Enhancing Patent Document Similarity Evaluation and Classification Precision Through a Multimodal AI Approach
Abstract
1. Introduction
2. Theoretical Background
2.1. Multimodal Approach
2.2. Weak AI
2.2.1. Domain-Specific Solution: Pre-Trained Language Model for Patents
2.2.2. Statistical Approach
2.2.3. Rule-Based System
2.2.4. Performance Evaluation Method
2.3. Conceptual Similarity in Patent Drawings
3. Data and Methodology
3.1. Overview of Data Analysis and Similarity Evaluation Methods
3.2. Step 1: Similarity Analysis and Data Filtering
3.2.1. Calculating Text Similarity
3.2.2. Calculating Bibliographic Information Similarity
3.2.3. Correlation Analysis Between Textual and Bibliographic Similarity
3.3. Step 2: Classification and Evaluation of Similar Document Pairs
3.4. Step 3: Conceptual Similarity Calculation and Integration of Patent Drawings
4. Experiments and Results
4.1. Description of Data Collection, Sampling, and Variables
4.2. Results and Analysis
4.2.1. Results of Textual and Bibliographic Similarity Calculations and Correlation Analysis
4.2.2. Classification Criteria and Results of Similar Document Pairs
4.2.3. Calculation of Conceptual Similarity and Precision Improvement Results
4.3. Summary and Validation of Experimental Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANOVA | Analysis of Variance |
CPC | Cooperative Patent Classification |
MAP | Mean Average Precision |
NDCG | Normalized Discounted Cumulative Gain |
References
- World Intellectual Property Organization. IP Statistics Data Center: International Patent Filings by Applicants. World Intellectual Property Organization. Available online: https://www3.wipo.int/ipstats/key-search/search-result?type=KEY&key=205 (accessed on 1 June 2025).
- Yoo, Y.; Jeong, C.; Gim, S.; Lee, J.; Schimke, Z.; Seo, D. A Novel Patent Similarity Measurement Methodology: Semantic Distance and Technological Distance. arXiv 2023, arXiv:2303.16767. [Google Scholar] [CrossRef]
- Bali, A.; Bhagwat, A.; Bhise, A.; Joshi, S. Semantic Similarity Detection and Analysis for Text Documents. In Proceedings of the 2024 Second International Conference on Emerging Trends in Information Technology and Engineering (ICETITE), Vellore, India, 22–23 February 2024; pp. 1–9. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J.; Wang, C. Automatic synonym extraction using Word2Vec and spectral clustering. In Proceedings of the 2017 36th Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017; pp. 5629–5632. [Google Scholar] [CrossRef]
- Liu, S.H.; Liao, H.L.; Pi, S.M.; Hu, J.W. Development of a Patent Retrieval and Analysis Platform—A hybrid approach. Expert Syst. Appl. 2011, 38, 7864–7868. [Google Scholar] [CrossRef]
- Preschitschek, N.; Niemann, H.; Leker, J.; Moehrle, M. Anticipating industry convergence: Semantic analyses vs IPC co-classification analyses of patents. Foresight 2013, 15, 446–464. [Google Scholar] [CrossRef]
- Zhang, Y.; Shang, L.; Huang, L.; Porter, A.L.; Zhang, G.; Lu, J.; Zhu, D. A hybrid similarity measure method for patent portfolio analysis. J. Informetr. 2016, 10, 1108–1130. [Google Scholar] [CrossRef]
- Ashtor, J.H. Investigating cohort similarity as an ex ante alternative to patent forward citations. J. Empir. Leg. Stud. 2019, 16, 848–880. [Google Scholar] [CrossRef]
- Rodriguez, A.; Kim, B.; Turkoz, M.; Lee, J.M.; Coh, B.Y.; Jeong, M.K. New multi-stage similarity measure for calculation of pairwise patent similarity in a patent citation network. Scientometrics 2015, 103, 565–581. [Google Scholar] [CrossRef]
- Whalen, R.; Lungeanu, A.; DeChurch, L.; Contractor, N. Patent similarity data and innovation metrics. J. Empir. Leg. Stud. 2020, 17, 615–639. [Google Scholar] [CrossRef]
- Csurka, G.; Renders, J.M.; Jacquet, G. XRCE’s Participation at Patent Image Classification and Image based Patent Retrieval Tasks of the CLEF IP 2011, CLEF 2011 Workshop (Notebook Papers/Labs/Workshop). In Proceedings of the Multilingual and Multimodal Information Access Evaluation, Amsterdam, The Netherlands, 19–22 September 2011. [Google Scholar] [CrossRef]
