Timber from Historical Foundation Piles Made of Oak Wood (Quercus robur L.)
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling
Sample | Locational | Data Location | Age of Wood |
---|---|---|---|
(A) | N 54°20′11.8″ E 17°04′17.5″ | Regional Directorate of Forests Szczecinek Stary Dwór Forest District Mielno Forest | Age 100 years old References wood |
(B) | N 54°28′04″ E 17°01′56″ | Francesco Nullo Square, Slupsk | Age 700 years old 14th-century archaeological wood [19] |
(C) | N 50°33′32.9″ E 21°38′56.1″ | Vistula River waterfront, Tarnobrzeg | Age 1800 years old 2nd-century archaeological [15,16] |
2.2. Samples Basic Preparation
2.3. Microscopic Analysis
2.4. Color Analysis
2.5. Chemical Composition Analysis
2.6. Analysis of Infrared Spectroscopy (FTIR-ATR)
2.7. Software and Statistics Analysis
3. Results and Discussion
3.1. Visual and Microscopic Analysis
3.2. Chemical Analysis of Wood Samples
3.3. Infrared Spectroscopy (FTIR) Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kránitz, K.; Sonderegger, W.; Bues, C.T.; Niemz, P. Effects of aging on wood: A literature review. Wood Sci. Technol. 2016, 50, 7–22. [Google Scholar] [CrossRef]
- Froidevaux, J.; Volkmer, T.; Ganne-Chédeville, C.; Gril, J.; Navi, P. Viscoelastic behaviour of aged and non-aged spruce wood in the radial direction. Wood Mater. Sci. Eng. 2012, 7, 1–12. [Google Scholar] [CrossRef]
- Singh, A.P.; Kim, Y.S.; Chavan, R.R. Advances in Understanding Microbial Deterioration of Buried and Waterlogged Archaeological Woods: A Review. Forests 2022, 13, 394. [Google Scholar] [CrossRef]
- Matsuo, M.; Yokoyama, M.; Umemura, K.; Sugiyama, J.; Kawai, S.; Gril, J.; Kubodera, S.; Mitsutani, T.; Ozaki, H.; Sakamoto, M.; et al. Aging of wood: Analysis of color changes during natural aging and heat treatment. Holzforschung 2011, 65, 361–368. [Google Scholar] [CrossRef]
- Sundqvist, B.; Karlsson, O.; Westermark, U. Determination of formic-acid and acetic acid concentrations formed during hydrothermal treatment of birch wood and its relation to colour, strength and hardness. Wood Sci. Technol. 2006, 40, 549–561. [Google Scholar] [CrossRef]
- Fengel, D.; Wegener, G. Wood Chemistry Ultrastructure Reactions; Walter de Gruyter: Berlin, Germany, 1989. [Google Scholar]
- Kranitz, K. Effect of Natural Aging on Wood. Ph.D. Thesis, ETH Zurich, Zürich, Switzerland, 2014. [Google Scholar]
- Tamburini, D.; Lucejko, J.J.; Pizzzo, B.; Mohammed, M.Y.; Sloggett, R.; Colombini, M.P. A critical evaluation of the degradation state of dry arcgeological wood from Egypt by SEM, ATR-FTIR, wet chemical analysis and Py(HMDS)-GC-MS. Polym. Degrad. Stab. 2017, 146, 140–154. [Google Scholar] [CrossRef]
- Ganne-Chédeville, C.; Jääskeläinen, A.S.; Froidevaux, J.; Hughes, M.; Navi, P. Natural and artificial ageing of spruce wood as observed by FTIR-ATR and UVRR spectroscopy. Holzforschung 2012, 66, 163–170. [Google Scholar] [CrossRef]
- Hudson-McAulay, K.J. The Structural and Mechanical Integrity of Historic Wood. Ph.D. Thesis, University of Glasgow, Glasgow, UK, 2016. Available online: http://theses.gla.ac.uk/7529/ (accessed on 2 May 2025).
