Control Algorithms in Robot-Assisted Rehabilitation: A Systematic Review
Abstract
1. Introduction
2. Classification of Rehabilitation Robots and Control Requirements
2.1. Types of Robots Used in Rehabilitation
- (a)
- End-effector robots
- (b)
- Robotic exoskeletons
- (c)
- Soft wearable robots (soft robotic systems)
- (d)
- Body support platforms and walking robots
2.2. Operating Modes
2.3. Functional and Algorithmic Requirements
- -
- Safety of human–robot interaction: The system must react quickly and predictably in case of unexpected patient behavior. Therefore, many systems include force limitations, collision detection, and impedance control [34].
- -
- Adaptive assistance: The level of support should vary depending on the patient’s effort. Methods such as assist-as-needed, hybrid position–force control, or EMG-based schemes are often used [35].
- -
- Real-time and stability: The controller must operate at high frequencies (100–1000 Hz), maintaining numerical and physical stability [18]. AI algorithms can pose challenges in this regard.
- -
- Personalization and learning: The system must dynamically adapt to the patient’s ability, learning from previous movements. Recurrent neural networks, reinforcement-based controllers, and evolutionary optimization are explored [36].
- -
- Multimodal interfacing: The integration of sensors (force, position, EMG, and EEG) requires robust fusion and filtering algorithms, especially in the case of machine learning [37].
3. Functional Classification of Control Algorithms
3.1. Position Control
3.2. Force and Torque Control
3.3. Impedance and Admittance Control
3.4. Adaptive and Robust Control
3.5. Artificial Intelligence-Based Control
- -
- Real-time feasibility,
- -
- Safety and interpretability of decisions,
- -
- The need for large labeled datasets [71].
3.6. Control in Soft Systems (Soft Robotics)
3.7. Trends in Research Illustrated Graphically
3.8. Distribution of Control Algorithms Across Clinical Applications Illustrated Graphic
4. Control Algorithms for Emerging Rehabilitation Applications
4.1. Smart Myoelectric Prostheses (Ankle/Knee)
- -
- Deep learning algorithms (convolutional and temporal neural networks),
- -
- EMG sensors placed on the muscle stump,
- -
- Distributed plantar pressure for gait phase detection,
- -
- Adaptive feedback on the prosthetic motor.
- -
- Robustness to EMG variations (sweating and electrode movement),
- -
- Real-time feasibility on portable hardware,
- -
- Safety of AI decisions (difficult to interpret).
4.2. Brain–Machine Interfaces (BCIs)
- -
- ML classifiers (SVM, LDA, and Random Forest) for EEG decoding,
- -
- Decision fusion algorithms with EMG or movement data,
- -
- Adaptive feedback loops for real-time recalibration [88].
4.3. Multimodal Sensor Integration and Data Fusion
- -
- Force/torque sensors;
- -
- IMU (inertial units);
- -
- EMG, EEG, and EOG;
- -
- Plantar pressure sensors;
- -
- RGB-D or LiDAR cameras [92].
- -
- Extended Kalman Filter or Particle Filter,
- -
- Hybrid neural networks (e.g., LSTM for EMG sequences + CNN for visual data),
- -
- Reinforcement Learning algorithms [93].
- -
- Personalization of the intervention,
- -
- Automatic detection of functional progress,
- -
- Prevention of accidents through anticipatory detection.
- -
- Increased cost of equipment,
- -
- Temporary synchronization of sensors,
- -
- Complexity of real-time processing [96].
4.4. Functional Data from Clinical Studies
5. Current Challenges and Future Research Directions
5.1. Lack of Standardization and Benchmarking
- -
- Common testing protocols (e.g., functional gait assessment and Fugl–Meyer arm scores),
- -
- Objective metrics (accuracy, patient effort, and inter-session variability),
- -
- Open databases for algorithmic validation,
- -
- Competitions and community benchmarks.
5.2. Computational Challenges and Real-Time Feasibility
- -
- Hybrid models (pre-trained offline and implemented online with optimizations),
- -
- Model compression (quantization and pruning),
- -
- Custom hardware accelerators (FPGAs for fast control) [102].
