Review of I–V Electrical Characterization Techniques for Photovoltaic Modules Under Real Installation Conditions
Abstract
1. Introduction
2. Characterization Techniques for PV Modules
2.1. Laboratory Characterization (Indoor)
2.1.1. Test Conditions and Data Sheets
2.1.2. The Main Types of Laboratory Characterization
2.1.3. Discussion and Critical Analysis of Laboratory Characterization
2.2. Characterization in Natural Conditions (Outdoor)
2.2.1. Current-Voltage (I–V) Characterization
Resistive Load Characterization
Electronic Charge Characterization
Capacitive Charge Characterization
Inductive Charge Characterization
Characterization by DC–DC Converter
2.2.2. Characterization of the Effects of Environmental Parameters
Characterization of the Effect of Sunlight
Characterization of the Temperature Effect
Characterization of the Dust Effect
Characterization of the Effect of Degradation
2.2.3. Discussion and Comparative Analysis of Characterization Techniques in Real Conditions
3. Translation Techniques
3.1. I–V Curve Translation Techniques of PV Modules
3.2. Discussion and Comparative Analysis of I–V Curve Translation Techniques of PV Modules
4. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PV | Photovoltaic |
IEC | International Electrotechnical Commission |
ASTM | American Society for Testing and Materials |
m-Si | monocrystalline |
p-Si | polycrystalline p-Si |
a-Si | Amorphous silicon |
STC | Standard Test conditions |
I–V | Current-Voltage |
ASTMG | Reference Spectrum AM1.5 |
UV | Ultraviolet |
NOCT | Nominal Operating Cell Temperature |
Ta | Ambient Temperature |
G | Illuminance |
Tc | Cell Temperature |
Isc | Short Circuit Current |
Voc | Open Circuit Voltage |
Imp | Maximum Power Current |
Vmp | Maximum Power Voltage |
Pm | Maximum Power |
FF | Fill Factor |
LED | Light Emitting Diode |
PSS | Pulsed Solar Simulator |
PSL | Solar Pulsed Charge System |
IR | Infrared |
MPP | Maximum Power Point |
MOSFET | Metal-Oxide-Semiconductor Field-Effect Transistor |
DAQ | Data Acquisition System |
SPV | Photovoltaic Solar Module |
Tm | Module Temperature |
SEPIC | Asymmetric Primary Inductance Converter |
IEA | the International Energy Agency |
URAER | Renewable Energy Applied Research Unit |
HP | High Pressure |
EDS | Energy Dispersion Spectroscopy |
NISE | National Solar Energy Institute |
NREL | National Renewable Energy Laboratory |
References
- Hosseini, S.; Taheri, S.; Farzaneh, M.; Taheri, H.; Narimani, M. Determination of Photovoltaic Characteristics in Real Field Conditions. IEEE J. Photovolt. 2018, 8, 572–580. [Google Scholar] [CrossRef]
- Luciani, S.; Coccia, G.; Tomassetti, S.; Pierantozzi, M.; Di Nicola, G. Use of an Indoor Solar Flash Test Device to Evaluate Production Loss Associated to Specific Defects on Photovoltaic Modules|IIETA. Available online: https://www.iieta.org/journals/ijdne/paper/10.18280/ijdne.150504 (accessed on 26 June 2025).
- Kumar, M.; Kumar, A. Experimental Validation of Performance and Degradation Study of Canal-Top Photovoltaic System. Appl. Energy 2019, 243, 102–118. [Google Scholar] [CrossRef]
- Tsuno, Y.; Hishikawa, Y.; Kurokawa, K. Temperature and Irradiance Dependence of the I–V Curves of Various Kinds of Solar Cells. In Proceedings of the 15th International Photovoltaic Science & Engineering Conference (PVSEC-15), Shanghai, China, 10–15 October 2005; Volume 3, pp. 422–423. [Google Scholar]
- Erkaya, Y.; Flory, I.; Marsillac, S.X. Development of a String Level I–V Curve Tracer. In Proceedings of the 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, USA, 8–13 June 2014; pp. 3104–3107. [Google Scholar]
- van Dyk, E.E.; Gxasheka, A.R.; Meyer, E.L. Monitoring Current–Voltage Characteristics and Energy Output of Silicon Photovoltaic Modules. Renew. Energy 2005, 30, 399–411. [Google Scholar] [CrossRef]
- Skoplaki, E.; Boudouvis, A.G.; Palyvos, J.A. A Simple Correlation for the Operating Temperature of Photovoltaic Modules of Arbitrary Mounting. Sol. Energy Mater. Sol. Cells 2008, 92, 1393–1402. [Google Scholar] [CrossRef]
- Kim, J.; Rabelo, M.; Padi, S.P.; Yousuf, H.; Cho, E.C.; Yi, J. A Review of the Degradation of Photovoltaic Modules for Life Expectancy. Energies 2021, 14, 4278. [Google Scholar] [CrossRef]
- Laronde, R.; Charki, A.; Bigaud, D.; Excoffier, P. Fiabilité d’un Module Photovoltaïque Par Les Essais Accélérés. In Proceedings of the QUALITA’2011, Angers, France, 23–25 March 2011. [Google Scholar]
- Charki, A.; Laronde, R.; Bigaud, D. The Time-Variant Degradation of a Photovoltaic System. J. Sol. Energy Eng. 2013, 135, 024503. [Google Scholar] [CrossRef]
- Laronde, R.; Charki, A.; Bigaud, D. Reliability of Photovoltaic Modules Based on Climatic Measurement Data. Int. J. Metrol. Qual. Eng. 2010, 1, 45–49. [Google Scholar] [CrossRef]
- Leite, V.; Batista, J.; Chenlo, F.; Afonso, J.L. Low-Cost Instrument for Tracing Current-Voltage Characteristics of Photovoltaic Modules. In Proceedings of the ICREPQ’12—International Conference on Renewable Energies and Power Quality, Santiago de Compostela, Spain, 28–30 March 2012; Volume 10. [Google Scholar] [CrossRef]
- Campos, R.E.; Sakô, E.Y.; Moreira, H.S.; Silva, J.L.d.S.; Villalva, M.G. Experimental Analysis of a Developed Iv Curve Tracer under Partially Shading Conditions. In Proceedings of the 2019 IEEE PES Innovative Smart Grid Technologies Conference-Latin America (ISGT Latin America), Gramado, Brazil, 15–18 September 2019; IEEE: New York, NY, USA, 2019; pp. 1–5. [Google Scholar]
- Silva, P.R.; da Silva Jota, P.R.; Batista, A.P. PV Characterization System Outdoors—Case Study in Brazil. J. Power Energy Eng. 2017, 5, 119–132. [Google Scholar] [CrossRef]
- Mambrini, T. Characterization of Photovoltaic Solar Panels in Outdoor Conditions and According to Different Technologies; Caracterisation de Panneaux Solaires Photovoltaiques En Conditions Reelles d’implantation et En Fonction Des Differentes Technologies. 2014. Available online: https://www.osti.gov/etdeweb/biblio/22692432 (accessed on 12 August 2025).