- Inagaki, T.; Yonenobu, H.; Tsuchikawa, S. Near-Infrared Spectroscopic Monitoring of the Water Adsorption/Desorption Process in Modern and Archaeological Wood. Appl. Spectrosc. 2009, 62, 860–865. Available online: https://opg.optica.org/as/abstract.cfm?URI=as-62-8-860 (accessed on 2 May 2025). [CrossRef]
- Gawron, J.; Szczesna, M.; Zielenkiewicz, T.; Gołofit, T. Cellulose crystallinity index examination in oak wood originated from antique woodwork. Drewno 2012, 188, 109–114. Available online: https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-article-BATA-0019-0009/c/Gawron_vol_55_nr_188_2012.pdf (accessed on 2 May 2025).
- Kacík, F.; Šmíra, P.; Kacíková, D.; Reinprecht, L.; Nasswettrová, A. Chemical Changes in Fir Wood from Old Buildings due to Ageing. Cellul. Chem. Technol. 2014, 48, 79–88. Available online: https://www.academia.edu/download/41720437/Chemical_Changes_In_Fir_Wood_From_Old_Bu20160129-5463-mu6j62.pdf (accessed on 20 July 2025).
- Canevari, C.; Delorenzi, M.; Invernizzi, C. Chemical characterization of wood samples colored with iron inks: Insights into the ancient techniques of wood coloring. Wood Sci. Technol. 2016, 50, 1057–1070. [Google Scholar] [CrossRef]
- Bessa, F.; Sousa, V.; Quilhó, T.; Pereira, H. Diversity of wood colour in tropical timber species and its relationship with wood density and anatomical features. IAWA J. 2023, 45, 335–357. [Google Scholar] [CrossRef]
- Straže, A.; Dremelj, M.; Žveplan, E.; Čufar, K. Spremembe fizikalnih lastnosti hrastovega lesa iz zgodovinskih konstrukcij vživljenjski dobi: Changes in physical properties of oak wood from historical constructions during service life. Les/Wood 2018, 67, 5–14. [Google Scholar] [CrossRef]
- Kojiro, K.; Furuta, Y.; Ohkoshi, M.; Ishimaru, Y.; Yokoyama, M.; Sugiyama, J.; Kawai, S.; Mitsutani, T.; Ozaki, H.; Sakamoto, M.; et al. Changes in micropores in dry wood with elapsed time in the environment. J. Wood Sci. 2008, 54, 515–519. [Google Scholar] [CrossRef]
- Borgin, K.; Faix, O.; Schweers, W. The effect of aging on lignins of wood. Wood Sci. Technol. 1975, 9, 207–211. [Google Scholar] [CrossRef]
- Buraczynski, J.; Wojtanowicz, J. Development of the Vistula and San valleys in the Quaternary in the northern part of the Sandomierz Plain. Ann. Univ. M Curie-Skłodowskiej Sectio R 1966, 21, 143–177. [Google Scholar]
- Mycielska-Dowgiałło, E. Development of the middle Vistula valley in the Holocene in the light of studies of the Tarnobrzeg area. Przegl. Geograficzny 1972, 44, 1. [Google Scholar]
- Jonczak, J.; Olszak, I.; Lazarczyk, A.; Jonczak, J.; Florek, W. Genesis, evolution and properties of soils of the lower Slupia floodplain terraces in the southern part of Slupsk. In Soil-Forming Environment and Soils of River Valleys; Bogucki Scientific Publishing House: Poznań, Poland; Słupsk, Poland, 2013; pp. 33–40. [Google Scholar]
- Cufar, K.; Bizjak, M.; Kuzman, M.K.; Merela, M.; Grabner, M.; Brus, R. Castle Pišece, Slovenia—Building history and wood economy revealed by dendrochronology, dendroprovenancing and historical sources. Dendrochronologia 2014, 32, 357–363. [Google Scholar] [CrossRef]
- Borkowski, J.; Krzysiak, A. Aarchaeological rescue research in the nature of supervision of the demolition of buildings and construction of water supply connections, and excavation—probing research in advance of the investment of the area entered in the register of monuments of Pomorskie voivodeship in Slupsk, 3 and 4 Francesco Nullo Street, parcels No. 724/4 and 724/12, area 6 Slupsk. Report with the development, Voivodeship Office for the Protection of Monuments, Słupsk branch, Lębork, Poland, 2020.