5.3. AI Safety, Interpretability, and Certification
- -
- Use of interpretable networks (e.g., explainable AI),
- -
- Application of safety filters that can block dangerous exits,
- -
- Methods for formal verification of algorithm behavior [105].
5.4. Patient-Centered Adaptation and the Challenge of Personalization
- -
- Learn the patient’s progression over time,
- -
- Adjust difficulty automatically (e.g., through assist-as-needed),
- -
- Detect fatigue or frustration, and adapt the interaction [107].
5.5. Costs, Complexity, and Barriers to Clinical Implementation
- -
- High costs (equipment, personal training, and maintenance),
- -
- The complexity of the interfaces (which require specialized personnel),
- -
- Lack of interoperability with other medical systems [109].
- -
- Simplification of robot–therapist interfaces,
- -
- Development of modular platforms,
- -
- Legislative support for reimbursement of robotic-assisted therapies.
5.6. Considerations Regarding International Standardization and Regulations
5.7. Comparative Evaluation of Control Algorithms
5.8. Emerging Trends in the Use of Control Algorithms
6. Conclusions
- -
- Position control is effective in passive therapies, but limited in promoting active patient involvement;
- -
- Force and impedance/admittance control allow for a more natural and safe interaction, but require the integration of sensors and careful adjustment of parameters;
- -
- Adaptive and robust algorithms offer constant performance under uncertain conditions, but with increased computational costs;
- -
- AI-based control allows for prediction of patient intent and personalized learning, but raises issues of interpretability and validation.
- -
- Lack of standardization and protocols for comparing algorithms,
- -
- Difficulties in implementing real-time control in portable contexts,
- -
- Uncertainties related to the safety of automated decisions in AI,
- -
- Barriers related to cost, complexity, and clinical integration.
- -
- Development of interoperable and open platforms, allowing comparative testing of algorithms,
- -
- Orientation towards hybrid adaptive control, combining classical schemes with elements of interpretable AI,
- -
- Implementation of standardized measures for clinical validation of algorithmic performance and functional impact,
- -
- Promoting therapist- and patient-centered interfaces to facilitate the real use of technology in the clinic.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Feigin, V.L.; Vos, T.; Nichols, E.; Owolabi, M.O.; Carroll, W.M.; Dichgans, M.; Deuschl, G.; Parmar, P.; Brainin, M.; Murray, C.J.L. The Global Burden of Neurological Disorders: Translating Evidence into Policy. Lancet Neurol. 2020, 19, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Cieza, A.; Causey, K.; Kamenov, K.; Hanson, S.W.; Chatterji, S.; Vos, T. Global Estimates of the Need for Rehabilitation Based on the Global Burden of Disease Study 2019. Lancet 2021, 396, 2006–2017. [Google Scholar] [CrossRef] [PubMed]
- Maciejasz, P.; Eschweiler, J.; Gerlach, K.; Jansen, A.; Leonhardt, S. A Survey on Robotic Devices for Upper Limb Rehabilitation. J. Neuroeng. Rehabil. 2014, 11, 3. [Google Scholar] [CrossRef]
- Vitiello, N.; Cipriani, L.; Carrozza, G.; Beccai, L.; Lotti, A. Wearable Robotic Devices for Rehabilitation and Assistance: Design Issues and Technological Challenges. Acta Polytech. Hung. 2021, 18, 45–66. [Google Scholar] [CrossRef]
