamnetin-O-hexoside | 6.68 (0.22) c | 22.48 (0.75) a | 22.54 (0.75) a | 5.91 (0.20) c | 4.58 (0.15) d | 14.91 (0.50) b | 4.47 (0.15) d | 2.48 (0.08) e | 6.46 (0.22) c |
| Kaempferol-O-hexoside I | nd | 6.45 (0.21) b | 17.58 (0.59) a | nd | nd | 7.03 (0.23) b | nd | nd | nd |
| Luteolin-6-C-glucoside | 6.24 (0.21) a,b | 4.26 (0.14) c | 1.99 (0.07) d | 6.41 (0.21) a | 5.35 (0.18) b,c | 2.48 (0.08) d | 5.05 (0.17) c | 4.91 (0.16) c | nd |
| Kaempferol-O-hexoside II | 4.81 (0.16) c | 7.49 (0.25) a | 5.74 (0.19) b | nd | nd | nd | nd | nd | nd |
| ∑ Sum of flavonoid glycosides | 62.41 (2.08) | 181.69 (6.06) | 130.50 (4.35) | 46.15 (1.54) | 55.80 (1.86) | 98.65 (3.29) | 32.80 (1.09) | 28.47 (0.95) | 75.62 (2.52) |
| Total sum | 161.07 (5.37) | 303.99 (10.13) | 415.40 (13.85) | 136.10 (4.54) | 153.51 (5.12) | 256.00 (8.53) | 120.02 (4.00) | 101.38 (3.38) | 197.57 (6.59) |
| Identified PC | γ(PC)/(mg/L) | ||||||||
| 70% (v/v) EtOH | |||||||||
| Amplitude (%) | |||||||||
| 100 | 80 | 60 | |||||||
| Time (min) | |||||||||
| 3 | 6 | 9 | 3 | 6 | 9 | 3 | 6 | 9 | |
| Gallic acid | 87.34 (2.91) a | 72.65 (2.42) c | 71.59 (2.39) c | 79.62 (2.65) b | 80.34 (2.68) b | 75.35 (2.51) b,c | 74.00 (2.47) b,c | 85.25 (2.84) a | 79.04 (2.68) b |
| p-coumaric acid | 4.94 (0.16) a,b | 5.05 (0.17) a,b | 5.24 (0.17) a,b | 5.30 (0.18) a,b | 4.68 (0.16) b | 5.18 (0.17) a,b | 2.94 (0.10) c | 5.60 (0.19) a | 5.45 (0.18) a |
| Rosmarinic acid | 180.83 (6.03) e | 186.05 (6.20) d | 216.32 (7.21) a | 190.43 (6.35) c,d | 186.34 (6.21) d | 191.14 (6.37) c,d | 108.05 (3.60) f | 196.39 (6.55) c | 203.52 (6.78) b |
| Rosmarinic acid (der.) | 14.6 (10.49) c | 14.90 (0.50) c | 16.22 (0.54) a,b | 15.68 (0.52) b,c | 14.09 (0.47) c | 15.14 (0.50) b,c | nd | 16.52 (0.55) a | 16.63 (0.55) a |
| ∑ Sum of phenolic acids | 289.24 (9.64) | 281.22 (9.37) | 311.69 (10.39) | 295.72 (9.86) | 292.28 (9.74) | 294.27 (9.81) | 185.00 (6.17) | 311.10 (10.37) | 311.75 (10.39) |
| Quercetin-3-O-rutinoside | 9.93 (0.33) e | 13.00 (0.40) b | 14.82 (0.49) a | 11.30 (0.38) c,d | 11.26 (0.38) d | 12.43 (0.41) b,c | 7.48 (0.25) f | 12.76 (0.43) b | 12.40 (0.41) b,c |
| Quercetin-O-hexoside | 16.59 (0.55) c | 19.19 (0.64) b | 21.69 (0.72) a | 17.55 (0.58) c | 16.44 (0.55) c | 18.66 (0.62) b | 8.93 (0.30) d | 19.63 (0.65) b | 19.15 (0.64) b |
| Kaempferol-3-O-rutinoside | 62.47 (2.08) c | 72.43 (2.41) b | 81.89 (2.73) a | 68.34 (2.28) c | 67.51 (2.25) c | 72.95 (2.43) b | 48.47 (1.62) d | 75.26 (2.51) b | 76.15 (2.54) b |
| Isorhamnetin-O-hexoside | 11.74 (0.39) e | 15.58 (0.52) b | 19.21 (0.64) a | 12.70 (0.42) e | 13.70 (0.46) c,d | 15.05 (0.50) b,c | 7.33 (0.24) f | 13.55 (0.45) c,d | 12.69 (0.42) d,e |
| Kaempferol-O-hexoside I | 15.64 (0.52) e | 18.91 (0.63) b | 21.70 (0.72) a | 16.47 (0.55) c,d | 16.07 (0.54) d,e | 18.37 (0.61) b,c | 8.46 (0.28) f | 17.53 (0.58) c,d | 16.92 (0.56) c,d |
| Luteolin-6-C-glucoside | nd | nd | nd | nd | nd | nd | nd | nd | nd |
| Kaempferol-O-hexoside II | 5.82 (0.19) b | 6.34 (0.21) a,b | 7.50 (0.25) a | 5.82 (0.19) b | 5.67 (0.19) b | 6.36 (0.21) a,b | 3.11 (0.10) c | 6.26 (0.21) b | 5.99 (0.20) b |
| ∑ Sum of flavonoid glycosides | 122.19 (4.07) | 145.46 (4.85) | 166.81 (5.56) | 132.17 (4.41) | 130.65 (4.35) | 14,382 (4.79) | 83.78 (2.79) | 144.99 (4.85) | 143.31 (4.78) |
| Total sum | 411.43 (13.71) | 426.68 (14.22) | 478.50 (15.95) | 422.93 (14.26) | 438.09 (14.10) | 438.09 (14.60) | 268.78 (8.96) | 456.09 (15.20) | 455.06 (15.17) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zorić, Z.; Pedisić, S.; Brnčić, M.; Matanović, A.; Marjanović, I.; Ninčević Grassino, A. Ultrasound-Assisted Extraction of Polyphenols from Laurus nobilis Leaves: Effects of Process Parameters. Appl. Sci. 2025, 15, 9347. https://doi.org/10.3390/app15179347
Zorić Z, Pedisić S, Brnčić M, Matanović A, Marjanović I, Ninčević Grassino A. Ultrasound-Assisted Extraction of Polyphenols from Laurus nobilis Leaves: Effects of Process Parameters. Applied Sciences. 2025; 15(17):9347. https://doi.org/10.3390/app15179347
Chicago/Turabian StyleZorić, Zoran, Sandra Pedisić, Mladen Brnčić, Angela Matanović, Ivona Marjanović, and Antonela Ninčević Grassino. 2025. "Ultrasound-Assisted Extraction of Polyphenols from Laurus nobilis Leaves: Effects of Process Parameters" Applied Sciences 15, no. 17: 9347. https://doi.org/10.3390/app15179347
APA StyleZorić, Z., Pedisić, S., Brnčić, M., Matanović, A., Marjanović, I., & Ninčević Grassino, A. (2025). Ultrasound-Assisted Extraction of Polyphenols from Laurus nobilis Leaves: Effects of Process Parameters. Applied Sciences, 15(17), 9347. https://doi.org/10.3390/app15179347