- Zielony, R.; Kliczkowska, A. Regionalizacja Przyrodniczo-Leśna Polski 2010; CILP: Warsaw, Poland, 2012. [Google Scholar]
- Kondracki, J. Geografia Regionalna Polski; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2001. [Google Scholar]
- Kliczkowska, A.; Zielony, R.; Czepińska_kamińska, D.; Kowalkowski, A.; Sikorska, E.; Krzyżanowski, A.; Cieśla, A.; Czerepko, J. (Eds.) Habitat basics of silviculture. In Appendix to the Principles of Silviculture; ORW LP in Bedonie: Warsaw, Poland, 2004. [Google Scholar]
- Marks, L.; Ber, A.; Gogołek, W.; Piotrowska, K. (Eds.) Mapa Geologiczna Polski 1:500 000; Min. Środ., PIG: Warsaw, Poland, 2006. [Google Scholar]
- Mapa Polski Rzeki. 2008. Available online: http://www.rzekipolski.info/mapa-polski-rzeki.html (accessed on 20 August 2025).
- TAPPI T222 om-06; Acid-Insoluble Lignin in Wood and Pulp. Standards Technical Association of the Pulp and Paper Industry (TAPPI): Atlanta, GA, USA, 2006.
- TAPPI T9 wd-75; Holocellulose in Wood. Standards Technical Association of the Pulp and Paper Industry (TAPPI): Atlanta, GA, USA, 2006.
- Čufar, K.; Eržen, T.D.; Krže, L.; Merela, M. Dendrochronological study of painted chests from the collection of the Gorenjska museum in Kran. Les/Wood 2020, 69, 33–45. [Google Scholar] [CrossRef]
- Čufar, K.; Demšar, B.; Beuting, M.; Balzano, A.; Škrk, N.; Krže, L.; Merela, M. Dendrochronological Dating and Provenancing of String Instruments. J. Vis. Exp. 2022, 188, e64591. [Google Scholar] [CrossRef]
- Longo, S.; Egizi, F.; Stagno, V.; Di Trani, M.G.; Marchelletta, G.; Gili, T.; Fazio, E.; Favero, G.; Capuani, S. A Multi-Parametric Investigation on Waterlogged Wood Using a Magnetic Resonance Imaging Clinical Scanner. Forests 2023, 14, 276. [Google Scholar] [CrossRef]
- Seifert, K. Zur Frage der Cellulose-Schnellbestimmung nach der Acetylaceton-Methode. Das. Pap. 1960, 14, 104–106. [Google Scholar]
- Nelson, M.L.; O’Connor, R.T. Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part I. Spectra of types I, II, III and amorphous cellulose. J. Appl. Polym. Sci. 1964, 8, 1311–1324. [Google Scholar] [CrossRef]
- Oh, S.Y.; Yoo, D.; Shin, Y.; Seo, G. FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohydr. Res. 2005, 340, 417–428. [Google Scholar] [CrossRef]
- Carrillo, F.; Colom, X.; Sunñoll, J.J.; Saurina, J. Structural FTIR analysis and the thermal characterization of lyocell and viscose-type fibers. Eur. Polym. J. 2004, 40, 2229–2234. [Google Scholar] [CrossRef]
- Musat, E.C.; Salca, E.A.; Dinulica, F.; Ciobanu VDl Dumitrascu, A.E. Evaluation of color variability of oak veneers for sorting. BioResources 2016, 11, 573–584. [Google Scholar] [CrossRef]
- Resch, H.; Hansmann, C.; Pokorny, M. The color of wood from white oak. Forschung-Entwicklung 2000, 1, 13–15. [Google Scholar]
- Kùdela, J.; Ihrackỳ, P.; Kačik, F. Discoloration and Surface Changes in Spruce Wood after Accelerated Aging. Polymers 2024, 16, 1191. [Google Scholar] [CrossRef] [PubMed]
- Sandoval-Torres, S. Colour alteration and chemistry changes in oak wood (Quercus pedunculata Ehrh) during plain vacuum drying. Wood Sci. Technol. 2010, 46, 177–191. [Google Scholar] [CrossRef]
- Xu, L.; Yang, W.; Liu, M.; Wang, Z.; Liu, X. Wood Species Identification and Property Evaluation of Archaeological Wood Excavated from J1 at Shenduntou Site, Fanchang, Anhui, China. Forests 2025, 16, 1173. [Google Scholar] [CrossRef]
- Ghavidel, A.; Gelbrich, J.; Kuqo, A.; Vasilache, V.; Sandu, I. Investigation of Archeological European White Elm (Ulmus Laevis) for Identifying and Characterizing the Kind of Biological Degradation. Heritage 2020, 3, 1083–1093. [Google Scholar] [CrossRef]
- Rowell, R.M. Handbook of Wood Chemistry and Wood Composites; CRS Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Baar, J.; Paschová, Z.; Hofmann, T.; Kolář, T.; Koch, G.; Saake, B. Rademacher P Natural durability of subfossil oak: Wood chemical composition changes through the ages. Holzforschung 2020, 74, 47–59. [Google Scholar] [CrossRef]
- Ghavidel, A.; Hofmann, T.; Bak, M.; Sandu, I.; Vasilache, V. Comparative archaeometric characterization of recent and historical oak (Quercus spp.) wood. Wood Sci. Technol. 2020, 54, 1121–1137. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, X.; Liu, Y.; Zheng, W.; Song, P. Probing chemical changes in holocellulose and lignin of Timbers in Ancient Buildigs. Polymers 2019, 11, 809. [Google Scholar] [CrossRef]
- Babiński, L.; Fabisiak, E.; Zborowska, M.; Michalska, D.; Prądzyński, W. Changes in oak wood buried in waterlogged peat: Shrinkage as a complementary indicator of the wood degradation rate. Eur. J. Wood Wood Prod. 2019, 77, 691–703. [Google Scholar] [CrossRef]
- Ghavidel, A.; Hosseinpourpia, R.; Gelbrich, J.; Bak, M.; Sandu, I. Microstructural and Chemical Characteristics of Archaeological White Elm (Ulmus laevis P.) and Poplar (Populus spp.). Appl. Sci. 2021, 11, 10271. [Google Scholar] [CrossRef]
- Waliszewska, B.; Zborowska, M.; Prądzyński, W.; Babiński, L.; Kudela, J. Characterization of 2700-year old wood from Biskupin. Wood Res. 2007, 52, 11–22. Available online: https://www.woodresearch.sk/wr/200702/02.pdf (accessed on 20 July 2025).
- Zachar, M.; Čabalova, I.; Kačiková, D.; Jurczyková, T. Effect of Natural Aging on Oak Wood Fire resistance. Polymers 2021, 13, 2059. [Google Scholar] [CrossRef]
- Chen, C.; Ferrari, M.; Angiuli, J.; Yao, C.; Raspi, E.; Bramanti, E. Qualitative and quantitrative analysis of wood samples by Fourier transform infrared spectroscopy and multivariate analysis. Carbohydr. Polym. 2010, 82, 772–778. [Google Scholar] [CrossRef]
- Pandey, K.K.; Pitman, A.J. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int. Biodeterior. Biodegrad. 2003, 52, 151–160. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, H.; Li, B.; Wang, A.; Zhao, R.; Wang, W.; He, Y.; Yang, S.; Han, Y.; Sun, W. Fourier-Transform Infrared Spectroscopy Analysis of the Changes in Chemical Composition of Wooden Components in the Ancient Building of Xichuan Guild Hall. For. Prod. J. 2020, 70, 448–452. [Google Scholar] [CrossRef]
- Pandey, K.K.; Nagveni, H.C. Rapid characterization of brown and white rot degraded chir pine and rubber wood by FTIR soectroscopy. Eur. J. Wood Wood Prod. 2007, 65, 477–481. [Google Scholar] [CrossRef]
- Han, L.; Tian, X.; Keplinger, T.; Zhou, H.; Li, R.; Svedstrӧm, K.; Burgert, I.; Yin, Y.; Guo, J. Even Visually Intact Cell Walls in Waterlogged Archaeological Wood are Chemically Deteriorated and Mechanically Fragile: A Case of a 170 Year-Old Shipwrek. Molecules 2020, 25, 1113. [Google Scholar] [CrossRef]
- Solár, R.; Kurjatko, M.; Manon, B.; Košiková, E.; Neuschlová, E.; Výbohová; Hudec, J. Selected properties of beech wood degraded by brown-rot fungus Coniophora puteana. Drv. Ind. 2007, 58, 3–11. [Google Scholar]
- Ghavidel, A.; Bak, M.; Hofmann, T.; Vasilache, V.; Sandu, I. Evaluation of some wood-water relations and chemometric characteristics of recent oak and archaeological oak wood (Quercus robur) with archaeometric value. J. Cult. Herit. 2021, 51, 21–28. [Google Scholar] [CrossRef]
- Poletto, M.; Zattera, A.J.; Santana, R.M.C. Structural Differences between Wood Species: Evidence from Chemical Composition FTIR Spectroscopy and Thermogravimetric Analysis. J. Appl. Polym. Sci. 2012, 126, 337–344. [Google Scholar] [CrossRef]
- Popescu, M.; Zattera, A.J.; Santana, R.M.C. Degradation of lime wood painting supports II. Cellul. Chem. Technol. 2006, 40, 649–658. [Google Scholar]
- Gupta, B.S.; Jelle, B.P.; Gao, T. Wood façade materials ageing analysis by FTIR spectroscopy. Constr. Mater. 2015, 168, 219–231. [Google Scholar] [CrossRef]
- Faix, O. Clasification of lignins from different botanical origins by FTIR Spectroscopy. Holzforschung 1991, 45, 21–78. [Google Scholar] [CrossRef]
- Pandey, K.K. A Study of Chemical Structure of Soft and Hardwood and wood polymers by FTIR spectroscopy. J. Appl. Polym. Sci. 1999, 71, 1969–1975. [Google Scholar] [CrossRef]
- Traoré, M.; Kaal, J.; Cortizas, A.M. Application of FTIR spectroscopy to the characterization of archeological wood. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2016, 153, 63–70. [Google Scholar] [CrossRef]
- Krivonogov, S.K.; Takahara, H.; Kuzmin, Y.V.; A Orlova, L.; Jull, A.J.T.; Nakamura, T.; Miyoshi, N.; Kawamuro, K.; Bezrukova, E.V. Radiocarbon chronology of the Late Pleistocene–Holocene paleogeographic events in Lake Baikal region (Siberia). Radiocarbon 2004, 46, 745–754. Available online: https://journals.uair.arizona.edu/index.php/radiocarbon/article/viewFile/4207/3632 (accessed on 20 July 2025). [CrossRef]
- Kuśnierz-Krupa, D.; Kuśnierz, K. Cultural landscape of Røros–inscribed in the UNESCO World Heritage List. Teka Kom. Urban. I Archit. Oddziału Pol. Akad. Nauk. W Krakowie 2018, 46, 649–660. Available online: https://journals.pan.pl/Content/130385/PDF/Teka-2018-43.pdf (accessed on 20 July 2025).
- Plit, J.; Pawlicki, R.W. An outline of climate changes from the early Middle Ages until today. In Forest Cover Changes And Landscape Sustainability–A Retrospective Study In Cultural Borderland; IGiPZ PAN: Warsaw, Poland, 2020; p. 246. [Google Scholar] [CrossRef]
- Cefai, S. Venice Charter and the Development of Authenticity. Ochrona Dziedzictwa Kulturowego 2024, 2, 77–101. [Google Scholar] [CrossRef]
- UNESCO. Convention on the protection of the underwater cultural heritage. In Proceedings of the General Conference of the United Nations Educational, Proceedings of the Scientific and Cultural Organisation 31st Session, Paris, France, 5 October–3 November 2001.
- Broda, M.; Hill, C.A.S. Conservation of Waterlogged Wood—Past, Present and Future Perspectives. Forests 2021, 12, 1193. [Google Scholar] [CrossRef]
- Lucejko, J.J.; Tamburini, D.; Zborowska, M.; Babiński, L.; Modugno, F.; Colombini, M.P. Oak wood degradation processes induced by the burial environment in the archaeological site of Biskupin (Poland). Herit. Sci. 2020, 8, 44. [Google Scholar] [CrossRef]
Sample | Mag | FW | HV | INT | DET. | WD | VAC |
---|---|---|---|---|---|---|---|
µm | kV | mm | ps | ||||
(A) | 1000× | 519 | 5 * | Image | BSD Full | 7.910 | 60 |
15 | 8.182 | ||||||
(B) | 1000× | 519 | 15 | Map | BSD Full | 7.834 | 60 |
(C) | 3000× | 173 | 15 | 7.889 | 60 |
Sample | Chromatic Variables | Average | Med. | Min | Max | Standard Deviation |
---|---|---|---|---|---|---|
L* | 61.2 | 60.6 | 59.6 | 63.3 | 1.18 | |
A | a* | 9.0 | 9.2 | 8.5 | 9.7 | 0.35 |
b* | 22.7 | 23.0 | 21.2 | 23.1 | 0.59 | |
L* | 46.9 | 47.55 | 44.0 | 49.8 | 1.74 | |
B | a* | 4.2 | 4.2 | 3.8 | 4.5 | 0.18 |
b* | 9.4 | 9.35 | 7.5 | 12.0 | 1.34 | |
L* | 28.9 | 28.9 | 27.1 | 31.4 | 0.95 | |
C | a* | 0.6 | 0.6 | 0.4 | 0.7 | 0.09 |
b* | 0.6 | 0.2 | 0.0 | 1.7 | 0.63 |
Sample | Content * [%] | Ratios | |||||
---|---|---|---|---|---|---|---|
Cellulose (C) | Lignin (L) | Holocelluloses (Ho) | Hemicellulose (H) | Ho/L | C/L | C/H | |
(A) | 42.90 ± 0.60 | 25.36 ± 0.2 | 80.00 ± 0.30 | 37.10 | 3.15 | 1.69 | 1.16 |
(B) | 41.80 ± 0.20 | 38.28 ± 0.04 | 70.00 ± 0.30 | 28.20 | 1.82 | 1.09 | 1.48 |
(C) | 34.55 ± 0.40 | 31.93 ± 0.07 | 55.35 ± 0.60 | 20.80 | 1.73 | 1.06 | 1.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurecki, A.; Szentner, K.; Jarzębski, M.; Wieruszewski, M. Timber from Historical Foundation Piles Made of Oak Wood (Quercus robur L.). Appl. Sci. 2025, 15, 9322. https://doi.org/10.3390/app15179322
Jurecki A, Szentner K, Jarzębski M, Wieruszewski M. Timber from Historical Foundation Piles Made of Oak Wood (Quercus robur L.). Applied Sciences. 2025; 15(17):9322. https://doi.org/10.3390/app15179322
Chicago/Turabian StyleJurecki, Andrzej, Kinga Szentner, Maciej Jarzębski, and Marek Wieruszewski. 2025. "Timber from Historical Foundation Piles Made of Oak Wood (Quercus robur L.)" Applied Sciences 15, no. 17: 9322. https://doi.org/10.3390/app15179322
APA StyleJurecki, A., Szentner, K., Jarzębski, M., & Wieruszewski, M. (2025). Timber from Historical Foundation Piles Made of Oak Wood (Quercus robur L.). Applied Sciences, 15(17), 9322. https://doi.org/10.3390/app15179322