- Vrochidis, S.; Moumtzidou, A.; Kompatsiaris, I. Enhancing patent search with content based image retrieval. In Professional Search in the Modern World: COST Action IC1002 on Multilingual and Multifaceted Interactive Information Access; Springer: Cham, Switzerland, 2014; pp. 250–273. [Google Scholar] [CrossRef]
- Jiang, S.; Luo, J.; Pava, G.R.; Hu, J.; Magee, C.L. A convolutional neural network based patent image retrieval method for design ideation. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE), ASM International, Virtual, 17–19 August 2020; Volume 83983, p. V009T09A039. [Google Scholar]
- Kucer, M.; Oyen, D.; Castorena, J.; Wu, J. DeepPatent: Large scale patent drawing recognition and retrieval. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2022; pp. 2309–2318. [Google Scholar] [CrossRef]
- Baltrušaitis, T.; Ahuja, C.; Morency, L.P. Multimodal machine learning: A survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 41, 423–443. [Google Scholar] [CrossRef]
- Lu, J.; Batra, D.; Parikh, D.; Lee, S. ViLBERT: Pretraining task agnostic visiolinguistic representations for vision and language tasks. In Proceedings of the 33rd International Conference on Neural Information Processing Systems, NeurIPS, Vancouver, CO, Canada, 8–14 December 2019; pp. 13–23. [Google Scholar]
- Chen, Y.C.; Li, L.; Yu, L.; El Kholy, A.; Ahmed, F.; Gan, Z.; Liu, J. UNITER: Universal image text representation learning. In Proceedings of the ECCV Workshops, Glasgow, UK, 23–28 August 2020. [Google Scholar]
- Radford, A.; Kim, J.W.; Hallacy, C.; Ramesh, A.; Goh, G.; Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.; et al. Learning Transferable Visual Models from Natural Language Supervision. In Proceedings of the 38th International Conference on Machine Learning (ICML 2021), Online, 18–24 July 2021; Volume 139, pp. 8748–8763. [Google Scholar]
- Li, J.; Li, D.; Xiong, C.; Hoi, S. BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation. In Proceedings of the 39th International Conference on Machine Learning (ICML 2022), Baltimore, MD, USA, 17–23 July 2022; Volume 162, pp. 12888–12900. [Google Scholar]
- Shutova, E.; Kiela, D.; Maillard, J. Black holes and white rabbits: Metaphor identification with visual features. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL HLT), San Diego, CA, USA, 12–17 June 2016; pp. 160–170. [Google Scholar]
- Morvant, E.; Habrard, A.; Ayache, S. Majority vote of diverse classifiers for late fusion. In Proceedings of the Structural, Syntactic, and Statistical Pattern Recognition: Joint IAPR International Workshop, S+SSPR 2014, Joensuu, Finland, 20–22 August 2014; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2014; Volume 8621, pp. 153–162. [Google Scholar] [CrossRef]
- Khanna, P.; Sasikumar, M. Rule based system for recognizing emotions using multimodal approach. Int. J. Adv. Comput. Sci. Appl. 2013, 4, 32–39. [Google Scholar] [CrossRef]
- Searle, J.R. Minds, brains, and programs. Behav. Brain Sci. 1980, 3, 417–457. [Google Scholar] [CrossRef]
- Russell, S.J.; Norvig, P. Artificial Intelligence: A Modern Approach; Pearson: London, UK, 2016. [Google Scholar]
- Marcus, G.; Davis, E. Rebooting AI: Building Artificial Intelligence We Can Trust; Vintage: New York, NY, USA, 2019. [Google Scholar]
- Beltagy, I.; Lo, K.; Cohan, A. SciBERT: A Pretrained Language Model for Scientific Text. In Proceedings of the EMNLP-IJCNLP, Hong Kong, China, 3–7 November 2019; pp. 3615–3620. [Google Scholar] [CrossRef]
- Lee, J.; Yoon, W.; Kim, S.; Kim, D.; Kim, S.; So, C.H.; Kang, J. BioBERT: A pre trained biomedical language representation model for biomedical text mining. Bioinformatics 2020, 36, 1234–1240. [Google Scholar] [CrossRef] [PubMed]
- Chalkidis, I.; Fergadiotis, M.; Malakasiotis, P.; Aletras, N.; Androutsopoulos, I. LEGAL-BERT: The Muppets Straight out of Law School. In Findings of the Association for Computational Linguistics: EMNLP 2020; Association for Computational Linguistics: Stroudsburg, PA, USA, 2020. [Google Scholar] [CrossRef]
- Srebrovic, R.; Yonamine, J. How AI, and Specifically BERT, Helps the Patent Industry. Google Blog. Available online: https://services.google.com/fh/files/blogs/bert_for_patents_white_paper.pdf (accessed on 1 June 2025).