- Veerbeek, J.M.; Langbroek-Amersfoort, A.C.; van Wegen, E.E.H.; Meskers, C.G.M.; Kwakkel, G. Effects of Robot-Assisted Therapy for the Upper Limb After Stroke: A Systematic Review and Meta-Analysis. Neurorehabilit. Neural Repair 2017, 31, 107–121. [Google Scholar] [CrossRef]
- Aprile, I.; Germanotta, M.; Cruciani, A.; Loreti, S.; Pecchioli, C.; Cecchi, F.; Montesano, A.; Galeri, S.; Diverio, M.; Falsini, C.; et al. Upper Limb Robotic Rehabilitation After Stroke: A Multicenter, Randomized Clinical Trial. J. Neurol. Phys. Ther. 2020, 44, 3–14. [Google Scholar] [CrossRef]
- Marchal, L.; Reinkensmeyer, D.J. Review of Control Strategies for Robotic Movement Training after Neurologic Injury. J. Neuroeng. Rehabil. 2009, 6, 20. [Google Scholar] [CrossRef]
- Ji, G.; Zhou, Y.; Yu, H.; Wang, J.; Zhang, X. Human–Robot Interaction: A Review and Analysis on Variable Admittance Control and Safety in Physical HRI. Machines 2022, 10, 591. [Google Scholar] [CrossRef]
- Mahfouz, D.M.; Shehata, O.M.; Morgan, E.I.; Arrichiello, F. A Comprehensive Review of Control Challenges and Methods in End-Effector Upper-Limb Rehabilitation Robots. Robotics 2024, 13, 181. [Google Scholar] [CrossRef]
- Radder, E.L.; Meinhardt, U.; Van Meulen, F.; Dederer, H. Safety Assessment of Rehabilitation Robots: A Review Identifying Safety Skills and Gaps. Front. Robot. AI 2021, 8, 602878. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y.; Wang, Z.; Zhang, M. Research on Control Strategy Technology of Upper Limb Exoskeleton Robots: A Review. Machines 2023, 13, 207. [Google Scholar] [CrossRef]
- Alam, N.; Hasan, S.; Mashud, G.A.; Bhujel, S. Neural Network for Enhancing Robot-Assisted Rehabilitation: A Systematic Review. Actuators 2025, 14, 16. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Wang, J. Research on adaptive impedance control technology of upper limb rehabilitation robots. Front. Bioeng. Biotechnol. 2023, 11, 1332689. [Google Scholar] [CrossRef]
- Huo, W.; Moon, H.; Alouane, M.A.; Bonnet, V.B.; Huang, J.; Amirat, Y.; Vaidyanathan, R.; Mohammed, S. Impedance Modulation Control of a Lower-Limb Exoskeleton to Assist Sit-to-Stand Movements. IEEE Trans. Robot. 2022, 38, 1230–1249. [Google Scholar] [CrossRef]
- Zhang, H.; Li, S.; Zhong, J.; Luo, S.; Lei, M.; Wang, H. Design and Implementation of an Impedance-Based Assist-As-Needed Controller for an End-Effector Upper-Limb Exoskeleton. Appl. Sci. 2021, 11, 340. [Google Scholar] [CrossRef]
- Liu, H.; Xie, S.; Zhao, Y. Model Predictive Control for Soft Robotic Manipulators: A Review. Sensors 2022, 22, 3765. [Google Scholar] [CrossRef]
- Krebs, H.I.; Hogan, N.; Aisen, M.L.; Volpe, B.T. Robot-Aided Neurorehabilitation: A Pilot Clinical Trial with MIT-MANUS. IEEE Trans. Rehabil. Eng. 1998, 6, 75–87. [Google Scholar] [CrossRef]
- Chen, J.; Hochstein, J.; Kim, C.; Tucker, L.; Hammel, L.E.; Damiano, D.L.; Bulea, T.C. A Pediatric Knee Exoskeleton with Real-Time Adaptive Control for Overground Walking in Ambulatory Individuals with Cerebral Palsy. Front. Robot. AI 2021, 8, 702137. [Google Scholar] [CrossRef]
- Li, F.; Guo, Y.; Xu, W.; Zhang, W.; Zhao, F.; Wang, B.; Du, H.; Zhang, C. Design and control of a low-cost non-backdrivable end-effector upper limb rehabilitation device. Front. Rehabil. Sci. 2024, 5, 1469491. [Google Scholar] [CrossRef]