- Zettl, M.; Stern, O.; Mayer, O.; Hartung, M.; Lynass, M.; Bernal, E. Indoor Characterization of Photovoltaic Modules under Various Conditions. In Proceedings of the Optical Modeling and Measurements for Solar Energy Systems II, San Diego, CA, USA, 11 September 2008; SPIE: Bellingham, WA, USA, 2008; Volume 7046, pp. 154–162. [Google Scholar]
- Nelem, A.T.; Onanena, R.; Mbele, N.; Perabi, S.; Ele, P.; Ndiaye, P. Contribution à l’évaluation Des Caractéristiques Techniques Des PV En Conditions de Fonctionnement Dans La Région Centre Du Cameroun. Available online: https://d1wqtxts1xzle7.cloudfront.net/109563620/document-libre.pdf?1703539716=&response-content-disposition=inline%3B+filename%3DContribution_a_levaluation_des_caracteri.pdf&Expires=1756090009&Signature=ADbG4MTJfeaXZJX8yUvZ3Ytxn6rdSo3rIYMQMh8cQ9S1HZW2X9Jfz4jXkB-KhzL6aL2xYW9PtMLhfDo4uWh6AWPBWXWQsBGB~X2BipI4mZFo5yRF-Uo0tctgMXyPVS1NLz-1pAOPnrNlYNAHPoG6~-vDFvKd91rFZfG-mdz3xypLsgFxkvRfpOOP88U77tDVaIaOmaZa~QfI-iGLYK2N3G4i2dd1D6W0FTc1zPmeXTBiy~tEQlFfe569qvdjnh7eSKQ84QGez87Q5fPCV-aGA~DKkfUdSkuMIqTs10Vv8flxA8sdYqNS4K4sHsjO52u9TiZRihspIjKruTCPxYi5hA__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA (accessed on 12 August 2025).
- Tchakpedeou, A.-B.; Lare, Y.; Napo, K.; Fousseni, A. An Improved Levenberg–Marquardt Approach with a New Reduced Form for the Identification of Parameters of the One-Diode Photovoltaic Model. J. Sol. Energy Eng. 2022, 144, 041005. [Google Scholar] [CrossRef]
- Mambrini, T.; Dubois, A.M.; Longeaud, C.; Badosa, J.; Haeffelin, M.; Prieur, L.; Radivoniuk, V. Photovoltaic Yield: Correction Method for the Mismatch between the Solar Spectrum and the Reference ASTMG AM1. 5G Spectrum. EPJ Photovolt. 2015, 6, 60701. [Google Scholar] [CrossRef]
- Mambrini, T.; Migan, A.; Longeaud, C.; Prieur, L.; Radivoniuk, V. Outdoor Characterizations to Evaluate the Low-Light Effect on Photovoltaic Modules Yield. In Proceedings of the 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, USA, 8–13 June 2014; IEEE: New York, NY, USA, 2014; pp. 1358–1361. [Google Scholar]
- Dhaouadi, R.; Al-Othman, A.; Aidan, A.A.; Tawalbeh, M.; Zannerni, R. A Characterization Study for the Properties of Dust Particles Collected on Photovoltaic (PV) Panels in Sharjah, United Arab Emirates. Renew. Energy 2021, 171, 133–140. [Google Scholar] [CrossRef]
- Sadat, S.A.; Faraji, J.; Nazififard, M.; Ketabi, A. The Experimental Analysis of Dust Deposition Effect on Solar Photovoltaic Panels in Iran’s Desert Environment. Sustain. Energy Technol. Assess. 2021, 47, 101542. [Google Scholar]
- Kazem, H.A.; Chaichan, M.T.; Al-Waeli, A.H.; Sopian, K. A Novel Model and Experimental Validation of Dust Impact on Grid-Connected Photovoltaic System Performance in Northern Oman. Sol. Energy 2020, 206, 564–578. [Google Scholar] [CrossRef]
- Gadong, B.S.B. Performance of Single Crystal Silicon Photovoltaic Module in Bruneian Climate. Int. J. Appl. Sci. Eng. 2010, 8, 179–188. [Google Scholar]
- Duran, E.; Piliougine, M.; Sidrach-de-Cardona, M.; Galan, J.; Andujar, J.M. Different Methods to Obtain the I–V Curve of PV Modules: A Review. In Proceedings of the 2008 33rd IEEE Photovoltaic Specialists Conference, San Diego, CA, USA, 11–16 May 2008; IEEE: New York, NY, USA, 2008; pp. 1–6. [Google Scholar]
- Zhu, Y.; Xiao, W. A Comprehensive Review of Topologies for Photovoltaic I–V Curve Tracer. Sol. Energy 2020, 196, 346–357. [Google Scholar] [CrossRef]
- Morales-Aragonés, J.I.; Dávila-Sacoto, M.; González, L.G.; Alonso-Gómez, V.; Gallardo-Saavedra, S.; Hernández-Callejo, L. A Review of I–V Tracers for Photovoltaic Modules: Topologies and Challenges. Electronics 2021, 10, 1283. [Google Scholar] [CrossRef]
- Augusto, A.; Killam, A.; Bowden, S.G.; Wilterdink, H. Measuring Outdoor I–V Characteristics of PV Modules and Systems. Prog. Energy 2022, 4, 042006. [Google Scholar] [CrossRef]
- Minemoto, T.; Nagae, S.; Takakura, H. Impact of Spectral Irradiance Distribution and Temperature on the Outdoor Performance of Amorphous Si Photovoltaic Modules. Sol. Energy Mater. Sol. Cells 2007, 91, 919–923. [Google Scholar] [CrossRef]
- IEC 60904-9; Photovoltaic Devices—Part 9: Classification of Solar Simulator Characteristics. Available online: https://webstore.iec.ch/en/publication/28973 (accessed on 12 August 2025).
- IEC 60904-3; Photovoltaic Devices—Part 3: Measurement Principles for Terrestrial Photovoltaic (PV) Solar Devices with Reference Spectral Irradiance Data. Available online: https://webstore.iec.ch/en/publication/61084 (accessed on 12 August 2025).
- Gril, P.-A.; Vernier, J.; Depernet, D. Caractérisation de Panneaux Photovoltaïques Par Mesure d’impédance. In Proceedings of the Actes Symposium de Génie Electrique, Nancy, France, 3–5 July 2018. [Google Scholar]
- Siddiqui, R.; Kumar, R.; Jha, G.K.; Raghava, S.; Sastry, O.S.; Bora, B.; Perveen, G.; Bajpai, U. Characterization of Multi Crystalline PV Modules under Standard Test Conditions and Its Comparison with Other Module Types. Int. J. Eng. Res. Appl. 2014, 4, 150–164. [Google Scholar]
- IEC 61215-1; Terrestrial Photovoltaic (PV) Modules—Design Qualification and Type Approval—Part 1: Test Requirements. Available online: https://webstore.iec.ch/en/publication/61345 (accessed on 12 August 2025).