- Yu, L.; Liu, B.; Lin, Q.; Zhao, X.; Che, C. Semantic Similarity Matching for Patent Documents Using Ensemble BERT related Model and Novel Text Processing Method. arXiv 2024, arXiv:2401.06782. [Google Scholar] [CrossRef]
- Qiu, Z.; Wang, Z. Patent Citation Network Simplification and Similarity Evaluation Based on Technological Inheritance. IEEE Trans. Eng. Manag. 2021, 70, 4144–4161. [Google Scholar] [CrossRef]
- Grosan, C.; Abraham, A. Rule Based Expert Systems. In Intelligent Systems: A Modern Approach; Springer: Berlin/Heidelberg, Germany, 2011; pp. 149–185. [Google Scholar] [CrossRef]
- Almuqati, M.T.; Sidi, F.; Mohd Rum, S.N.; Zolkepli, M.; Ishak, I. Challenges in Supervised and Unsupervised Learning: A Comprehensive Overview. Int. J. Adv. Sci. Eng. Inf. Technol. 2024, 14, 1449–1455. [Google Scholar] [CrossRef]
- Liang, J. Confusion Matrix: Machine Learning; POGIL Activity Clearinghouse: Lancaster, PA, USA, 2022; Volume 3. [Google Scholar]
- Kravets, A.; Lebedev, N.; Legenchenko, M. Patents Images Retrieval and Convolutional Neural Network Training Dataset Quality Improvement. In Proceedings of the IV International Research Conference “Information Technologies in Science, Management, Social Sphere and Medicine” ITSMSSM 2017, Tomsk, Russia, 5–8 December 2017; Atlantis Press: Paris, France, 2017; pp. 287–293. [Google Scholar]
- Castorena, J.; Bhattarai, M.; Oyen, D. Learning Spatial Relationships between Samples of Patent Image Shapes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops CVPRW 2020, Seattle, WA, USA, 14–19 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 172–173. [Google Scholar] [CrossRef]
- Vrochidis, S.; Moumtzidou, A.; Kompatsiaris, I. Concept Based Patent Image Retrieval. World Pat. Inf. 2012, 34, 292–303. [Google Scholar] [CrossRef]
- Ghauri, J.A.; Müller Budack, E.; Ewerth, R. Classification of Visualization Types and Perspectives in Patents. In Proceedings of the International Conference on Theory and Practice of Digital Libraries TPDL 2023, Zadar, Croatia, 26–29 September 2023; Springer: Cham, Switzerland, 2023; pp. 182–191. [Google Scholar] [CrossRef]
- Sidiropoulos, P.; Vrochidis, S.; Kompatsiaris, I. Content Based Binary Image Retrieval Using the Adaptive Hierarchical Density Histogram. Pattern Recognit. 2011, 44, 739–750. [Google Scholar] [CrossRef]
- Vrochidis, S.; Papadopoulos, S.; Moumtzidou, A.; Sidiropoulos, P.; Pianta, E.; Kompatsiaris, I. Towards content-based patent image retrieval: A framework perspective. World Pat. Inf. 2010, 32, 94–106. [Google Scholar] [CrossRef]
- Achille, A.; Ver Steeg, G.; Liu, T.Y.; Trager, M.; Klingenberg, C.; Soatto, S. Interpretable measures of conceptual similarity by complexity constrained descriptive auto encoding. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 17–21 June 2024; pp. 11062–11071. [Google Scholar] [CrossRef]
- Bartolini, I. Context Based Image Similarity Queries. In Proceedings of the Adaptive Multimedia Retrieval: User, Context, and Feedback—Third International Workshop, AMR 2005, Revised Selected Papers, Glasgow, UK, 28–29 July 2005; Springer: Berlin/Heidelberg, Germany, 2006; pp. 222–235. [Google Scholar] [CrossRef]
- Franzoni, V.; Milani, A.; Pallottelli, S.; Leung, C.H.; Li, Y. Context based image semantic similarity. In Proceedings of the 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2015, Zhangjiajie, China, 15–17 August 2015; pp. 1280–1284. [Google Scholar] [CrossRef]