- Rosales-Luengas, Y.; Salazar, S.; Rangel-Popoca, S.J.; Cortés-García, Y.; Flores, J.; Lozano, R. Active Gait Retraining with Lower Limb Exoskeleton Based on Robust Force Control. Appl. Sci. 2025, 15, 4032. [Google Scholar] [CrossRef]
- Brunet, M.; Pétriaux, M.; Di Meglio, F.; Petit, N. Fast replanning of a lower-limb exoskeleton trajectories for rehabilitation. arXiv 2022, arXiv:2209.04155. [Google Scholar] [CrossRef]
- Diego, P.; Herrero, S.; Macho, E.; Corral, J.; Diez, M.; Campa, F.J.; Pinto, C. Devices for Gait and Balance Rehabilitation: General Classification and a Narrative Review of End Effector-Based Manipulators. Appl. Sci. 2024, 14, 4147. [Google Scholar] [CrossRef]
- Cenciarini, M.; Dollar, A.M. Biomechanical Considerations in the Design of Lower-Limb Exoskeletons. In Proceedings of the 2011 IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, 29 June–1 July 2011; pp. 318–323. [Google Scholar] [CrossRef]
- Atkinson, M.; Tully, A.; Maher, C.A.; Innes-Wong, C.; Russo, R.N.; Osborn, M.P. Safety, Feasibility and Efficacy of Lokomat® and Armeo®Spring Training in Deconditioned Paediatric, Adolescent and Young Adult Cancer Patients. Cancers 2023, 15, 1250. [Google Scholar] [CrossRef]
- Potašová, M.; Mačej, P.; Moraučíková, E.; Baňárová, P.S.; Kutiš, P. Lokomat vs. Conventional Therapy—Impact on Gait Symmetry in Hemiparetic Patients: Preliminary Clinical Study. Healthcare 2025, 13, 929. [Google Scholar] [CrossRef]
- Mohamad, H.; Ozgoli, S.; Kazemi, J. Optimization of Joint Space Trajectories for Assistive Lower Limb Exoskeleton Robots: Real-Time and Flexible Gait Patterns. J. Intell. Robot. Syst. 2024, 110, 122. [Google Scholar] [CrossRef]
- Morris, L.; Diteesawat, R.S.; Rahman, N.; Turton, A.; Cramp, M.; Rossiter, J. The state of the art of soft robotics to assist mobility: A review of physiotherapist and patient identified limitations of current lower-limb exoskeletons and the potential soft-robotic solutions. J. Neuroeng. Rehabil. 2023, 20, 18. [Google Scholar] [CrossRef]
- Sankar, A.; Dicianno, B.E. Overground Body Weight Support Systems for Gait and Balance Training: A Scoping Review. Arch. Rehabil. Res. Clin. Transl. 2021, 3, 100127. [Google Scholar] [CrossRef]
- Veneman, J.; Wessels, M.; Kloosterman, M. Development of the RYSEN: A 3D Body Weight Support System. Robotics 2020, 9, 90. [Google Scholar] [CrossRef]
- Bettella, F.; Goffredo, R.; Pellegrini, M.; Nanni, A.; Connor, A.G.; Cappello, L. A Scoping Review on Lower Limb Exoskeleton Actuations: Description and Characteristics. Robotica 2025, 43, 1572–1589. [Google Scholar] [CrossRef]
- Godage, I.S.; Chen, Y.; Walker, I.D. Dynamic Control of Pneumatic Muscle Actuators. arXiv 2018, arXiv:1811.04991. [Google Scholar] [CrossRef]
- Sun, M.; Ouyang, X.; Mattila, J.; Yang, H.; Hou, G. One Novel Hydraulic Actuating System for the Lower-Body Exoskeleton. Chin. J. Mech. Eng. 2021, 34, 31. [Google Scholar] [CrossRef]
- Shi, K.; Song, A.; Li, Y.; Chen, D.; Zhu, L. A Cable-Driven Three-DOF Wrist Rehabilitation Exoskeleton With Improved Performance. Front. Neurorobot. 2021, 15, 664062. [Google Scholar] [CrossRef]
- Sun, Q.; Guo, S.; Fei, S. Collision Avoidance Based on Null-Space Impedance Control for Upper Limb Rehabilitation Robots. Med. Biol. Eng. Comput. 2023, 61, 2077–2090. [Google Scholar] [CrossRef] [PubMed]