- Pratt, L.E.; Basappa Ayanna, M.; May, S.I.; Roro, K.T.; McCleland, J.C.; Zikhali, Q. Inter Laboratory Comparison of Indoor Performance Tests on Crystalline Silicon Solar PV Modules. 2019. Available online: https://researchspace.csir.co.za/server/api/core/bitstreams/45d61781-824e-4687-a356-b1b839dc7ff7/content (accessed on 12 August 2025).
- Lalaoui, L.; Bouafia, M.; Bouzid, S.; Kugler, M.; Zentgraf, M.; Schinköthe, P.; Nieland, S. Indoor and Outdoor Measurements of PV Module Performance of Different Manufacturing Technologies. In Advanced Control Engineering Methods in Electrical Engineering Systems; Chadli, M., Bououden, S., Ziani, S., Zelinka, I., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 238–250. [Google Scholar]
- ISO/IEC 17025; Exigences Générales Concernant la Compétence des Laboratoires D’étalonnages et D’essais. Available online: https://www.iso.org/fr/standard/39883.html (accessed on 12 August 2025).
- Apostolou, G.; Reinders, A.H.M.E.; Verwaal, M. Comparison of the Indoor Performance of 12 Commercial PV Products by a Simple Model. Energy Sci. Eng. 2016, 4, 69–85. [Google Scholar] [CrossRef]
- Apostolou, G.; Verwaal, M.; Reinders, A. Estimating the Performance of Product Integrated Photovoltaic (PIPV) Cells under Indoor Conditions for the Support of Design Processes. In Proceedings of the 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, USA, 8–13 June 2014; pp. 0742–0747. [Google Scholar]
- Correction Procedures for Temperature and Irradiance of Photovoltaic Modules: Determination of Series Resistance and Temperature Coefficients by Means of an Indoor Solar Flash Test Device|IIETA. Available online: https://www.iieta.org/journals/ti-ijes/paper/10.18280/ti-ijes.652-419 (accessed on 26 June 2025).
- IEC 60891; Photovoltaic Devices—Procedures for Temperature and Irradiance Corrections to Measured I–V Characteristics. Available online: https://webstore.iec.ch/en/publication/61766 (accessed on 12 August 2025).
- IEC 60904-1; Photovoltaic Devices—Part 1: Measurement of Photovoltaic Current-Voltage Characteristics. Available online: https://webstore.iec.ch/en/publication/32004 (accessed on 12 August 2025).
- Ozcan, B.; Seval, M. Temperature-Irradiance Matrix and Determination of Temperature Coefficients of a Monocrystalline PV Module. Open J. Energy Effic. 2022, 11, 108–121. [Google Scholar] [CrossRef]
- Abella, M.A.; Chenlo, F. Determination in Solar Simulator of Temperature Coefficients and Correction Parameters of PV Modules According to International Standards. In Proceedings of the 2011 37th IEEE Photovoltaic Specialists Conference, Seattle, WA, USA, 19–24 June 2011; pp. 002225–002230. [Google Scholar]
- Dubey, R.; Batra, P.; Chattopadhyay, S.; Kottantharayil, A.; Arora, B.M.; Narasimhan, K.L.; Vasi, J. Measurement of Temperature Coefficient of Photovoltaic Modules in Field and Comparison with Laboratory Measurements. In Proceedings of the 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA, 14–19 June 2015; pp. 1–5. [Google Scholar]
- Xiao, W.; Yan, Y.; Wu, H.; Liu, B.; Li, Y. Two Sets of Capacitor Load Based I–V Curve Tracer for Photovoltaic Cell. J. Instrum. 2023, 18, P09028. [Google Scholar] [CrossRef]
- De Riso, M.; Matacena, I.; Guerriero, P.; Daliento, S. A Wireless Self-Powered I–V Curve Tracer for On-Line Characterization of Individual PV Panels. IEEE Trans. Ind. Electron. 2024, 71, 11508–11518. [Google Scholar] [CrossRef]
- Chaibi, Y.; Malvoni, M.; Allouhi, A.; Mohamed, S. Data on the I–V Characteristics Related to the SM55 Monocrystalline PV Module at Various Solar Irradiance and Temperatures. Data Brief 2019, 26, 104527. [Google Scholar] [CrossRef]
- Chaibi, Y.; Allouhi, A.; Malvoni, M.; Salhi, M.; Saadani, R. Solar Irradiance and Temperature Influence on the Photovoltaic Cell Equivalent-Circuit Models. Sol. Energy 2019, 188, 1102–1110. [Google Scholar] [CrossRef]
- Abou-Ras, D.; Kirchartz, T.; Rau, U. Advanced Characterization Techniques for Thin Film Solar Cells; Wiley-Vch: Weinheim, Germany, 2011. [Google Scholar] [CrossRef]
- Gerber, A.; Huhn, V.; Tran, T.M.H.; Siegloch, M.; Augarten, Y.; Pieters, B.E.; Rau, U. Advanced Large Area Characterization of Thin-Film Solar Modules by Electroluminescence and Thermography Imaging Techniques. Sol. Energy Mater. Sol. Cells 2015, 135, 35–42. [Google Scholar] [CrossRef]
- Kumar, V.; Maheshwari, P. Advanced Analytics on IV Curves and Electroluminescence Images of Photovoltaic Modules Using Machine Learning Algorithms. Prog. Photovolt. Res. Appl. 2022, 30, 880–888. [Google Scholar] [CrossRef]
- Gulkowski, S.; Krawczak, E. Thin-Film Photovoltaic Modules Characterisation Based on I–V Measurements Under Outdoor Conditions. Energies 2024, 17, 5853. [Google Scholar] [CrossRef]
- Granek, F.; Zdanowicz, T. Advanced System for Calibration and Characterization of Solar Cells. Opto-Electron. Rev. 2004, 12, 57–67. [Google Scholar]
- Willoughby, A.A.; Omotosho, T.V.; Aizebeokhai, A.P. A Simple Resistive Load I–V Curve Tracer for Monitoring Photovoltaic Module Characteristics. In Proceedings of the 2014 5th International Renewable Energy Congress (IREC), Hammamet, Tunisia, 25–27 March 2014; pp. 1–6. [Google Scholar]
- El Hammoumi, A.; Motahhir, S.; Chalh, A.; El Ghzizal, A.; Derouich, A. Low-Cost Virtual Instrumentation of PV Panel Characteristics Using Excel and Arduino in Comparison with Traditional Instrumentation. Renew. Wind Water Sol. 2018, 5, 3. [Google Scholar] [CrossRef]
- Amiry, H.; Benhmida, M.; Bendaoud, R.; Hajjaj, C.; Bounouar, S.; Yadir, S.; Raïs, K.; Sidki, M. Design and Implementation of a Photovoltaic I–V Curve Tracer: Solar Modules Characterization under Real Operating Conditions. Energy Convers. Manag. 2018, 169, 206–216. [Google Scholar] [CrossRef]
- Rivai, A.; Rahim, N.A. Binary-based Tracer of Photovoltaic Array Characteristics. IET Renew. Power Gener. 2014, 8, 621–628. [Google Scholar] [CrossRef]
- Leite, V.; Chenlo, F. An Improved Electronic Circuit for Tracing the I–V Characteristics of Photovoltaic Modules and Strings. RE&PQJ 2010, 8. [Google Scholar] [CrossRef]
- Asbayou, A.; Agdam, M.; Aamoume, A.; Soussi, A.; Ihla, A.; Bouhouch, L. Utilization of MOSFET Transistor as an Electronic Load to Trace I–V and P–V Curve of a Solar Panel. E3S Web Conf. 2021, 229, 01021. [Google Scholar] [CrossRef]
- Asbayou, A.; Soussi, A.; Isknan, I.; Aamoume, A.; El Fanaoui, A.; Ihlal, A.; Bouhouch, L. Method Using Simple RLC Circuit for Electrical Characterization of PV Panels. Mater. Today Proc. 2022, 58, 1033–1038. [Google Scholar] [CrossRef]
- Kuai, Y.; Yuvarajan, S. An Electronic Load for Testing Photovoltaic Panels. J. Power Sources 2006, 154, 308–313. [Google Scholar] [CrossRef]
- Chen, Z.; Lin, Y.; Wu, L.; Cheng, S.; Lin, P. Development of a Capacitor Charging Based Quick I–V Curve Tracer with Automatic Parameter Extraction for Photovoltaic Arrays. Energy Convers. Manag. 2020, 226, 113521. [Google Scholar] [CrossRef]
- Muñoz, J.; Lorenzo, E. Capacitive Load Based on IGBTs for On-Site Characterization of PV Arrays. Sol. Energy 2006, 80, 1489–1497. [Google Scholar] [CrossRef]
- Spertino, F.; Ahmad, J.; Ciocia, A.; Di Leo, P.; Murtaza, A.F.; Chiaberge, M. Capacitor Charging Method for I–V Curve Tracer and MPPT in Photovoltaic Systems. Sol. Energy 2015, 119, 461–473. [Google Scholar] [CrossRef]
- Ortega, E.; Aranguren, G.; Jimeno, J.C. New Monitoring Method to Characterize Individual Modules in Large Photovoltaic Systems. Sol. Energy 2019, 193, 906–914. [Google Scholar] [CrossRef]
- Chen, Z.; Lin, W.; Wu, L.; Long, C.; Lin, P.; Cheng, S. A Capacitor Based Fast I–V Characteristics Tester for Photovoltaic Arrays. Energy Procedia 2018, 145, 381–387. [Google Scholar] [CrossRef]
- Sayyad, J.K.; Nasikkar, P.S. Capacitor Load Based I–V Curve Tracer for Performance Characterisation of the Solar Photovoltaic System. Appl. Sol. Energy 2020, 56, 168–177. [Google Scholar] [CrossRef]
- Borekci, S.; Acar, N.C. Inductor Based I–V Curve Measurement Method for Photovoltaic Panels. Eng. Res. Express 2024, 6, 015066. [Google Scholar] [CrossRef]
- Aranda, E.D.; Gomez Galan, J.A.; de Cardona, M.S.; Andujar Marquez, J.M. Measuring the I–V Curve of PV Generators. IEEE Ind. Electron. Mag. 2009, 3, 4–14. [Google Scholar] [CrossRef]
- Khatib, T.; Elmenreich, W.; Mohamed, A. Simplified I–V Characteristic Tester for Photovoltaic Modules Using a DC-DC Boost Converter. Sustainability 2017, 9, 657. [Google Scholar] [CrossRef]
- Khlifi, A.; Khlifi, Y.; Elhafyani, M.L. Design and Realization of a Photovoltaic Tracer Using DC/DC Converter. Appl. Sol. Energy 2023, 59, 791–802. [Google Scholar] [CrossRef]
- Durán, E.; Andújar, J.M.; Enrique, J.M.; Pérez-Oria, J.M. Determination of PV Generator I–V/P–V Characteristic Curves Using a DC-DC Converter Controlled by a Virtual Instrument. Int. J. Photoenergy 2012, 2012, 843185. [Google Scholar] [CrossRef]
- Ramos-Paja, C.A.; Gonzalez-Motoya, D.; Villegas-Seballos, J.P.; Serna-Garces, S.I.; Giral, R. Sliding-Mode Controller for a Photovoltaic System Based on a Cuk Converter. Int. J. Electr. Comput. Eng. IJECE 2021, 11, 2027–2044. [Google Scholar] [CrossRef]
- Tse, K.K.; Ho, B.M.T.; Chung, H.S.-H.; Hui, S.Y.R. A Comparative Study of Maximum-Power-Point Trackers for Photovoltaic Panels Using Switching-Frequency Modulation Scheme. IEEE Trans. Ind. Electron. 2004, 51, 410–418. [Google Scholar] [CrossRef]
- Durán, E.; Andújar, J.M.; Galán, J.; Sidrach-de-Cardona, M. Methodology and Experimental System for Measuring and Displaying I–V Characteristic Curves of PV Facilities. Prog. Photovolt. Res. Appl. 2009, 17, 574–586. [Google Scholar] [CrossRef]
- Farahat, M.A.; Metwally, H.M.B.; Abd-Elfatah Mohamed, A. Optimal Choice and Design of Different Topologies of DC–DC Converter Used in PV Systems, at Different Climatic Conditions in Egypt. Renew. Energy 2012, 43, 393–402. [Google Scholar] [CrossRef]
- Sivakumar, S.; Sathik, M.J.; Manoj, P.S.; Sundararajan, G. An Assessment on Performance of DC–DC Converters for Renewable Energy Applications. Renew. Sustain. Energy Rev. 2016, 58, 1475–1485. [Google Scholar] [CrossRef]
- Aghaei, M.; Fairbrother, A.; Gok, A.; Ahmad, S.; Kazim, S.; Lobato, K.; Oreski, G.; Reinders, A.; Schmitz, J.; Theelen, M.; et al. Review of Degradation and Failure Phenomena in Photovoltaic Modules. Renew. Sustain. Energy Rev. 2022, 159, 112160. [Google Scholar] [CrossRef]
- Jatoi, A.R.; Samo, S.R.; Jakhrani, A.Q. Influence of Temperature on Electrical Characteristics of Different Photovoltaic Module Technologies. Int. J. Renew. Energy Dev. 2018, 7, 85–91. [Google Scholar] [CrossRef]
- Motahhir, S.; El Hammoumi, A.; El Ghzizal, A. Photovoltaic System with Quantitative Comparative between an Improved MPPT and Existing INC and P&O Methods under Fast Varying of Solar Irradiation. Energy Rep. 2018, 4, 341–350. [Google Scholar] [CrossRef]
- Sadok, M.; Benyoucef, B. Performances et dégradation des modules PV. Available online: https://www.cder.dz/download/sienr2012_24.pdf (accessed on 12 August 2025).