- Huang, L.; Milne, D.; Frank, E.; Witten, I.H. Learning a concept based document similarity measure. J. Am. Soc. Inf. Sci. Technol. 2012, 63, 1593–1608. [Google Scholar] [CrossRef]
- Nguyen, C.T. Bridging semantic gaps in information retrieval: Context based approaches. In Proceedings of the ACM VLDB 2010, Singapore, 13–17 September 2010. [Google Scholar]
- United States Patent and Trademark Office, U.S. Patent Application No. 17/514,052. Available online: https://ppubs.uspto.gov/pubwebapp/static/pages/ppubsbasic.html (accessed on 1 July 2025).
- Chen, Y.L.; Chiu, Y.T. An IPC based vector space model for patent retrieval. Inf. Process. Manag. 2011, 47, 309–322. [Google Scholar] [CrossRef]
- Jang, H.; Kim, S.; Yoon, B. An eXplainable AI (XAI) model for text-based patent novelty analysis. Expert Syst. Appl. 2023, 231, 120839. [Google Scholar] [CrossRef]
- Chikkamath, R.; Parmar, V.R.; Otiefy, Y.; Endres, M. Patent classification using BERT for patents on USPTO. In Proceedings of the 2022 5th International Conference on Machine Learning and Natural Language Processing, Sanya, China, 23–25 December 2022; pp. 20–28. [Google Scholar]
- Lee, J.S.; Hsiang, J. PatentBERT: Patent Classification with Fine Tuning a Pre-Trained BERT Model. arXiv 2019, arXiv:1906.02124. [Google Scholar] [CrossRef]
- Gómez, J.; Vázquez, P.P. An Empirical Evaluation of Document Embeddings and Similarity Metrics for Scientific Articles. Appl. Sci. 2022, 12, 5664. [Google Scholar] [CrossRef]
- Achananuparp, P.; Hu, X.; Shen, X. The Evaluation of Sentence Similarity Measures. In Proceedings of the Data Warehousing and Knowledge Discovery: 10th International Conference, DaWaK 2008, Turin, Italy, 2–5 September 2008; Springer: Berlin/Heidelberg, Germany, 2008; pp. 305–316. [Google Scholar] [CrossRef]
- Arsov, N.; Dukovski, M.; Evkoski, B.; Cvetkovski, S. A Measure of Similarity in Textual Data Using Spearman’s Rank Correlation Coefficient. arXiv 2019, arXiv:1911.11750. [Google Scholar] [CrossRef]
- Verma, J.P. One Way ANOVA: Comparing Means of More than Two Samples. In Data Analysis in Management with SPSS Software; Springer: New Delhi, India, 2012; pp. 221–254. [Google Scholar] [CrossRef]
- Blume, M.; Heidari, G.; Hewel, C. Comparing Complex Concepts with Transformers: Matching Patent Claims against Natural Language Text. arXiv 2024, arXiv:2407.10351. [Google Scholar] [CrossRef]
- Magdy, W.; Leveling, J.; Jones, G.J.F. Exploring Structured Documents and Query Formulation Techniques for Patent Retrieval. In Proceedings of the Workshop of the Cross Language Evaluation Forum for European Languages CLEF 2009, Corfu, Greece, 30 September–2 October 2009; Springer: Berlin/Heidelberg, Germany, 2009; pp. 410–417. [Google Scholar] [CrossRef]
- Salih, A.M.; Raisi-Estabragh, Z.; Galazzo, I.B.; Radeva, P.; Petersen, S.E.; Lekadir, K.; Menegaz, G. A Perspective on Explainable Artificial Intelligence Methods: SHAP and LIME. Adv. Intell. Syst. 2025, 7, 2400304. [Google Scholar] [CrossRef]
- Lo, H.C.; Chu, J.M.; Hsiang, J.; Cho, C.C. Large Language Model Informed Patent Image Retrieval. arXiv 2024, arXiv:2404.19360. [Google Scholar] [CrossRef]
- Mosca, E.; Szigeti, F.; Tragianni, S.; Gallagher, D.; Groh, G. SHAP-Based Explanation Methods: A Review for NLP Interpretability. In Proceedings of the 29th International Conference on Computational Linguistics COLING 2022, Gyeongju, Republic of Korea, 12–17 October 2022; International Committee on Computational Linguistics: Gyeongju, Republic of Korea, 2022; pp. 4593–4603. [Google Scholar] [CrossRef]