- Arantes, A.; Bressan, N.; Borges, L.R.; McGibbon, C.A. Evaluation of a Novel Real-Time Adaptive Assist-As-Needed Controller for Robot-Assisted Upper Extremity Rehabilitation Following Stroke. PLoS ONE 2023, 18, e0292627. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Huang, H.; Li, X.; Chen, J.; Si, J. Reinforcement learning-based motion control for a lower extremity rehabilitation exoskeleton performing collaborative squatting with unstable human-robot interaction. Front. Robot. AI 2021, 8, 702845. [Google Scholar] [CrossRef]
- Deng, Y.; Wang, Z.; Li, X.; Lei, Y.; Omalley, O. Advancing Biomedical Engineering through a Multi-Modal Sensor Fusion System for Enhanced Physical Training. AIMS Bioeng. 2023, 10, 364–383. [Google Scholar] [CrossRef]
- Qu, Z.; Tang, W.; Li, J.; Zhang, X. Fuzzy Adaptive Control for a 4-DOF Hand Rehabilitation Robot in Passive Mode. Actuators 2025, 14, 351. [Google Scholar] [CrossRef]
- Olczak, A.; Truszczyńska-Baszak, A.; Stępień, A. The Use of Armeo®Spring Device to Assess the Effect of Trunk Stabilization Exercises on the Functional Capabilities of the Upper Limb—An Observational Study of Patients after Stroke. Sensors 2022, 22, 4336. [Google Scholar] [CrossRef]
- Ma, J.; Chen, H.; Liu, X.; Yang, Y.; Huang, D. Adaptive Impedance Control of a Human–Robotic System Based on Motion Intention Estimation and Output Constraints. Appl. Sci. 2025, 15, 1271. [Google Scholar] [CrossRef]
- Park, C.; Kim, M.-S. Stratified predictions of upper limb motor outcomes after stroke. Front. Neurol. 2024, 14, 1323529. [Google Scholar] [CrossRef]
- Long, Y.; Peng, Y. Extended State Observer-Based Nonlinear Terminal Sliding Mode Control with Feed-forward Compensation for Lower Extremity Exoskeleton. IEEE Access 2021, 9, 3049879. [Google Scholar] [CrossRef]
- Wang, R.; Lin, X.; Yin, C.; Liu, Z.; Zhang, Y.; Liu, W.; Du, F. Robust Continuous Sliding-Mode-Based Assistive Torque Control for Series Elastic Actuator-Driven Hip Exoskeleton. Actuators 2025, 14, 239. [Google Scholar] [CrossRef]
- Hasan, S.K.; Dhingra, A.K. Development of a Sliding Mode Controller with Chattering Suppressor for Human Lower Extremity Exoskeleton Robot. Results Control Optim. 2022, 7, 100123. [Google Scholar] [CrossRef]
- Kim, J.; Oh, S.; Jo, Y.; Moon, J.H.; Kim, J. A Robotic Treadmill System to Mimic Overground Walking Training with Body Weight Support. Front. Neurorobot. 2023, 17, 1089377. [Google Scholar] [CrossRef]
- Laszlo, C.; Munari, D.; Maggioni, S.; Knechtle, D.; Wolf, P.; De Bon, D. Feasibility of an Intelligent Algorithm Based on an Assist-as-Needed Controller for a Robot-Aided Gait Trainer (Lokomat) in Neurological Disorders: A Longitudinal Pilot Study. Brain Sci. 2023, 13, 612. [Google Scholar] [CrossRef]
- Hussain, A.; Khan, M.I.; Nazir, S.; Lee, S.; Kim, J.-H. Design and Force Control of an End-Effector-Based Upper-Limb Rehabilitation Robot. IEEE Access 2022, 10, 71593–71606. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, X.; Chen, F.; Zhang, Y.; Li, J.; Sun, H. Adaptive Force Control With Kalman Filtering for Robotic Upper-Limb Rehabilitation. Sensors 2023, 23, 2465. [Google Scholar] [CrossRef]
- Tong, L.; Cui, D.; Wang, C.; Peng, L. A novel zero-force control framework for post-stroke rehabilitation training based on fuzzy-PID method. Intell. Robot. 2024, 4, 125–145. [Google Scholar] [CrossRef]