- Zerdoudi, A.; Chenni, R. Etude de L’influence des Differents Parametres sur un Module Photovoltaïque. Sci. Technol. Sci. Exactes 2015, 49–54. [Google Scholar]
- Chukwu, G.U.; Chigbo, N.I.; Onyenonachi, F.C.; Udoinyang, I.E. Comparative Study of Photovoltaic Modules and Their Performance in the Tropics: A Case Study in Nigeria. Int. J. Innov. Environ. Stud. Res. 2016, 4, 21–28. [Google Scholar]
- Ibrahim, K.A.; Gyuk, P.M.; Aliyu, S. The Effect of Solar Irradiation on Solar Cells. Sci. World J. 2019, 14, 20–22. [Google Scholar]
- Buni, M.J.B.; Al-Walie, A.A.K.; Al-Asadi, K.A.N. Effect of Solar Radiation on Photovoltaic Cell. Int. Res. J. Adv. Eng. Sci. 2018, 3, 47–51. [Google Scholar]
- Ezenwora, J.A.; Oyedum, O.D.; Ugwuoke, P.E. Comparative Study on Different Types of Photovoltaic Modules under Outdoor Operating Conditions in Minna, Nigeria. Int. J. Phys. Res. 2018, 6, 35–48. [Google Scholar] [CrossRef]
- Bashir, M.A.; Ali, H.M.; Khalil, S.; Ali, M.; Siddiqui, A.M. Comparison of Performance Measurements of Photovoltaic Modules during Winter Months in Taxila, Pakistan. Int. J. Photoenergy 2014, 2014, 898414. [Google Scholar] [CrossRef]
- Cotfas, D.T.; Cotfas, P.A. Comparative Study of Two Commercial Photovoltaic Panels under Natural Sunlight Conditions. Int. J. Photoenergy 2019, 2019, 8365175. [Google Scholar] [CrossRef]
- Al-Bashir, A.; Al-Dweri, M.; Al-Ghandoor, A.; Hammad, B.; Al-Kouz, W. Analysis of Effects of Solar Irradiance, Cell Temperature and Wind Speed on Photovoltaic Systems Performance. Int. J. Energy Econ. Policy 2020, 10, 353–359. [Google Scholar] [CrossRef]
- Islam, M.N.; Rahman, M.Z.; Mominuzzaman, S.M. The Effect of Irradiation on Different Parameters of Monocrystalline Photovoltaic Solar Cell. In Proceedings of the 2014 3rd International Conference on the Developments in Renewable Energy Technology (ICDRET), Dhaka, Bangladesh, 29–31 May 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–6. [Google Scholar]
- Baghel, N.S.; Chander, N. Performance Comparison of Mono and Polycrystalline Silicon Solar Photovoltaic Modules under Tropical Wet and Dry Climatic Conditions in East-Central India. Clean Energy 2022, 6, 165–177. [Google Scholar] [CrossRef]
- Jaszczur, M.; Hassan, Q.; Teneta, J.; Majewska, E.; Zych, M. An Analysis of Temperature Distribution in Solar Photovoltaic Module under Various Environmental Conditions. MATEC Web Conf. 2018, 240, 04004. [Google Scholar] [CrossRef]
- Jatoi, A.R.; Samo, S.R.; Jakhrani, A.Q. Comparative Study of the Electrical Characteristics of Different Photovoltaic Modules in Outdoor Environment. Eng. Technol. Appl. Sci. Res. 2019, 9, 4600–4604. [Google Scholar] [CrossRef]
- Jatoi, A.R.; Samo, S.R.; Jakhrani, A.Q. Performance Evaluation of Various Photovoltaic Module Technologies at Nawabshah Pakistan. Int. J. Renew. Energy Dev. 2021, 10, 97–103. [Google Scholar] [CrossRef]
- Takyi, G.; Nyarko, F.K. Investigation of the Effect of Temperature Coefficients on Mono-Crystalline Silicon PV Module Installed in Kumasi, Ghana. J. Power Energy Eng. 2020, 8, 20–34. [Google Scholar] [CrossRef]
- Al-Ghezi, M.K.; Ahmed, R.T.; Chaichan, M.T. The Influence of Temperature and Irradiance on Performance of the Photovoltaic Panel in the Middle of Iraq. Int. J. Renew. Energy Dev. 2022, 11, 501–513. [Google Scholar] [CrossRef]
- Fezzani, A.; Hadj-Mahammed, I.; Kouzou, A.; Zaghba, L.; Drid, S.; Khennane, M.; Kennel, R.; Abdelrahem, M. Energy Efficiency of Multi-Technology PV Modules under Real Outdoor Conditions—An Experimental Assessment in Ghardaïa, Algeria. Sustainability 2022, 14, 1771. [Google Scholar] [CrossRef]
- Bioudun, A.D.; ADELEKE David Kehinde, O.T.A. Experimental Evaluation of the Effect of Temperature on Polycrystalline and Monocrystalline Photovoltaic Modules. IOSR J. Appl. Phys. 2017, 9, 5–10. [Google Scholar]
- Ale, T.O.; Rotipin, K.; Makanju, T.D. Temperature Effects on Optimal Performance of PV Module. J. Eng. Adv. 2022, 3, 162–165. [Google Scholar] [CrossRef]
- Al-Odat, M.Q. Experimental Study of Temperature Influence on the Performance of PV/T Cell under Jordan Climate Conditions. J. Ecol. Eng. 2022, 23. [Google Scholar] [CrossRef]
- Onyenweuwa, A.H. Temperature Performance Analysis of a Photovoltaic Module. Arid Zone J. Eng. Technol. Environ. 2019, 15, 116–123. [Google Scholar]
- Lee, Y.; Tay, A.A.O. Finite Element Thermal Analysis of a Solar Photovoltaic Module. Energy Procedia 2012, 15, 413–420. [Google Scholar] [CrossRef]
- Ale, T.O.; Rotipin, K.J. Cooling Effects on Photovoltaic Module Performance in the Tropical Region. Niger. J. Technol. 2019, 38, 702–706. [Google Scholar] [CrossRef]
- Yuldoshov, B.; Saitov, E.; Khaliyarov, J.; Bobomuratov, S.; Toshpulatov, S.; Kholmurzayeva, F. Effect of Temperature on Electrical Parameters of Photovoltaic Module. 2023. Available online: https://opendata.uni-halle.de//handle/1981185920/103910 (accessed on 12 August 2025).
- Alraeesi, A.; Shah, A.H.; Hassan, A.; Laghari, M.S. Characterisation of Dust Particles Deposited on Photovoltaic Panels in the United Arab Emirates. Appl. Sci. 2023, 13, 13162. [Google Scholar] [CrossRef]
- Chairma Lakshmi, R.K.; Ramadas, G. Dust Deposition’s Effect on Solar Photovoltaic Module Performance: An Experimental Study in India’s Tropical Region. J. Renew. Mater. 2022, 10, 2133–2153. [Google Scholar] [CrossRef]
- Andrea, Y.; Pogrebnaya, T.; Kichonge, B. Effect of Industrial Dust Deposition on Photovoltaic Module Performance: Experimental Measurements in the Tropical Region. Int. J. Photoenergy 2019, 2019, 1892148. [Google Scholar] [CrossRef]
- Rao, A.; Pillai, R.; Mani, M.; Ramamurthy, P. Influence of Dust Deposition on Photovoltaic Panel Performance. Energy Procedia 2014, 54, 690–700. [Google Scholar] [CrossRef]
- Rashid, M.; Yousif, M.; Rashid, Z.; Muhammad, A.; Altaf, M.; Mustafa, A. Effect of Dust Accumulation on the Performance of Photovoltaic Modules for Different Climate Regions. Heliyon 2023, 9, e23069. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Liu, Y.; Tian, Z.; Dong, Y.; Zhou, Y.; Wang, X.; Wang, D. Experimental Study on the Effect of Dust Deposition on Photovoltaic Panels. Energy Procedia 2019, 158, 483–489. [Google Scholar] [CrossRef]
- Ali, H.M.; Zafar, M.A.; Bashir, M.A.; Nasir, M.A.; Ali, M.; Siddiqui, A.M. Effect of Dust Deposition on the Performance of Photovoltaic Modules in Taxila, Pakistan. Therm. Sci. 2017, 21, 915–923. [Google Scholar] [CrossRef]
- Adinoyi, M.J.; Said, S.A.M. Effect of Dust Accumulation on the Power Outputs of Solar Photovoltaic Modules. Renew. Energy 2013, 60, 633–636. [Google Scholar] [CrossRef]
- Rahman, M.M.; Islam, M.A.; Karim, A.H.M.Z.; Ronee, A.H. Effects of Natural Dust on the Performance of PV Panels in Bangladesh. Int. J. Mod. Educ. Comput. Sci. 2012, 4, 26–32. [Google Scholar] [CrossRef]
- Danu, A.; COCÂRȚĂ, D.M.; Tanasiev, V.; Badea, A. The Influence of Dust Deposition on the Energy Performance of the Photovoltaics. UPB Sci Bull Ser C 2018, 80, 183–196. [Google Scholar]
- Jordan, D.C.; Wohlgemuth, J.H.; Kurtz, S.R. Technology and Climate Trends in PV Module Degradation. In Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition, Frankfurt, Germany, 24–28 September 2012; pp. 3118–3124. [Google Scholar] [CrossRef]
- Lillo-Sánchez, L.; López-Lara, G.; Vera-Medina, J.; Pérez-Aparicio, E.; Lillo-Bravo, I. Degradation Analysis of Photovoltaic Modules after Operating for 22 Years. A Case Study with Comparisons. Sol. Energy 2021, 222, 84–94. [Google Scholar] [CrossRef]
- Phinikarides, A.; Makrides, G.; Georghiou, G.E. Initial Performance Degradation of an A-Si/a-Si Tandem PV Array. In Proceedings of the 27th European Photovoltaic Solar Energy Conference and Exhibition, Frankfurt, Germany, 24–28 September 2012; pp. 3267–3270. [Google Scholar] [CrossRef]
- Rajput, P.; Tiwari, G.N.; Sastry, O.S.; Bora, B.; Sharma, V. Degradation of Mono-Crystalline Photovoltaic Modules after 22 Years of Outdoor Exposure in the Composite Climate of India. Sol. Energy 2016, 135, 786–795. [Google Scholar] [CrossRef]
- Piliougine, M.; Sánchez-Friera, P.; Petrone, G.; Sánchez-Pacheco, F.J.; Spagnuolo, G.; Sidrach-de-Cardona, M. Analysis of the Degradation of Amorphous Silicon-Based Modules after 11 Years of Exposure by Means of IEC60891:2021 Procedure 3. Prog. Photovolt. Res. Appl. 2022, 30, 1176–1187. [Google Scholar] [CrossRef]
- Ishii, T.; Masuda, A. Annual Degradation Rates of Recent Crystalline Silicon Photovoltaic Modules. Prog. Photovolt. Res. Appl. 2017, 25, 953–967. [Google Scholar] [CrossRef]
- Obaid, A.H.; Mahdi, E.J.; Hassoon, I.A.; Hussein, H.F.; Adil Abd Al-Sahib, J.; Jafarf, A.N.; Abdulghanig, A.S. Evaluation of Degradation Factor Effect on Solar Panels Performance after Eight Years of Life Operation. Arch. Thermodyn. 2024, 45, 221–226. [Google Scholar] [CrossRef]
- Aboagye, B.; Gyamfi, S.; Ofosu, E.A.; Djordjevic, S. Degradation Analysis of Installed Solar Photovoltaic (PV) Modules under Outdoor Conditions in Ghana. Energy Rep. 2021, 7, 6921–6931. [Google Scholar] [CrossRef]
- Quansah, D.A.; Adaramola, M.S.; Takyi, G.; Edwin, I.A. Reliability and Degradation of Solar PV Modules—Case Study of 19-Year-Old Polycrystalline Modules in Ghana. Technologies 2017, 5, 22. [Google Scholar] [CrossRef]
- Aboagye, B.; Gyamfi, S.; Ofosu, E.A.; Djordjevic, S. Characterisation of Degradation of Photovoltaic (PV) Module Technologies in Different Climatic Zones in Ghana. Sustain. Energy Technol. Assess. 2022, 52, 102034. [Google Scholar] [CrossRef]
- Quansah, D.A.; Adaramola, M.S.; Takyi, G. Degradation and Longevity of Solar Photovoltaic Modules—An Analysis of Recent Field Studies in Ghana. Energy Sci. Eng. 2020, 8, 2116–2128. [Google Scholar] [CrossRef]
- Gyamfi, S.; Aboagye, B.; Peprah, F.; Obeng, M. Degradation Analysis of Polycrystalline Silicon Modules from Different Manufacturers under the Same Climatic Conditions. Energy Convers. Manag. X 2023, 20, 100403. [Google Scholar] [CrossRef]
- Sadok, M.; Benyoucef, B.; Benmedjahed, M. Assessment of PV Modules Degradation Based on Performances and Visual Inspection in Algerian Sahara. Int. J. Renew. Energy Res. IJRER 2016, 6, 106–116. [Google Scholar]
- Atia, D.M.; Hassan, A.A.; El-Madany, H.T.; Eliwa, A.Y.; Zahran, M.B. Degradation and Energy Performance Evaluation of Mono-Crystalline Photovoltaic Modules in Egypt. Sci. Rep. 2023, 13, 13066. [Google Scholar] [CrossRef]
- Daher, D.H.; Aghaei, M.; Quansah, D.A.; Adaramola, M.S.; Parvin, P.; Ménézo, C. Multi-Pronged Degradation Analysis of a Photovoltaic Power Plant after 9.5 Years of Operation under Hot Desert Climatic Conditions. Prog. Photovolt. Res. Appl. 2023, 31, 888–907. [Google Scholar] [CrossRef]
- Londoño, C.D.; Cano, J.B.; Velilla, E. Capacitive Tracer Design to Mitigate Incomplete I–V Curves in Outdoor Tests. Sol. Energy 2022, 243, 361–369. [Google Scholar] [CrossRef]
- Sandstrom, J.D. A Method for Predicting Solar Cell Current- Voltage Curve Characteristics as a Function of Incident Solar Intensity and Cell Temperature. 1967. Available online: https://ntrs.nasa.gov/api/citations/19670021539/downloads/19670021539.pdf (accessed on 12 August 2025).
- Guenounou, A.; Malek, A.; Aillerie, M. Comparative Performance of PV Panels of Different Technologies over One Year of Exposure: Application to a Coastal Mediterranean Region of Algeria. Energy Convers. Manag. 2016, 114, 356–363. [Google Scholar] [CrossRef]
- Tsuno, Y.; Hishikawa, Y.; Kurokawa, K. Translation Equations for Temperature and Irradiance of the I–V Curves of Various PV Cells and Modules. In Proceedings of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, Waikoloa, HI, USA, 7–12 May 2006; Volume 2, pp. 2246–2249. [Google Scholar]
- Hishikawa, Y.; Doi, T.; Higa, M.; Yamagoe, K.; Ohshima, H.; Takenouchi, T.; Yoshita, M. Voltage-Dependent Temperature Coefficient of the I–V Curves of Crystalline Silicon Photovoltaic Modules. IEEE J. Photovolt. 2018, 8, 48–53. [Google Scholar] [CrossRef]
- IEC 60891-2009; Photovoltaic Devices—Procedures for Temperature and Irradiance Corrections to Measured I–V Characteristics. Available online: https://webstore.iec.ch/en/publication/3821 (accessed on 12 August 2025).
- Li, B.; Diallo, D.; Migan-Dubois, A.; Delpha, C. Performance Evaluation of IEC 60891:2021 Procedures for Correcting I–V Curves of Photovoltaic Modules under Healthy and Faulty Conditions. Prog. Photovolt. Res. Appl. 2023, 31, 474–493. [Google Scholar] [CrossRef]
- Anderson, A.J. PV Translation Equations a New Approach. AIP Conf. Proc. 1996, 353, 450140. [Google Scholar] [CrossRef]
- King, D.L.; Kratochvil, J.A.; Boyson, W.E. Temperature Coefficients for PV Modules and Arrays: Measurement Methods, Difficulties, and Results. In Proceedings of the Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference, Anaheim, CA, USA, 29 September–3 October 1997; pp. 1183–1186. [Google Scholar]
- Tobías, I.; del Cañizo, C.; Alonso, J. Crystalline Silicon Solar Cells and Modules. In Handbook of Photovoltaic Science and Engineering; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2010; pp. 265–313. ISBN 978-0-470-97470-4. [Google Scholar]
- Standard Test Methods for Electrical Performance of Nonconcentrator Terrestrial Photovoltaic Modules and Arrays Using Reference Cells. Available online: https://store.astm.org/e1036-02r07.html (accessed on 28 June 2025).
- Blaesser, G.; Rossi, E. Extrapolation of Outdoor Measurements of PV Array I–V Characteristics to Standard Test Conditions. Sol. Cells 1988, 25, 91–96. [Google Scholar] [CrossRef]
- Lun, S.; Du, C.; Guo, T.; Wang, S.; Sang, J.; Li, J. A New Explicit I–V Model of a Solar Cell Based on Taylor’s Series Expansion. Sol. Energy 2013, 94, 221–232. [Google Scholar] [CrossRef]
- Reddy, G.S.; Reddy, T.B.; Kumar, M.V. A MATLAB Based PV Module Models Analysis under Conditions of Nonuniform Irradiance. Energy Procedia 2017, 117, 974–983. [Google Scholar] [CrossRef]
Quality Indicator | Method | Classification | ||
---|---|---|---|---|
Class A | Class B | Class C | ||
Non-uniformity of illumination | Monitoring the distribution of illumination in the test area. Calculation from measured min/max values of the illuminance | <2% | <5% | <10% |
Match to the reference illuminance spectrum AM1.5 (IEC60904-3 [31]) | Ratio of the illuminance inputs of six wavelength ranges (400, 500, 600, 700, 800, 900, 1100): solar simulator/reference AM1.5 | 0.75–1.5% | 0.6–1.4% | 0.4–2% |
Temporal stability of the emitted light (LTI = Long-term Instability) | Tracking of illumination in a fixed position in the test area. Calculation from min/max values during the I–V data acquisition period. | <0.5% | <2% | <10% |
Authors | Year | PV Technology | Exposition Period | Module Efficiency | Performance Ratio | Climatic Conditions |
---|---|---|---|---|---|---|
CHUKWU, et al. [84] | 2016 | m–Si | Three day | 11.83% | 0.900 | hot and humid |
p–Si | 9.16% | 0.923 | ||||
CIS | 7.12% | 1.065 | ||||
a–Si | 3.61% | 1.023 | ||||
Ezenwora, et al. [87] | 2018 | m–Si | one year | 5.86% | 0.07 | tropical |
p–Si | 10.91% | 0.13 | ||||
a–Si | 3.61% | 0.07 | ||||
Bashir, et al. [88] | 2014 | m–Si | winter | 7.8% | 5.68% | semi-arid |
p–Si | 8.2% | 9.3% | ||||
a–Si | 22.1% | 22.6% | ||||
Cotfas, et al. [89] | 2019 | m–Si | 2 years | 8.34% | - | continental |
a–Si | 3.48% | |||||
Islam, et al. [91] | 2014 | m–Si | - | 13.6% | - | tropical |
Baghel, et al. [92] | 2022 | m–Si | 6 month | - | 0.89 | humid tropical |
p–Si | 0.86 |
Authors | Year | Dust Type/Conditions | Dust Density | Efficiency Losses | Climatic Conditions | PV Tested |
---|---|---|---|---|---|---|
R, K.; Ramadas, G. [107] | 2022 | Chalk, brick, coal, sand | Equal application | 26.5–73.5% | Tropical (India) | Polycrystalline (p-Si) |
Andrea et al. [108] | 2019 | Industrial dust (fertilizers, gypsum, coal) | 10 g/module | 29–64% | Tropical (Tanzania) | Polycrystalline (p-Si) |
Rashid et al. [110] | 2023 | Urban dust (Islamabad vs. Bahawalpur) | 6-week accumulation | 15–25.4% | Semi-arid (Pakistan) | Monocrystalline (m-Si) |
Chen et al. [111] | 2019 | Urban dust (Hong Kong) | 0–30 g/m2 | Non-linear (↑ density = ↓ FF) | Humid subtropical | Polycrystalline (p-Si) |
Ali et al. [112] | 2017 | Winter dust (Taxila) | 0.9867 mg/cm2 | 16% (p-Si)–20% (m-Si) | Dry winter (Pakistan) | m-Si and p-Si |
Adinoyi et al. [113] | 2013 | Desert dust (Saudi Arabia) | >6 months of accumulation | Up to 50% | Desert (Dhahran) | Unspecified |
Authors | Year | PV Technology | Study Period | Annual Degradation Rate | Main Degradation Mechanisms | Climatic Conditions |
---|---|---|---|---|---|---|
Lillo-Sanchez et al. [117] | 2021 | m-Si | 22 years | 1.4% | Browning, oxidation, discoloration | Mediterranean climate (Spain) |
Phinikarides et al. [118] | 2012 | a-Si | 7 months | 16.9% (3 months) → 8.6% | Accelerated initial degradation | Hot climate (Cyprus) |
Rajput et al. [119] | 2016 | m-Si | 22 years | 1.9% | Delamination, hot spots, burns | Mixed climate (India) |
Piliougine et al. [120] | 2022 | a-Si/μ-Si | 11 years | 1.12% (a-Si), 0.98% (μ-Si) | Light-induced degradation (LID) | Southern Spain |
Ishii et al. [121] | 2017 | m-Si | 3 years | 0.2% | LID | Temperate climate (Japan) |
Aboagye et al. [125] | 2021 | p-Si | >5 years | 0.79–1.67% | Varies depending on technology | Tropical climate (Ghana) |
Sadok et al. [128] | 2016 | p-Si | ND | ~1.5% | Delamination, corrosion | Algerian Sahara |
Atia et al. [129] | 2023 | m-Si | 25 years | <1% | Low degradation | Desert climate (Egypt) |
Method | Accuracy | Cost | Complexity | Measuring Speed | Adapted Powers | Sensitivity to Variations |
---|---|---|---|---|---|---|
Resistive load | Low | Very low | Very low | Low | Low | Very high |
Electronic Load | Medium | Low | Medium | fast | Low | Medium |
Capacitive load | Medium | Low | Low | Medium | Medium to high | Medium |
Inductive charging | high | Medium | high | very fast | Medium to high | Low |
DC-DC converter | high | high | Very high | Very high | all | Low |
Authors | Year | Correction Procedures | Corresponding Equations | Equations Numbers |
---|---|---|---|---|
Sandstrom [132] | 1967 | First proceeding | (2) | |
Guenounou, et al. [133] | 2016 | First proceeding | (3) | |
IEC [41] | 2021 | First corrected procedure | (4) | |
IEC [41] | 2021 | Second procedure | (5) | |
(6) | ||||
Tsuno, et al. [134] | 2005 | Third procedure | (7) | |
(8) | ||||
(9) | ||||
(10) | ||||
(11) | ||||
IEC [41] Hishikawa, et al. [135] | 2021 | Fourth proceeding | (12) | |
(13) | ||||
(14) | ||||
(15) | ||||
Anderson [138] King, et al. [139] Tobías, et al. [140] | 1996 1997 2010 | NREL Procedure | (16) | |
(17) | ||||
(18) | ||||
(19) | ||||
(20) | ||||
(21) | ||||
(22) | ||||
ASTM [141] | 2007 | ASTM Procedure | (23) | |
(24) | ||||
(25) | ||||
(26) | ||||
Blaesser, et al. [142] | 1988 | Blaesser procedure | + | (27) |
+ | (28) | |||
(29) | ||||
) | (30) | |||
(31) | ||||
Lun, et al. [143] | 2013 | Castañer procedure | (32) | |
Joint Research Centre | -- | JRC Procedure | (33) | |
(34) | ||||
(35) | ||||
(36) | ||||
Reddy, et al. [144] | 2017 | Reddy’s procedure | (37) | |
(38) |
Method | Accuracy | Simplicity | Complete Translation | Adapted to Defects | Typical Use |
---|---|---|---|---|---|
IEC Procedure 1 | low | better | No | Low | Simple Comparison |
IEC Procedure 2 | better | no | Yes | Average | Performance Studies |
IEC Procedure 3 | Average | Average | Partial | Low | Experimental Interpolation |
IEC Procedure 4 | better | no | Yes | Good | In-Depth Diagnostics |
NREL | Average | Average | No | Low | PVsyst Software v7.3, 2024 |
ASTM | Average | no | No | Low | Experimental US Analysis |
Blaeser | low | better | No | Low | Rapid Correction |
Castaner | low | Average | No (Voc only) | Average | Thermal Analysis |
JRC | better | no | Yes | Good | High-Resolution Monitoring |
Reddy | Average | Average | Yes | Average | Embedded Systems |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sani, L.; Tchakpedeou, A.-B.; Tepe, K.; Lare, Y.; Madougou, S. Review of I–V Electrical Characterization Techniques for Photovoltaic Modules Under Real Installation Conditions. Appl. Sci. 2025, 15, 9300. https://doi.org/10.3390/app15179300
Sani L, Tchakpedeou A-B, Tepe K, Lare Y, Madougou S. Review of I–V Electrical Characterization Techniques for Photovoltaic Modules Under Real Installation Conditions. Applied Sciences. 2025; 15(17):9300. https://doi.org/10.3390/app15179300
Chicago/Turabian StyleSani, Lawan, Abdoul-Baki Tchakpedeou, Kossi Tepe, Yendoubé Lare, and Saidou Madougou. 2025. "Review of I–V Electrical Characterization Techniques for Photovoltaic Modules Under Real Installation Conditions" Applied Sciences 15, no. 17: 9300. https://doi.org/10.3390/app15179300
APA StyleSani, L., Tchakpedeou, A.-B., Tepe, K., Lare, Y., & Madougou, S. (2025). Review of I–V Electrical Characterization Techniques for Photovoltaic Modules Under Real Installation Conditions. Applied Sciences, 15(17), 9300. https://doi.org/10.3390/app15179300