Category | Existing Research | Proposed Method | Advantages/Disadvantages of the Proposed Method |
---|---|---|---|
Combining Text and Bibliographic Information | Assigning weights to each element [2] | Statistical correlation analysis of each element | Resolves the ambiguity of weight-based criteria |
Classification Method for Imbalanced/Unlabeled Data | Unsupervised learning (e.g., clustering) | Rule-based system and confusion matrix | Offers high explainability of classification results; results vary depending on variables used |
Evaluation of Drawing Similarity | Visual similarity [11,13,14] | Conceptual similarity [12] | Provides high explainability; cannot reflect information not expressed in text |
Multimodal Approach | Model-based fusion method [15,16,17,18,19] | Model-independent method [15] | Enables selection of fusion methods depending on modality characteristics; methods may be complex |
Category | Element | Description | Relevance to Patent Similarity | Ref. No. |
---|---|---|---|---|
Text | Abstract | A summary of the core technology described in the patent. | Highly relevant to patent similarity | [47] |
Main Claim | Describes the structure and method of the patented technology. | Most relevant to patent similarity | [10,48] | |
Bibliographic Information | Application Year | The year the patent was applied for. | Similarity between the query document and the retrieved document is temporally related | [8] |
Patent Classification Code | Indicates the technical category of the patented invention. | Highly relevant to patent similarity | [2,7,10,47] | |
Cited Documents | Documents cited within the patent literature. | Relevant to patent similarity | [8,9,31] | |
Drawing | Representative Drawing | An image and corresponding description used to explain or illustrate the patented technology | Helps explain the technology or provide usage examples; thus relevant to patent similarity | [11,12,37] |
Category | Description | Ref. No. |
---|---|---|
Text Embedding Model | Anferico/BERT-for-Patents (mean pooling method) | [3,30,49,50] |
Similarity Measurement | Cosine similarity (text), Jaccard similarity (metadata) | [51,52] |
Statistical Analysis Method | Spearman correlation coefficient/One-way ANOVA | [53,54] |
Similarity Combination Method | Scalar multiplication, Geometric mean | |
Classification Method | Rule-based system for classification of document pairs | |
Evaluation Method and Key Performance Metrics | Confusion matrix, Precision, Accuracy | [34,49] |
Category | Calculation Method | Similarity Range | Ref. No. |
---|---|---|---|
CPC Full Classification Code, Citation Information | Jaccard similarity | 0~1 | [2,7,9] |
CPC Main Classification Code | One way ANOVA using a three-level coding scheme | 0, 1, 2 | [54] |
Category | Calculation Method | Range of Value | Ref. No. |
---|---|---|---|
Correlation between text similarity and full classification code similarity | Spearman correlation coefficient | −1~1 | [53] |
Correlation between text similarity and citation information similarity | Spearman correlation coefficient | −1~1 | [53] |
Correlation between text similarity and main classification code scale | One way ANOVA | 0, 1, 2 | [54] |
Confusion Matrix | Classification Condition |
---|---|
True Positive (TP): Actual similar → Predict as similar | (Condition for actual similarity) and (Textual similarity > threshold) → TP |
False Positive (FP): Actual dissimilar → Predict as similar | (Condition for actual dissimilarity) and (Textual similarity > threshold) → FP |
False Negative (FN): Actual similar → Predict as dissimilar | (Condition for actual similarity) and (Textual similarity < threshold) → FN |
True Negative (TN): Actual dissimilar → Predict as dissimilar | All remaining cases excluding TP, FP, and FN. |
Category | Description |
---|---|
Database | WIPSON |
Application Region | United States (U.S.A) |
CPC Scheme | B25J—Manipulators |
Query Dataset | 70 patents (filed in 2021, randomly selected from 1253 cases) |
Search Dataset | 9543 patents (filed between 1 January 2000 and 31 December 2020) |
File Format | CSV |
Image Dataset | 210 images (53 from query set, 157 from search set) |
Year | Number | Year | Number | Year | Number | Year | Number |
---|---|---|---|---|---|---|---|
2000 | 104 | 2006 | 157 | 2012 | 305 | 2018 | 1179 |
2001 | 134 | 2007 | 170 | 2013 | 404 | 2019 | 1280 |
2002 | 144 | 2008 | 211 | 2014 | 504 | 2020 | 1455 |
2003 | 105 | 2009 | 206 | 2015 | 689 | ||
2004 | 130 | 2010 | 233 | 2016 | 756 | ||
2005 | 179 | 2011 | 303 | 2017 | 895 |
Main Code (4-Level) | Number | Proportion | Main Code (4-Level) | Number | Proportion |
---|---|---|---|---|---|
B25J-0001 | 122 | 1.3% | B25J-0013 | 608 | 6.4% |
B25J-0003 | 44 | 0.5% | B25J-0015 | 1493 | 15.6% |
B25J-0005 | 274 | 2.9% | B25J-0017 | 166 | 1.7% |
B25J-0007 | 34 | 0.4% | B25J-0018 | 103 | 1.1% |
B25J-0009 | 5683 | 59.6% | B25J-0019 | 563 | 5.9% |
B25J-0011 | 368 | 3.9% | B25J-0021 | 85 | 0.9% |
Variable Name | Description | Data Format |
---|---|---|
index | A string combining country code (US) and application number | String |
summary | Abstract summarizing the patent technology | Text |
claim | Representative patent claim describing the composition and method of the technology | Text |
year | Year of search patent application | 4-digit string |
CPC_Main | Representative classification code of the patent | String |
CPC_All | All classification codes indicating all technologies the patent belongs to | One or more strings (comma separated) |
citation(B) | Backward citation information of the patent | One or more strings (comma separated) |
Image | Image file name of the representative drawing | jpg |
Category | Count (>0) | Minimum | Maximum | Mean | Variance | Standard Deviation | Data Distribution |
---|---|---|---|---|---|---|---|
Text_bert | 668,010 | 0.32279 | 0.970324 | 0.671833 | 0.003713 | 0.060937 | |
CPC_Main_match | 668,010 | 0 | 2 | -- | - | - | 0: 378,870 1: 278,698 2: 10,442 |
CPC_All_match | 83,900 | 0 | 1 | 0.011443 | 0.001239 | 0.035202 | |
citation(B) | 1433 | 0 | 0.649351 | 0.000056 | 0.000006 | 0.002456 |
Experiment Category | Full Dataset | Post-2018 Dataset |
---|---|---|
Mean value of text similarity | 0.67 | 0.68 |
Correlation between full classification-code similarity and textual similarity | r = 0.162033, p < 0.05 | r = 0.169829, p < 0.05 |
One-way ANOVA between representative classification code group and text similarity | F = 19,279.1, p < 0.05 | F = 8104.45, p < 0.05 |
Category | Condition for Actual Similar Document Pairs |
---|---|
Criteria for actual similar document pairs | (CPC_Main_Match ≥ 1) and (CPC_All_Match > 0) |
Criteria for actual dissimilar document pairs | (CPC_Main_Match = 0) and (CPC_All_Match = 0) |
Threshold | TP | FP | TN | FN | Accuracy | Precision | Recall | F1_Score | MAP | NDCG@10 |
---|---|---|---|---|---|---|---|---|---|---|
0.68 | 24,036 | 51,996 | 188,591 | 9357 | 0.7761 | 0.3161 | 0.7198 | 0.4393 | 0.5226 | 0.6829 |
0.69 | 22,209 | 42,864 | 197,723 | 11,184 | 0.8027 | 0.3413 | 0.6651 | 0.4511 | 0.5337 | 0.6829 |
0.7 | 20,171 | 34,290 | 206,297 | 13,222 | 0.8266 | 0.3704 | 0.604 | 0.4592 | 0.548 | 0.6852 |
0.71 | 18,024 | 26,615 | 213,972 | 15,369 | 0.8468 | 0.4038 | 0.5398 | 0.462 | 0.5782 | 0.7084 |
0.72 | 15,825 | 20,129 | 220,458 | 17,568 | 0.8624 | 0.4401 | 0.4739 | 0.4564 | 0.5943 | 0.7095 |
0.73 | 13,493 | 14,898 | 225,689 | 19,900 | 0.8730 | 0.4753 | 0.4041 | 0.4368 | 0.6236 | 0.7219 |
0.74 | 11,242 | 10,727 | 229,860 | 22,151 | 0.8800 | 0.5117 | 0.3367 | 0.4061 | 0.6523 | 0.7372 |
0.75 | 9213 | 7621 | 232,966 | 24,180 | 0.8839 | 0.5473 | 0.2759 | 0.3669 | 0.6684 | 0.7398 |
0.76 | 7306 | 5264 | 235,323 | 26,087 | 0.8856 | 0.5812 | 0.2188 | 0.3179 | 0.6862 | 0.7444 |
0.77 | 5711 | 3543 | 237,044 | 27,682 | 0.886 | 0.6171 | 0.171 | 0.2678 | 0.7138 | 0.7656 |
0.78 | 4372 | 2311 | 238,276 | 29,021 | 0.8856 | 0.6542 | 0.1309 | 0.2182 | 0.7413 | 0.7793 |
0.79 | 3295 | 1458 | 239,129 | 30,098 | 0.8848 | 0.6932 | 0.0987 | 0.1728 | 0.7855 | 0.8146 |
0.8 | 2430 | 870 | 239,717 | 30,963 | 0.8838 | 0.7364 | 0.0728 | 0.1325 | 0.8113 | 0.8378 |
Category | TP | FN | Accuracy | Precision |
---|---|---|---|---|
FP | TN | |||
Stage 1 (Entire dataset classification) | 9657 | 51,331 | 0.911 | 0.549 |
7932 | 599,090 | |||
Stage 2 (After data filtering) | 5711 | 27,682 | 0.886 | 0.617 |
3543 | 237,044 | |||
Stage 3 (After combining conceptual similarity) | 5915 | 27,478 | 0.887 | 0.625 |
3543 | 237,044 | |||
Total Metric Increase Rate | −2.63% | 13.84% | ||
Category | Data Subset | Records with Citation-Similarity > 0 |
---|---|---|
Text similarity only | Top 5711 documents by text similarity | 82 |
Combination of weights of text and bibliographic similarity (0.5 each) | Top 5711 documents by weighted similarity | 57 |
Proposed method | 5711 documents classified as TP | 106 |
Category | Visual Similarity | Conceptual Similarity |
---|---|---|
Min/Max/Avg/Variance | 0.267/0.868/0.659/0.010 | 0.586/0.941/0.787/0.003 |
No. of Pairs Exceeding Threshold When Combined with Text Similarity | 39 | 204 |
Category | Min | Max | Avg | Var |
---|---|---|---|---|
Embedding Combination | 0.4881 | 0.9498 | 0.786207 | 0.006921 |
Combining text similarity and conceptual similarity | 0.6652 | 0.8425 | 0.773028 | 0.000974 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Gim, G. Enhancing Patent Document Similarity Evaluation and Classification Precision Through a Multimodal AI Approach. Appl. Sci. 2025, 15, 9254. https://doi.org/10.3390/app15179254
Kim H, Gim G. Enhancing Patent Document Similarity Evaluation and Classification Precision Through a Multimodal AI Approach. Applied Sciences. 2025; 15(17):9254. https://doi.org/10.3390/app15179254
Chicago/Turabian StyleKim, Hyuna, and Gwangyong Gim. 2025. "Enhancing Patent Document Similarity Evaluation and Classification Precision Through a Multimodal AI Approach" Applied Sciences 15, no. 17: 9254. https://doi.org/10.3390/app15179254
APA StyleKim, H., & Gim, G. (2025). Enhancing Patent Document Similarity Evaluation and Classification Precision Through a Multimodal AI Approach. Applied Sciences, 15(17), 9254. https://doi.org/10.3390/app15179254