- Pan, J.; Zhang, L.; Sun, Q. Development of a Force-Field-Based Control Strategy for an Upper-Limb Rehabilitation Robot. Mech. Sci. 2022, 13, 949–959. [Google Scholar] [CrossRef]
- Chang, Y.; Liu, X.; Wang, L.; Zhao, L.; Sun, H.; Zhang, Y. Hybrid Position-Force Control in Cable-Driven Knee Exoskeletons. Sensors 2023, 23, 3621. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, J. Hybrid Control Strategy for Lower-Limb Rehabilitation Robot Combining Gravity Compensation and Feedforward Force. Appl. Sci. 2023, 13, 277. [Google Scholar] [CrossRef]
- Fang, Y.; Li, H.; Zhang, X.; Zhou, W.; Yang, M.; Sun, H. Human–Robot Collaborative Control Based on Impedance Modulation with KUKA LWR for Post-Stroke Rehabilitation. Sensors 2021, 21, 1576. [Google Scholar] [CrossRef]
- Sierotowicz, M.; Lotti, N.; Nell, L.; Missiroli, F.; Alicea, R.; Zhang, X.; Xiloyannis, M.; Rupp, R.; Papp, E.; Krzywinski, J.; et al. EMG-Driven Machine Learning Control of a Soft Assistive Glove for Grasping Assistance and Rehabilitation. IEEE Robot. Autom. Lett. 2022, 7, 3140–3147. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, C.; Wang, L.; Liu, M.; Zhou, Y.; Zhao, J. Fuzzy-Adaptive Impedance Control with Online Stiffness Adjustment in Rehabilitation Robots. Appl. Sci. 2023, 13, 2234. [Google Scholar] [CrossRef]
- Qin, T.; Wu, Z.; Lin, H.-Y.; Chen, Z.; Zhang, J. Impedance Control Stability Analysis Considering Networked Communication Delays. Sensors 2023, 23, 385. [Google Scholar] [CrossRef]
- Hu, J.; Zhuang, Y.; Meng, Q.; Yu, H. Active Training Control Method for Rehabilitation Robot Based on Fuzzy Adaptive Impedance Adjustment. Machines 2023, 11, 565. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, L.; Yang, W.; Liu, T.; Sun, H. Adaptive Impedance Control for Upper-Limb Exoskeletons Based on RLS and Stiffness Optimization. Sensors 2024, 24, 451. [Google Scholar] [CrossRef]
- Soltani-Zarrin, R.; Pourkand, A.; Kazemi, H.; Fattahi, N. A Dual-Port Admittance Control Scheme for Upper-Limb Rehabilitation Exoskeletons. Appl. Sci. 2024, 14, 78. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, J.; Wang, C.; Li, K.; Zhang, J.; Wang, G.; Ren, H. Variable Admittance Control of High Compatibility Exoskeleton Based on Human–Robotic Interaction Force. Chin. J. Mech. Eng. 2024, 37, 119. [Google Scholar] [CrossRef]
- Mashud, G.A.; Hasan, S.K.; Alam, N. Advances in Control Techniques for Rehabilitation Exoskeleton Robots: A Systematic Review. Actuators 2025, 14, 108. [Google Scholar] [CrossRef]
- Peternel, L.; Noda, T.; Petrič, T.; Ude, A.; Morimoto, J.; Babič, J. Adaptive Control of Exoskeleton Robots for Periodic Assistive Behaviours Based on EMG Feedback Minimisation. PLoS ONE 2016, 11, e0148942. [Google Scholar] [CrossRef]
- Amiri, M.S.; Ramli, R.; Barari, A. Optimally Initialized Model Reference Adaptive Controller of Wearable Lower Limb Rehabilitation Exoskeleton. Mathematics 2023, 11, 1564. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Yang, L.; Wu, S.; Chen, X.; Chen, S. Exoskeleton rehabilitation robot training for balance and lower limb function in sub-acute stroke patients: A pilot, randomized controlled trial. J. Neuroeng. Rehabil. 2024, 21, 98. [Google Scholar] [CrossRef]
- Narayan, J.; Abbas, M.; Dwivedy, S.K. Robust Adaptive Backstepping Control for a Lower-Limb Exoskeleton System with Model Uncertainties and External Disturbances. Automatika 2023, 64, 145–161. [Google Scholar] [CrossRef]
- Ghannadi, B.; Sharif Razavian, R.; McPhee, J. Configuration-Dependent Optimal Impedance Control of an Upper Extremity Stroke Rehabilitation Manipulandum. Front. Robot. AI 2018, 5, 124. [Google Scholar] [CrossRef]
- Ahmadi, A.; Aghababaeinejad, K.; Nopour, R.; Kamali Eigoli, A.; Naderi, E. Sensor-Less Sliding Mode Observer-Based Assistive Control of a Spherical Parallel Ankle Rehabilitation Robot Under Modeling Uncertainties. Iran. J. Sci. Technol. Trans. Mech. Eng. 2025, 49, 789–804. [Google Scholar] [CrossRef]
- Zhao, Z.; Hou, X.; Shan, D.; Liu, H.; Liu, H.; Hao, L. Application of Fuzzy Adaptive Impedance Control Based on Backstepping Method for PAM Elbow Exoskeleton in Rehabilitation. Polymers 2024, 16, 3533. [Google Scholar] [CrossRef]
- Fleming, A.J.; Huang, H.H.; Buxton, E.; Hodges, F.; Huang, S. Direct Continuous Electromyographic Control of a Powered Prosthetic Ankle for Improved Postural Control after Guided Physical Training: A Case Study. Wearable Technol. 2021, 2, e3. [Google Scholar] [CrossRef] [PubMed]
- Ferrero, L.; Soriano-Segura, P.; Navarro, J.; Iáñez, M.; Azorín, J.M.; Contreras-Vidal, J.L. Brain–Machine Interface Based on Deep Learning to Control Asynchronously a Lower-Limb Robotic Exoskeleton: A Case-of-Study. J. NeuroEng. Rehabil. 2024, 21, 48. [Google Scholar] [CrossRef] [PubMed]
- Tjoa, E.; Guan, C. A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 4793–4813. [Google Scholar] [CrossRef]
- Luo, S.; Androwis, G.; Adamovich, S.; Nunez, E.; Su, H.; Zhou, X. Robust Walking Control of a Lower Limb Rehabilitation Exoskeleton Coupled with a Musculoskeletal Model via Deep Reinforcement Learning. J. NeuroEng. Rehabil. 2023, 20, 34. [Google Scholar] [CrossRef] [PubMed]
- Sambhus, R.; Gokce, A.; Welch, S.; Herron, C.W.; Leonessa, A. Real-Time Model-Free Deep Reinforcement Learning for Force Control of a Series Elastic Actuator. arXiv 2023, arXiv:2304.04911. [Google Scholar] [CrossRef]
- Kumar, R.; Muthukrishnan, S.P.; Kumar, L.; Roy, S. Predicting Multi-Joint Kinematics of the Upper Limb from EMG Signals Across Varied Loads with a Physics-Informed Neural Network. arXiv 2023, arXiv:2312.09418. [Google Scholar] [CrossRef]
- Duong, M.-D.; Pham, Q.-T.; Vu, T.-C.; Bui, N.-T.; Dao, Q.-T. Adaptive Fuzzy Sliding Mode Control of an Actuator Powered by Pneumatic Artificial Muscles. Sci. Rep. 2023, 13, 8242. [Google Scholar] [CrossRef] [PubMed]
- Della<monospace> </monospace>Santina, C.; Duriez, C.; Rus, D. Model-Based Control of Soft Robots: A Survey of the State of the Art and Open Challenges. IEEE Control Syst. 2023, 43, 30–65. [Google Scholar] [CrossRef]
- Shi, Y.; Dong, W.; Lin, W.; Gao, Y. Soft Wearable Robots: Development Status and Technical Challenges. Sensors 2022, 22, 7584. [Google Scholar] [CrossRef]
- Zhao, W.; Song, A. Active Motion Control of a Knee Exoskeleton Driven by Antagonistic Pneumatic Muscle Actuators. Actuators 2020, 9, 134. [Google Scholar] [CrossRef]
- Polygerinos, P.; Wang, Z.; Overvelde, J.T.B.; Galloway, K.C.; Wood, R.J.; Walsh, C.J. Soft Robotic Glove for Combined Assistance and At-Home Rehabilitation. Robot. Auton. Syst. 2014, 73, 135–143. [Google Scholar] [CrossRef]
- Deng, Z.; Huang, T.; Li, M. Model Predictive Control for Soft Ankle Rehabilitation Robot. