Prospects of Novel Technologies for PFAS Destruction in Water and Wastewater
Abstract
1. Introduction
2. Energy Considerations in PFAS Removal
3. PFAS Removal and Destruction in WWTPs: State of the Art
3.1. Adsorption for PFAS Removal
3.2. PFAS Filtration
3.3. PFAS Destructive Methods
3.3.1. Advanced Oxidation Processes
3.3.2. Thermal Decomposition/Destruction
4. Emerging Technologies for PFAS Destruction
4.1. Emerging Advanced Oxidation and Oxidation/Reduction Processes
4.1.1. Electron Beam Technology
4.1.2. Plasma Technology
4.1.3. Electrochemical Advanced Oxidation Processes (EAOPs)
4.1.4. UV-Based Processes
4.2. Other High Energy Destruction Technologies
4.2.1. Sonolysis
4.2.2. Supercritical Water Oxidation (SCWO)
4.3. Role of Catalysts in PFAS Degradation
4.4. Other Degradation Methods
4.5. PFAS Concentration for Improvement of Destruction Efficiency
5. Discussion
6. Conclusions and Future Directions
Funding
Conflicts of Interest
References
- EEA. PFAS Contamination in Europe. Available online: https://www.eea.europa.eu/en/european-zero-pollution-dashboards/indicators/treatment-of-drinking-water-to-remove-pfas-signal (accessed on 18 June 2025).
- Blake, M. They Poisoned the World; Random House: New York, NY, USA, 2025; p. 320. [Google Scholar]
- Lam, N.H.; Cho, C.R.; Kannan, K.; Cho, H.S. A nationwide survey of perfluorinated alkyl substances in waters, sediment and biota collected from aquatic environment in Vietnam: Distributions and bioconcentration profiles. J. Hazard. Mater. 2017, 323, 116–127. [Google Scholar] [CrossRef]
- Capodaglio, A.G. Microplastics in the urban water cycle: A critical analysis of issues and of possible (needed?) solutions. Sci. Total. Environ. 2024, 954, 176580. [Google Scholar] [CrossRef] [PubMed]
- O’cOnnor, J.; Bolan, N.S.; Kumar, M.; Nitai, A.S.; Ahmed, M.B.; Bolan, S.S.; Vithanage, M.; Rinklebe, J.; Mukhopadhyay, R.; Srivastava, P.; et al. Distribution, transformation and remediation of poly- and per-fluoroalkyl substances (PFAS) in wastewater sources. Process. Saf. Environ. Prot. 2022, 164, 91–108. [Google Scholar] [CrossRef]
- Modiri, M.; Sasi, P.; Crone, B.; Potter, P.; Van Buren, J.; Doroshow, A.; Voit, J.; Mills, M.A. PFAS Precursors in Wastewater; University of Cincinnati Department of Chemical and Environmental Engineering Graduate Seminar: Cincinnati, OH, USA, 2024. [Google Scholar]
- Lenka, S.P.; Kah, M.; Padhye, L.P. A review of the occurrence, transformation, and removal of poly-and perfluoroalkyl substances (PFAS) in wastewater treatment plants. Water Res. 2021, 199, 117187. [Google Scholar] [CrossRef]
- Göckener, B.; Fliedner, A.; Rüdel, H.; Fettig, I.; Koschorreck, J. Exploring unknown per- and polyfluoroalkyl substances in the German environment–The total oxidizable precursor assay as helpful tool in research and regulation. Sci. Total. Environ. 2021, 782, 146825. [Google Scholar] [CrossRef] [PubMed]
- Ghisi, R.; Vamerali, T.; Manzetti, S. Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: A review. Environ. Res. 2019, 169, 326–341. [Google Scholar] [CrossRef] [PubMed]
- Schymanski, E.L.; Zhang, J.; Thiessen, P.A.; Chirsir, P.; Kondic, T.; Bolton, E.E. Per- and Polyfluoroalkyl Substances (PFAS) in PubChem: 7 Million and Growing. Environ. Sci. Technol. 2023, 57, 16918–16928. [Google Scholar] [CrossRef]
- NIH. Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS). National Institute of Health. Available online: https://www.niehs.nih.gov/health/topics/agents/pfc (accessed on 16 June 2025).
- US EPA. Per- and Polyfluoroalkyl Substances (PFAS) Final. PFAS National Primary Drinking Water Regulation. 40 CFR Parts 141 and 142; ANHE: Washington DC, USA, 2024. [Google Scholar]
- Li, F.; Duan, J.; Tian, S.; Ji, H.; Zhu, Y.; Wei, Z.; Zhao, D. Short-chain per- and polyfluoroalkyl substances in aquatic systems: Occurrence, impacts and treatment. Chem. Eng. J. 2020, 380, 122506. [Google Scholar] [CrossRef]
- Brendel, S.; Fetter, E.; Staude, C.; Vierke, L.; Biegel-Engler, A. Short-chain perfluoroalkyl acids: Environmental concerns and a regulatory strategy under REACH. Environ. Sci. Eur. 2018, 30, 9. [Google Scholar] [CrossRef]
- Yeung, L.W.; Stadey, C.; Mabury, S.A. Simultaneous analysis of perfluoroalkyl and polyfluoroalkyl substances including ultrashort-chain C2 and C3 compounds in rain and river water samples by ultra performance convergence chromatography. J. Chromatogr. A 2017, 1522, 78–85. [Google Scholar] [CrossRef]
- Vaalgamaa, S.; Vähätalo, A.V.; Perkola, N.; Huhtala, S. Photochemical reactivity of perfluorooctanoic acid (PFOA) in conditions representing surface water. Sci. Total. Environ. 2011, 409, 3043–3048. [Google Scholar] [CrossRef]
- Wang, N.; Liu, X.C.; Buck, R.C.; Korzeniowski, S.H.; Wolstenholme, B.W.; Folsom, P.W.; Sulecki, L.M. 6:2 Fluorotelomer sulfonate aerobic biotransformation in activated sludge of waste water treatment plants. Chemosphere 2011, 82, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Capodaglio, A.G. Micro- and Nano-Plastics in DrinkingWater: Threat or Hype? Critical State-of-the-Art Analysis of Risks and Approaches. Xenobiotics 2025, 15, 85. [Google Scholar] [CrossRef]
- Ankley, G.T.; Cureton, P.; Hoke, R.A.; Houde, M.; Kumar, A.; Kurias, J.; Lanno, R.; McCarthy, C.; Newsted, J.; Salice, C.J.; et al. Assessing the Ecological Risks of Per- and Polyfluoroalkyl Substances: Current State-of-the Science and a Proposed Path Forward. Environ. Toxicol. Chem. 2021, 40, 564–605. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Best Available Technologies and Small System Compliance Technologies for Per- and Polyfluoroalkyl Substances (PFAS) in Drinking Water. EPA Document Number: 815R24011. U.S. Environmental Protection Agency. Office of Water; Office of Groundwater and Drinking Water Standards and Risk Management Division: Washington, DC, USA, 2024.
- Crawford, S.; Thomas, R.; Taylor, F.; Dore, S.; Marley, M.; Crawford, L.; Occhialini, J.; McKnight, T.; Farmer, N. Early breakthrough of short-chain perfluoroalkyl substances in adsorptive media treatment. Remediation 2022, 32, 177–193. [Google Scholar] [CrossRef]
- Blanksby, S.J.; Ellison, G.B. Bond dissociation energies of organic molecules. Acc. Chem. Res. 2003, 36, 255–263. [Google Scholar] [CrossRef]
- Nayak, S.K.; Yamijala, S.S.R.K.C. Computing accurate bond dissociation energies of emerging per- and polyfluoroalkyl substances: Achieving chemical accuracy using connectivity-based hierarchy schemes. J. Hazard. Mater. 2024, 468, 133804. [Google Scholar] [CrossRef]
- da Silva, G.; Chen, C.C.; Bozzelli, J.W. Bond dissociation energy of the phenol OH bond from ab initio calculations. Chem. Phys. Lett. 2006, 424, 42–45. [Google Scholar] [CrossRef]
- O’HAgan, D. Understanding organofluorine chemistry. An introduction to the C–F bond. Chem. Soc. Rev. 2008, 37, 308–319. [Google Scholar] [CrossRef]
- Kirsch, P. Modern Fluoroorganic Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2004. [Google Scholar]
- Capodaglio, A.G. Contaminants of emerging concern removal by high-energy oxidation-reduction processes: State of the art. Appl. Sci. 2019, 9, 4562. [Google Scholar] [CrossRef]
- Szreder, T.; Kisała, J.; Bojanowska-Czajka, A.; Kasperkowiak, M.; Pogocki, D.; Bobrowski, K.; Trojanowicz, M. High energy radiation – Induced cooperative reductive/oxidative mechanism of perfluorooctanoate anion (PFOA) decomposition in aqueous solution. Chemosphere 2022, 295, 133920. [Google Scholar] [CrossRef] [PubMed]
- Kosar, N.; Ayub, K.; Gilani, M.A.; Mahmood, T. Benchmark DFT studies on C–CN homolytic cleavage and screening the substitution effect on bond dissociation energy. J. Mol. Model. 2019, 25, 47. [Google Scholar] [CrossRef]
- Gou, Q.; Liu, J.; Su, H.; Guo, Y.; Chen, J.; Zhao, X.; Pu, X. Exploring an accurate machine learning model to quickly estimate stability of diverse energetic materials. iScience 2024, 27, 109452. [Google Scholar] [CrossRef] [PubMed]
- Bolton, J.R.; Bircher, K.G.; Tumas, W.; Tolman, C.A. Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric- and solar-driven systems (IUPAC Technical Report). Pure Appl. Chem. 2001, 73, 627–637. [Google Scholar] [CrossRef]
- Meegoda, J.N.; de Souza, B.B.; Casarini, M.M.; Kewalramani, J.A. A Review of PFAS Destruction Technologies. Int. J. Environ. Res. Public. Health 2022, 19, 16397. [Google Scholar] [CrossRef]
- Chen, H.; Peng, H.; Yang, M.; Hu, J.; Zhang, Y. Detection, occurrence, and fate of fluorotelomer alcohols in municipal wastewater treatment plants. Environ. Sci. Technol. 2017, 51, 8953–8961. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yan, H.; Li, F.; Zhou, Q. Occurrence and fate of perfluorinated acids in two wastewater treatment plants in Shanghai, China. Environ. Sci. Pollut. Res. 2015, 22, 1804–1811. [Google Scholar] [CrossRef] [PubMed]
- Shigei, M.; Ahren, L.; Hazaymeh, A.; Dalahmeh, S.S. Per- and polyfluoroalkyl substances in water and soil in wastewater-irrigated farmland in Jordan. Sci. Total Environ. 2020, 716, 137057. [Google Scholar] [CrossRef]
- Gallen, C.; Eaglesham, G.; Drage, D.; Nguyen, T.H.; Mueller, J.F. A mass estimate of Perfluoroalkyl Substance (PFAS) release from Australian wastewater treatment plants. Chemosphere 2018, 208, 975–983. [Google Scholar] [CrossRef]
- Zhou, Y.; Meng, J.; Zhang, M.; Chen, S.; He, B.; Zhao, H.; Li, Q.; Zhang, S.; Wang, T. Which type of pollutants need to be controlled with priority in wastewater treatment plants: Traditional or emerging pollutants? Environ. Int. 2019, 131, 104982. [Google Scholar] [CrossRef]
- Kibambe, M.G.; Momba, M.N.B.; Daso, A.P.; Coetzee, M.A.A. Evaluation of the efficiency of selected wastewater treatment processes in removing selected perfluoroalkyl substances (PFASs). J. Environ. Manag. 2020, 255, 109945. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Lewis, A.J.; Sales, C.M.; Suri, R.; McKenzie, E.R. Linking PFAS partitioning behavior in sewage solids to the solid characteristics, solution chemistry, and treatment processes. Chemosphere 2021, 271, 129530. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Gao, L.; Bergmann, D.; Bulatovic, T.; Surapaneni, A.; Gray, S. Review of influence of critical operation conditions on by-product/intermediate formation during thermal destruction of PFAS in solid/biosolids. Sci. Total. Environ. 2023, 854, 158796. [Google Scholar] [CrossRef] [PubMed]
- Moodie, D.; Coggan, T.; Berry, K.; Kolobaric, A.; Fernandes, M.; Lee, S.; Reichman, S.; Nugegoda, D.; Clarke, B.O. Legacy and emerging per- and polyfluoroalkyl substances (PFASs) in Australian biosolids. Chemosphere 2021, 270, 129143. [Google Scholar] [CrossRef]
- Cantoni, B.; Turolla, A.; Wellmitz, J.; Ruhl, A.S.; Antonelli, M. Perfluoroalkyl substances (PFAS) adsorption in drinking water by granular activated carbon: Influence of activated carbon and PFAS characteristics. Sci. Total. Environ. 2021, 795, 148821. [Google Scholar] [CrossRef]
- McCleaf, P.; Englund, S.; Östlund, A.; Lindegren, K.; Wiberg, K.; Ahrens, L. Removal efficiency of multiple poly-and perfluoroalkyl substances (PFASs) in drinking water using granular activated carbon (GAC) and anion exchange (AE) column tests. Water Res. 2017, 120, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.C.; Vatankhah, H.; McDonough, C.A.; Nickerson, A.; Hedtke, T.T.; Cath, T.Y.; Higgins, C.P.; Bellona, C.L. Removal of per-and polyfluoroalkyl substances using super-fine powder activated carbon and ceramic membrane filtration. J. Hazard. Mater. 2019, 366, 160–168. [Google Scholar] [CrossRef]
- Du, Z.; Deng, S.; Bei, Y.; Huang, Q.; Wang, B.; Huang, J.; Yu, G. Adsorption behavior and mechanism of perfluorinated compounds on various adsorbents—A review. J. Hazard. Mater. 2014, 274, 443–454. [Google Scholar] [CrossRef]
- Vakili, M.; Cagnetta, G.; Deng, S.; Wang, W.; Gholami, Z.; Gholami, F.; Dastyar, W.; Mojiri, A.; Blaney, L. Regeneration of exhausted adsorbents after PFAS adsorption: A critical review. J. Hazard. Mater. 2024, 471, 134429. [Google Scholar] [CrossRef]
- Wu, C.; Klemes, M.J.; Trang, B.; Dichtel, W.R.; Helbling, D.E. Exploring the factors that influence the adsorption of anionic PFAS on conventional and emerging adsorbents in aquatic matrices. Water Res. 2020, 182, 115950. [Google Scholar] [CrossRef]
- Lei, X.; Lian, Q.; Zhang, X.; Karsili, T.K.; Holmes, W.; Chen, Y.; Zappi, M.E.; Gang, D.D. A review of PFAS adsorption from aqueous solutions: Current approaches, engineering applications, challenges, and opportunities. Environ. Pollut. 2023, 321, 121138. [Google Scholar] [CrossRef] [PubMed]
- Cao, F.; Wang, L.; Ren, X.; Sun, H. Synthesis of a perfluorooctanoic acid molecularly imprinted polymer for the selective removal of perfluorooctanoic acid in an aqueous environment. J. Appl. Polym. Sci. 2016, 133, 15. [Google Scholar] [CrossRef]
- Issaka, E.; Adams, M.; Baffoe, J.; Danso-Boateng, E.; Melville, L.; Fazal, A. Covalent organic frameworks: A review of synthesis methods, properties and applications for per- and poly-fluoroalkyl substances removal. Clean Technol. Environ. Policy 2025, 27, 833–860. [Google Scholar] [CrossRef]
- Arvaniti, O.S.; Andersen, H.R.; Thomaidis, N.S.; Stasinakis, A.S. Sorption of Perfluorinated Compounds onto different types of sewage sludge and assessment of its importance during wastewater treatment. Chemosphere 2014, 111, 405–411. [Google Scholar] [CrossRef]
- Ordonez, D.; Valencia, A.; Sadmani, A.H.M.A.; Chang, N.B. Green sorption media for the removal of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) from water. Sci. Total. Environ. 2022, 819, 152886. [Google Scholar] [CrossRef] [PubMed]
- Smaili, H.; Ng, C. Adsorption as a remediation technology for short-chain per- and polyfluoroalkyl substances (PFAS) from water—A critical review. Environ. Sci. Water Res. Technol. 2023, 9, 344–362. [Google Scholar] [CrossRef]
- Siriwardena, D.P.; James, R.; Dasu, K.; Thorn, J.; Darlington Iery, R.; Pala, F.; Schumitz, D.; Eastwood, S.; Burkitt, N. Regeneration of per- and polyfluoroalkyl substance-laden granular activated carbon using a solvent based technology. J. Environ. Manag. 2021, 289, 112439. [Google Scholar] [CrossRef]
- Dixit, F.; Dutta, R.; Barbeau, B.; Berube, P.; Mohseni, M. PFAS removal by ion exchange resins: A review. Chemosphere 2021, 272, 129777. [Google Scholar] [CrossRef]
- Capodaglio, A.G. Fit-for-purpose urban wastewater reuse: Analysis of issues and available technologies for sustainable multiple barrier approaches. Crit. Rev. Environ. Sci. Technol. 2020, 51, 1619–1666. [Google Scholar] [CrossRef]
- Nadagouda, M.N.; Lee, T. Cross-Flow Treatment of PFAS in Water: Materials Challenges and Potential Solutions. Accounts Mater. Res. 2021, 2, 129–133. [Google Scholar] [CrossRef]
- Qiang, Z.; Min, X.; Wang, Y.; Ma, X. Development of ceramic membranes with controllable PFAS mass transfer for passive sampling applications. Chem. Eng. J. Adv. 2023, 16, 100562. [Google Scholar] [CrossRef]
- Pervez, M.N.; Jiang, T.; Liang, Y. Structure and mechanism of nanoengineered membranes toward per- and polyfluoroalkyl substances (PFAS) removal from water: A critical review. J. Water Proc. Eng. 2024, 63, 105471. [Google Scholar] [CrossRef]
- Blotevogel, J.; Shukla, P. Breaking Down Barriers: Innovations in PFAS Destruction. Chem. Eng. 2025, 1005, 29. [Google Scholar]
- Capodaglio, A.G. High-energy oxidation process: An efficient alternative for wastewater organic contaminants removal. Clean Technol. Environ. Policy 2017, 19, 1995–2006. [Google Scholar] [CrossRef]
- Horst, J.; McDonough, J.; Ross, I.; Houtz, E. Understanding and managing the potential by-products of PFAS destruction. Groundw. Monit. Remediat. 2020, 40, 17–27. [Google Scholar] [CrossRef]
- Vecitis, C.D.; Park, H.; Cheng, J.; Mader, B.T.; Hoffmann, M.R. Treatment technologies for aqueous perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA). Front. Environ. Sci. Eng. China 2009, 3, 129–151. [Google Scholar] [CrossRef]
- Krusic, P.J.; Roe, D.C. Gas-phase NMR technique for studying the thermolysis of materials: Thermal decomposition of ammonium perfluorooctanoate. Anal. Chem. 2004, 76, 3800–3803. [Google Scholar] [CrossRef]
- Yamada, T.; Taylor, P. Laboratory Scale Thermal Degradation of PFOS and Related Precoursors; Final Report—UDR-TR-03-00044; University of Dayton Research Institute (UDRI): Dayton, OH, USA, 2003. [Google Scholar]
- Wu, B.; Hao, S.; Choi, Y.; Higgins, C.P.; Deeb, R.; Strathmann, T.J. Rapid destruction and defluorination of perfluorooctanesulfonate by alkaline hydrothermal reaction. Environ. Sci. Technol. Lett. 2019, 6, 630–636. [Google Scholar] [CrossRef]
- Winchell, L.J.; Ross, J.J.; Wells, M.J.M.; Fonoll, X.; Norton, J.W.; Bell, K.Y. Per- and polyfluoroalkyl substances thermal destruction at water resource recovery facilities: A state of the science review. Water Environ. Res. 2021, 93, 826–843. [Google Scholar] [CrossRef]
- Watanabe, N.; Takata, M.; Takemine, S.; Yamamoto, K. Thermal mineralization behavior of PFOA, PFHxA, and PFOS during reactivation of granular activated carbon (GAC) in nitrogen atmosphere. Environ. Sci. Pollut. Res. Int. 2018, 25, 7200–7205. [Google Scholar] [CrossRef]
- Watanabe, N.; Takemine, S.; Yamamoto, K.; Haga, Y.; Takata, M. Residual organic fluorinated compounds from thermal treatment of PFOA, PFHxA and PFOS adsorbed onto granular activated carbon (GAC). J. Mater. Cycles Waste Manag. 2016, 18, 625–630. [Google Scholar] [CrossRef]
- Murakami, T.; Saito, N.; Matsukami, H.; Takaoka, M.; Fujimori, T. Destruction of perfluorooctanoic acid (PFOA) and perfluorooctadecanoic acid (PFOcDA) by incineration: Analysis of the by-products and their characteristics. Chemosphere 2025, 373, 144165. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Olsson, G. Energy issues in sustainable urban wastewater management: Use, demand reduction and recovery in the urban water cycle. Sustainability 2020, 12, 266. [Google Scholar] [CrossRef]
- US EPA. Per- and Polyfluoroalkyl Substances (PFAS): Incineration to Manage PFAS Waste Streams; US EPA Tech. Brief EPA-452-F/03-022; US EPA: Washington, DC, USA, 2020.
- GHD. Understanding the US DoD’s Prohibition of AFFF Incineration and Your Disposal Responsibilities. Available online: https://www.ghd.com/en-au/insights/us-department-of-defenses-prohibition-of-afff-incineration (accessed on 17 August 2025).
- Callegari, A.; Hlavinek, P.; Capodaglio, A.G. Production of energy (biodiesel) and recovery of materials (biochar) from pyrolysis of urban waste sludge. Rev. Ambient. Água 2018, 13, 2. [Google Scholar] [CrossRef]
- Kundu, S.; Patel, S.; Halder, P.; Patel, T.; Marzbali, M.H.; Pramanik, B.K.; Paz-Ferreiro, J.; de Figueiredo, C.C.; Bergmann, D.; Surapaneni, A.; et al. Removal of PFASs from biosolids using a semi-pilot scale pyrolysis reactor and the application of biosolids derived biochar for the removal of PFASs from contaminated water. Environ. Sci. Water Res. Technol. 2021, 7, 638–649. [Google Scholar] [CrossRef]
- McNamara, P.; Samuel, M.S.; Sathyamoorthy, S.; Moss, L.; Valtierra, D.; Lopez, H.C.; Nigro, N.; Somerville, S.; Liu, Z. Pyrolysis transports, and transforms, PFAS from biosolids to py-liquid. Environ. Sci. Water Res. Technol. 2023, 9, 386–395. [Google Scholar] [CrossRef]
- Thoma, E.D.; Wright, R.S.; George, I.; Krause, M.; Presezzi, D.; Villa, V.; Preston, W.; Deshmukh, P.; Kauppi, P.; Zemek, P.G. Pyrolysis processing of PFAS-impacted biosolids, a pilot study. J. Air Waste Manag. Assoc. 2022, 72, 309–318. [Google Scholar] [CrossRef]
- Wikipedia. Available online: https://en.wikipedia.org/wiki/Electromagnetic_radiation (accessed on 21 July 2025).
- Bruton, T.A.; Sedlak, D.L. Treatment of perfluoroalkyl acids by heat-activated persulfate under conditions representative of in situ chemical oxidation. Chemosphere 2018, 206, 457–464. [Google Scholar] [CrossRef]
- Bentel, M.J.; Yu, Y.; Xu, L.; Kwon, H.; Li, Z.; Wong, B.M.; Men, Y.; Liu, J. Defluorination of per- and polyfluoroalkyl substances (PFASs) with hydrated electrons: Structural dependence and implications to PFAS remediation and management. Environ. Sci. Technol. 2019, 53, 3718–3728. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Tang, H.; Wang, N.; Zhu, L. Reductive defluorination of perfluorooctanoic acid by hydrated electrons in a sulfite-mediated UV photochemical system. J. Hazard. Mater. 2013, 262, 332–338. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Gao, P.; Deng, Y. Destruction of Per- and Polyfluoroalkyl Substances (PFAS) with Advanced Reduction Processes (ARPs): A Critical Review. Environ. Sci. Technol. 2020, 54, 3752–3766. [Google Scholar] [CrossRef]
- Trojanowicz, M.; Bojanowska-Czajka, A.; Capodaglio, A.G. Can radiation chemistry supply a highly efficient AO(R)P process for organics removal from drinking and waste water? A review. Environ. Sci. Pollut. Res. 2017, 24, 20187–20208. [Google Scholar] [CrossRef]
- Londhe, K.; Lee, C.-S.; Zhang, Y.; Grdanovska, S.; Kroc, T.; Cooper, C.A.; Venkatesan, A.K. Energy Evaluation of Electron Beam Treatment of Perfluoroalkyl Substances in Water: A Critical Review. ACS ES&T Eng. 2021, 1, 827–841. [Google Scholar] [CrossRef]
- Trojanowicz, M.; Bojanowska-Czajka, A.; Bartosiewicz, I.; Kulisa, K. Advanced Oxidation/Reduction Processes treatment for aqueous perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS)—a review of recent advances. Chem. Eng. J. 2018, 336, 170–199. [Google Scholar] [CrossRef]
- Venkatesan, A.K.; Cooper, C.; Paquette, D.; Mills, M.A.; Londhe, K.; Lee, C.S.; Grdanovska, S. Application of Electron Beam Technology to Decompose Persistent Emerging Drinking Water Contaminants: Poly- and Perfluoroalkyl Substances (PFAS) and 1,4-Dioxane; Final Report, Award #DE-SC0020277; State University of New York: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Trojanowicz, M.; Bartosiewicz, I.; Bojanowska-Czajka, A.; Kulisa, K.; Szreder, T.; Bobrowski, K.; Nichipor, H.; Garcia-Reyes, J.F.; Nałęcz-Jawecki, G.; Męczyńska-Wielgosz, S.; et al. Application of ionizing radiation in decomposition of perfluorooctanoate (PFOA) in waters. Chem. Eng. J. 2019, 357, 698–714. [Google Scholar] [CrossRef]
- Capodaglio, A.G. Could EB irradiation be the simplest solution for removing emerging contaminants from water and wastewater? Water Pr. Technol. 2018, 13, 172–183. [Google Scholar] [CrossRef]
- Capodaglio, A.G. Critical perspective on advanced treatment processes for water and wastewater: AOPs, ARPs, and AORPs. Appl. Sci. 2020, 10, 4549. [Google Scholar] [CrossRef]
- Nau-Hix, C.; Multari, N.; Singh, R.K.; Richardson, S.; Kulkarni, P.; Anderson, R.H.; Holsen, T.M.; Thagard, S.M. Field Demonstration of a Pilot-Scale Plasma Reactor for the Rapid Removal of Poly- and Perfluoroalkyl Substances in Groundwater. ACS EST Water 2021, 1, 680–687. [Google Scholar] [CrossRef]
- Stratton, G.R.; Dai, F.; Bellona, C.L.; Holsen, T.M.; Dickenson, E.R.V.; Mededovic Thagard, S. Plasma-based water treatment: Efficient transformation of perfluoroalkyl substances in prepared solutions and contaminated groundwater. Environ. Sci. Technol. 2017, 51, 1643–1648. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Multari, N.; Nau-Hix, C.; Anderson, R.H.; Richardson, S.D.; Holsen, T.M.; Thagard, S.M. Rapid removal of poly- and perfluorinated compounds from investigation- derived waste (IDW) in a pilot-scale plasma reactor. Environ. Sci. Technol. 2019, 53, 11375–11382. [Google Scholar] [CrossRef]
- Radjenovic, J.; Sedlak, D.L. Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water. Environ. Sci. Technol. 2015, 49, 11292–11302. [Google Scholar] [CrossRef] [PubMed]
- Blotevogel, J.; Thagard, S.M.; Mahendra, S. Scaling up water treatment technologies for PFAS destruction: Current status and potential for fit-for-purpose application. Curr. Opin. Chem. Eng. 2023, 41, 100944. [Google Scholar] [CrossRef]
- Fang, C.; Megharaj, M.; Naidu, R. Electrochemical advanced oxidation processes (EAOP) to degrade per- and polyfluoroalkyl substances (PFASs). J. Adv. Oxid. Technol. 2017, 20, 20170014–20170025. [Google Scholar] [CrossRef]
- Xu, X.; Li, Y.; Vo, P.H.N.; Shukla, P.; Ge, L.; Zhao, C.X. Electrochemical advanced oxidation of per- and polyfluoroalkyl substances (PFASs): Development, challenges and perspectives. Chem. Eng. J. 2024, 500, 157222. [Google Scholar] [CrossRef]
- Maldonado, V.Y.; Becker, M.F.; Nickelsen, M.G.; Witt, S.E. Laboratory and semi-pilot scale study on the electrochemical treatment of perfluoroalkyl acids from ion exchange still bottoms. Water 2021, 13, 2873. [Google Scholar] [CrossRef]
- Xia, C.; Lim, X.; Yang, H.; Goodson, B.M.; Liu, J. Degradation of per- and polyfluoroalkyl substances (PFAS) in wastewater effluents by photocatalysis for water reuse. J. Water Process. Eng. 2022, 46, 102556. [Google Scholar] [CrossRef]
- Cecconet, D.; Sturini, M.; Malavasi, L.; Capodaglio, A.G. Graphitic carbon nitride as a sustainable photocatalyst material for pollutants removal. State-of-the art, preliminary tests and application perspectives. Materials 2021, 14, 7368. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, T.; Zhao, D.; Li, F.; Liu, W.; Wang, B.; An, B. Adsorption and solid-phase photocatalytic degradation of perfluorooctane sulfonate in water using gallium-doped carbon-modified titanate nanotubes. Chem. Eng. J. 2021, 421, 129676. [Google Scholar] [CrossRef]
- Umar, M. Reductive and Oxidative UV Degradation of PFAS—Status, Needs and Future Perspectives. Water 2021, 13, 3185. [Google Scholar] [CrossRef]
- Li, F.; Wei, Z.; He, K.; Blaney, L.; Cheng, X.; Xu, T.; Liu, W.; Zhao, D. A concentrate-and-destroy technique for degradation of perfluorooctanoic acid in water using a new adsorptive photocatalyst. Water Res. 2020, 185, 116219. [Google Scholar] [CrossRef]
- Jing, C.; Zhang, P.Y.; Jian, L. Photodegradation of perfluorooctanoic acid by 185 nm vacuum ultraviolet light. J. Environ. Sci. 2007, 19, 387–390. [Google Scholar] [CrossRef]
- Xin, X.; Kim, J.; Ashley, D.C.; Huang, C.-H. Degradation and defluorination of perandpolyfluoroalkyl substances by direct photolysis at 222 nm. ACS EST Water 2023, 3, 2776–2785. [Google Scholar] [CrossRef]
- Lyu, X.J.; Li, W.W.; Lam, P.K.; Yu, H.Q. Boiling significantly promotes photodegradation of perfluorooctane sulfonate. Chemosphere 2015, 138, 324–327. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Zhang, C.-J.; Chen, P.; Zhou, Q.; Zhang, W.-X. Effect of initial solution pH on photo-induced reductive decomposition of perfluorooctanoic acid. Chemosphere 2014, 107, 218–223. [Google Scholar] [CrossRef]
- Lyu, X.J.; Li, W.W.; Lam, P.K.; Yu, H.Q. Photodegradation of perfluorooctane sulfonate in environmental matrices. Sep. Purif. Technol. 2015, 151, 172–176. [Google Scholar] [CrossRef]
- Leung, S.C.E.; Shukla, P.; Chen, D.; Eftekhari, E.; An, H.; Zare, F.; Ghasemi, N.; Zhang, D.; Nguyen, N.T.; Li, Q. Emerging technologies for PFOS/PFOA degradation and removal: A review. Sci. Total. Environ. 2022, 827, 153669. [Google Scholar] [CrossRef]
- Ciawi, E.; Rae, J.; Ashokkumar, M.; Grieser, F. Determination of temperatures within acoustically generated bubbles in aqueous solutions at different ultrasound frequencies. J. Phys. Chem. B 2006, 110, 13656–13660. [Google Scholar] [CrossRef]
- Moriwaki, H.; Takagi, Y.; Tanaka, M.; Tsuruho, K.; Okitsu, K.; Maeda, Y. Sonochemical decomposition of perfluorooctane sulfonate and perfluorooctanoic acid. Environ. Sci. Technol. 2005, 39, 3388–3392. [Google Scholar] [CrossRef] [PubMed]
- Singh Kalra, S.; Cranmer, B.; Dooley, G.; Hanson, A.J.; Maraviov, S.; Mohanty, S.K.; Blotevogel, J.; Mahendra, S. Sonolytic destruction of per- and polyfluoroalkyl substances in groundwater, aqueous film-forming foams, and investigation derived waste. Chem. Eng. J. 2021, 425, 131778. [Google Scholar] [CrossRef]
- Gole, V.L.; Fishgold, A.; Sierra-Alvarez, R.; Deymier, P.; Keswani, M. Treatment of perfluorooctane sulfonic acid (PFOS) using a large-scale sonochemical reactor. Sep. Purif. Technol. 2018, 194, 104–110. [Google Scholar] [CrossRef]
- Schlosky, K.M. Supercritical phase transitions at very high pressure. J. Chem. Educ. 1989, 66, 989. [Google Scholar] [CrossRef]
- Krause, M.J.; Thoma, E.; Sahle-Damesessie, E.; Crone, B.; Whitehill, A.; Shields, E.; Gullett, B. Supercritical water oxidation as an innovative technology for PFAS destruction. J. Environ. Eng. 2022, 148, 05021006. [Google Scholar] [CrossRef]
- Scheitlin, C.G.; Dasu, K.; Rosansky, S.; Espina Dejarme, L.; Siriwardena, D.; Thorn, J.; Mullins, L.; Haggerty, I.; Shqau, K.; Stowe, J. Application of Supercritical Water Oxidation to Effectively Destroy Per- and Polyfluoroalkyl Substances in Aqueous Matrices. ACS EST Water 2023, 3, 2053–2062. [Google Scholar] [CrossRef]
- Vadivel, D.; Dondi, D.; Capodaglio, A.G. Present achievements and future directions of advanced carbon dioxide reduction strategies. Curr. Opin. Chem. Eng. 2024, 45, 101029. [Google Scholar] [CrossRef]
- Yadav, M.; Osonga, F.J.; Sadik, O.A. Unveiling nano-empowered catalytic mechanisms for PFAS sensing, removal and destruction in water. Sci. Total. Environ. 2024, 912, 169279. [Google Scholar] [CrossRef]
- Chen, M.J.; Lo, S.L.; Lee, Y.C.; Huang, C.C. Photocatalytic decomposition of perfluorooctanoic acid by transition-metal modified titanium dioxide. J. Hazard. Mater. 2015, 288, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Barisci, S.; Suri, R. Electrooxidation of short and long chain perfluorocarboxylic acids using boron doped diamond electrodes. Chemosphere 2020, 243, 125349. [Google Scholar] [CrossRef]
- Zhao, H.; Gao, J.; Zhao, G.; Fan, J.; Wang, Y.; Wang, Y. Fabrication of novel SnO2-Sb/carbon aerogel electrode for ultrasonic electrochemical oxidation of perfluorooctanoate with high catalytic efficiency. Appl. Catal. B Environ. 2013, 136–137, 278–286. [Google Scholar] [CrossRef]
- Niu, J.; Lin, H.; Xu, J.; Wu, H.; Li, Y. Electrochemical mineralization of perfluorocarboxylic acids (PFCAs) by Ce-doped modified porous nanocrystalline PbO2 film electrode. Environ. Sci. Technol. 2012, 46, 10191–10198. [Google Scholar] [CrossRef]
- Masud, A.; Guardian, M.G.E.; Travis, S.C.; Chavez Soria, N.G.; Jarin, M.; Aga, D.S.; Aich, N. Redox-active rGO-nZVI nanohybrid-catalyzed chain shortening of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS). J. Hazard. Mater. Lett. 2021, 2, 100007. [Google Scholar] [CrossRef]
- Arvaniti, O.S.; Hwang, Y.; Andersen, H.R.; Stasinakis, A.S.; Thomaidis, N.S.; Aloupi, M. Reductive degradation of perfluorinated compounds in water using Mg-aminoclay coated nanoscale zero valent iron. Chem. Eng. J. 2015, 262, 133–139. [Google Scholar] [CrossRef]
- Yu, S.; Kim, T.; Jo, S.H.; Son, J. Physico-Chemical Properties of Catalysts for the Mineralization of Sulfamethoxazole in a High Ionizing Radiation Treatment. In Proceedings of the 3rd International Conference on Applications of Radiation Science and Technology (ICARST-2025), Vienna, Austria, 7–11 April 2025. [Google Scholar]
- Huang, S.; Jaffé, P.R. Defluorination of Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) by Acidimicrobium sp. strain A6. Environ. Sci. Technol. 2019, 53, 11410–11419. [Google Scholar] [CrossRef]
- Presentato, A.; Lampis, S.; Vantini, A.; Manea, F.; Daprà, F.; Zuccoli, S.; Vallini, G. On the Ability of perfluorohexane sulfonate (PFHxS) bioaccumulation by two Pseudomonas sp. strains isolated from PFAS-contaminated environmental matrices. Microorganisms 2020, 8, 92. [Google Scholar] [CrossRef] [PubMed]
- Shahsavari, E.; Rouch, D.; Khudur, L.S.; Thomas, D.; Aburto-Medina, A.; Ball, A.S. Challenges and Current Status of the Biological Treatment of PFAS-Contaminated Soils. Front. Bioeng. Biotechnol. 2021, 8, 602040. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Tevlin, A.G.; Mabury, S.A.; Mabury, S.A. Fate of polyfluoroalkyl phosphate diesters and their metabolites in biosolids-applied soil: Biodegradation and plant uptake in greenhouse and field experiments. Environ. Sci. Technol. 2014, 48, 340–349. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Da, Y.; Yu, B.; Long, B.; Zhang, P.; Bakker, C.; McCarl, B.A.; Yuan, J.S.; Dai, S.Y. Sustainable environmental remediation via biomimetic multifunctional lignocellulosic nano-framework. Nat. Commun. 2022, 13, 4368. [Google Scholar] [CrossRef]
- Tinivella, R.; Bargiggia, R.; Zanoni, G.; Callegari, A.; Capodaglio, A.G. High-Strength, Chemical Industry Wastewater Treatment Feasibility Study for Energy Recovery. Sustainability 2023, 15, 16285. [Google Scholar] [CrossRef]
- Tow, E.W.; Ersan, M.S.; Kum, S.; Lee, T.; Speth, T.F.; Owen, C.; Bellona, C.; Nadagouda, M.N.; Mikelonis, A.M.; Westerhoff, P.; et al. Managing and treating per- and polyfluoroalkyl substances (PFAS) in membrane concentrates. AWWA Water Sci. 2021, 3, e1233. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.; Peydayesh, M.; Mezzenga, R. Membrane-based technologies for per- and poly-fluoroalkyl substances (PFASs) removal from water: Removal mechanisms, applications, challenges and perspectives. Environ. Int. 2021, 157, 106876. [Google Scholar] [CrossRef]
- Boo, C.; Wang, Y.; Zucker, I.; Choo, Y.; Osuji, C.O.; Elimelech, M. High performance nanofiltration membrane for effective removal of perfluoroalkyl substances at high water recovery. Environ. Sci. Technol. 2018, 52, 7279–7288. [Google Scholar] [CrossRef]
- Wang, J.; Wang, L.; Xu, C.; Zhi, R.; Miao, R.; Liang, T.; Yue, X.; Lv, Y.; Liu, T. Perfluorooctane sulfonate and perfluorobutane sulfonate removal from water by nanofiltration membrane: The roles of solute concentration, ionic strength, and macromolecular organic foulants. Chem. Eng. J. 2018, 332, 787–797. [Google Scholar] [CrossRef]
- Wang, T.; Zhao, C.; Li, P.; Li, Y.; Wang, J. Fabrication of novel poly (m-phenylene isophthalamide) hollow fiber nanofiltration membrane for effective removal of trace amount perfluorooctane sulfonate from water. J. Membr. Sci. 2015, 477, 74–85. [Google Scholar] [CrossRef]
- We, A.C.E.; Zamyadi, A.; Stickland, A.D.; Clarke, B.O.; Freguia, S. A review of foam fractionation for the removal of per- and polyfluoroalkyl substances (PFAS) from aqueous matrices. J. Hazard. Mater. 2024, 465, 133182. [Google Scholar] [CrossRef]
- Dai, X.; Xie, Z.; Dorian, B.; Gray, S.; Zhang, J. Comparative study of PFAS treatment by UV, UV/ozone, and fractionations with air and ozonated air. Environ. Sci. Water Res. Technol. 2019, 5, 1897–1907. [Google Scholar] [CrossRef]
- Meng, P.; Deng, S.; Maimaiti, A.; Wang, B.; Huang, J.; Wang, Y.; Cousins, I.T.; Yu, G. Efficient removal of perfluorooctane sulfonate from aqueous film-forming foam solution by aeration-foam collection. Chemosphere 2018, 203, 263–270. [Google Scholar] [CrossRef] [PubMed]
- We, A.C.E.; Zamyadi, A.; Stickland, A.D.; Clarke, B.O.; Freguia, S. The role of suspended biomass in PFAS enrichment in wastewater treatment foams. Water Res. 2024, 254, 121349. [Google Scholar] [CrossRef] [PubMed]
- Lyu, X.J.; Liu, Y.; Chen, C.; Sima, M.; Lyu, J.F.; Ma, Z.Y.; Huang, S. Enhanced use of foam fractionation in the photodegradation of perfluorooctane sulfonate (PFOS). Sep. Purif. Technol. 2020, 253, 117488. [Google Scholar] [CrossRef]
- Marsh, R.W.; Kewalramani, J.A.; Bezerra de Souza, B.; Meegoda, J.N. The use of a fluorine mass balance to demonstrate the mineralization of PFAS by high frequency and high power ultrasound. Chemosphere 2024, 352, 141270. [Google Scholar] [CrossRef]
- Singh, R.K.; Fernando, S.; Baygi, S.F.; Multari, N.; Mededovic Thagard, S.; Holsen, T.M. Breakdown Products from Perfluorinated Alkyl Substances (PFAS) Degradation in a Plasma-Based Water Treatment Process. Environ. Sci. Technol. 2019, 53, 2731–2738. [Google Scholar] [CrossRef]
- Ersan, M.S.; Wang, B.; Wong, M.S.; Westerhoff, P. Advanced oxidation processes may transform unknown PFAS in groundwater into known products. Chemosphere 2024, 349, 140865. [Google Scholar] [CrossRef] [PubMed]
- Su, A.; Cheng, Y.; Zhang, C.; Yang, Y.F.; She, Y.B.; Rajan, K. An artificial intelligence platform for automated PFAS subgroup classification: A discovery tool for PFAS screening. Sci. Total Environ. 2024, 921, 171229. [Google Scholar] [CrossRef]
- Baygi, S.F.; Crimmins, B.S.; Hopke, P.K.; Holsen, T.M. Comprehensive emerging chemical discovery: Novel polyfluorinated compounds in Lake Michigan trout. Environ. Sci. Technol. 2016, 50, 9460–9468. [Google Scholar] [CrossRef] [PubMed]
- Lai, T.T.; Kuntz, D.; Wilson, A.K. Molecular Screening and Toxicity Estimation of 260,000 Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) through Machine Learning. J. Chem. Inf. Model. 2022, 62, 4569–4578. [Google Scholar] [CrossRef]
- McQueen, A.; Kimble, A.; Krupa, P.; Longwell, A.; Calomeni-Eck, A.; Moore, D. Review of Emerging and Nonconventional Analytical Techniques for Per- and Polyfluoroalkyl Substances (PFAS): Application for Risk Assessment. Water 2025, 17, 303. [Google Scholar] [CrossRef]
- Capodaglio, A.G. In-stream detection of waterborne priority pollutants, and applications in drinking water contaminant warning systems. Water Sci. Technol. Water Supply 2017, 17, 707–725. [Google Scholar] [CrossRef]
- Houtz, E.F.; Sutton, R.; Park, J.S.; Sedlak, M. Poly- and perfluoroalkyl substances in wastewater: Significance of unknown precursors, manufacturing shifts, and likely AFFF impacts. Water Res. 2016, 95, 142–149. [Google Scholar] [CrossRef]
- Shao, G.; Jiang, N.; Liu, T.; Xia, Y.; Liu, R.; Zhang, P.; Wang, Y. Target and Non-Target Screening of Per- and Polyfluoroalkyl Substances (PFAS) in Drinking Water: Focus on Alternatives and Health Risks. Environ. Res. 2025, 285, 122581. [Google Scholar] [CrossRef]
- Zahra, Z.; Song, M.; Habib, Z.; Ikram, S. Advances in per- and polyfluoroalkyl substances (PFAS) detection and removal techniques from drinking water, their limitations, and future outlooks. Emerg. Contam. 2025, 11, 100434. [Google Scholar] [CrossRef]
- Edgecock, R.; Chmielewski, A. Electron Accelerators for the Future. In Proceedings of the 3rd International Conference on Applications of Radiation Science and Technology (ICARST-2025), Vienna, Austria, 7–11 April 2025. [Google Scholar]
- Manufacturing Dive. What Are the Options for PFAS Destruction in Manufacturing? Available online: https://www.manufacturingdive.com/news/pfas-destruction-forever-chemicals-toxic-battelle/751656/ (accessed on 10 August 2025).
- Capodaglio, A.G. Pulse electric field technology for wastewater and biomass residues’ improved valorization. Processes 2021, 9, 736. [Google Scholar] [CrossRef]
- Belkouteb, N.; Franke, V.; McCleaf, P.; Köhler, S.; Ahrens, L. Removal of per- and polyfluoroalkyl substances (PFASs) in a full-scale drinking water treatment plant: Long-term performance of granular activated carbon (GAC) and influence of flow-rate. Water Res. 2020, 182, 115913. [Google Scholar] [CrossRef]
- Das, S.; Ronen, A. A Review on Removal and Destruction of Per- and Polyfluoroalkyl Substances (PFAS) by Novel Membranes. Membranes 2022, 12, 662. [Google Scholar] [CrossRef] [PubMed]
- Lange, C.; Cooper, C. Degradation of Poly- and Perfluoroalkyl Substances (PFAS) in Water via High Power, Energy-Efficient Electron Beam Accelerator. Tech. Report DOE-3M—9132; USDOE Office of Energy Efficiency and Renewable Energy (EERE), Energy Efficiency Office: Washington, DC, USA; Industrial Efficiency & Decarbonization Office (IEDO): Washington, DC, USA, 2024. [CrossRef]
- Li, L.; Haak, L.; Guarin, T.C.; Teel, L.; Sundaram, V.; Pagilla, K.R. Per- and poly-fluoroalkyl substances removal in multi-barrier advanced water purification system for indirect potable reuse. Water Environ. Res. 2024, 96, e10990. [Google Scholar] [CrossRef] [PubMed]
- Capodaglio, A.G.; Callegari, A. Use, Potential, Needs, and Limits of AI in Wastewater Treatment Applications. Water 2025, 17, 170. [Google Scholar] [CrossRef]
- Navidpour, A.H.; Hosseinzadeh, A.; Huang, Z.; Li, D.; Zhou, J.L. Application of machine learning algorithms in predicting the photocatalytic degradation of perfluorooctanoic acid. Catal. Rev. 2022, 66, 687–712. [Google Scholar] [CrossRef]
- Park, J.; Baik, J.H.; Adjei-Nimoh, S.; Lee, W.H. Advancements in artificial intelligence-based technologies for PFAS detection, monitoring, and management. Sci. Total Environ. 2025, 980, 179536. [Google Scholar] [CrossRef] [PubMed]
Technology | PFAS Type | Initial Concentration [µg/L] | Reactor Volume [L] | Reaction Time [h] | Destruction Efficiency [%] | Specific Energy Use [kWh/kgdegraded], or * [kWh/m3treated] |
---|---|---|---|---|---|---|
Electrochemical oxidation | PFHxA | 870,000 | 1 | 1.5 | 90 | 19 |
Multiple | 450–4650 | 0.3–2 | 8–10 | 76.5–99.7 | 1.6–3.3 × 105 | |
PFOS | 4400–15,200 | 0.42–0.56 | 80 | 87.8–97.6 | 0.78–2.2 × 107 | |
PFOA | 3000–4000 | 0.42–0.56 | 80 | 70.6–85 | 3.3–4 × 107 | |
8:2 FTS | 190–750 | 0.42–0.56 | 120 | 74–83.4 | 1.8–6 × 108 | |
Sonolysis | PFOS | 5000–10,000 | 0.1–0.6 | 1–3 | 28–95 | 4.2 × 104–4.7 × 106 |
PFOA | 5000–10,000 | 0.1–0.6 | 1–2 | 63–72 | 6.3 × 105–1.5 × 107 | |
Plasma | Multiple | 260,000 | 0.75 | 6 | 99.9 | * 830 |
PFOA | 99,600 | n.d. | 2 | >99 | * 390–830 | |
PFOS | 70,900 | n.d. | 2 | >99 | * 390–830 | |
PFBA | 6 | n.d. | 1.5 | 95.6 | * 1570–2370 | |
SCWO | Multiple | 12,000–14,000 | 1000 | 2 | >99 | 1 × 105 |
Radiation Type | Wavelength | Frequency | Energy/Photon | |
---|---|---|---|---|
Ionizing radiation | Gamma rays | 10 pm | 30 EHz | 124 keV |
Electron beam | 10–100 pm | * | 100–100,000 keV | |
X-rays | 10–100 pm | 30–3000 PHz | 124–12,400 eV | |
Extreme ultraviolet | 121 nm | 3 PHz | 10.2 eV | |
UV-VIS | Near ultraviolet | 400 nm | 750 THz | 3.1 eV |
Visible spectrum | 700 nm | 480 THz | 1.77 eV | |
Microwaves | Extremely high frequency | 1 mm | 300 GHz | 1.24 meV |
Very high frequency | 1 cm | 30 GHz | 124 μeV |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capodaglio, A.G. Prospects of Novel Technologies for PFAS Destruction in Water and Wastewater. Appl. Sci. 2025, 15, 9311. https://doi.org/10.3390/app15179311
Capodaglio AG. Prospects of Novel Technologies for PFAS Destruction in Water and Wastewater. Applied Sciences. 2025; 15(17):9311. https://doi.org/10.3390/app15179311
Chicago/Turabian StyleCapodaglio, Andrea G. 2025. "Prospects of Novel Technologies for PFAS Destruction in Water and Wastewater" Applied Sciences 15, no. 17: 9311. https://doi.org/10.3390/app15179311
APA StyleCapodaglio, A. G. (2025). Prospects of Novel Technologies for PFAS Destruction in Water and Wastewater. Applied Sciences, 15(17), 9311. https://doi.org/10.3390/app15179311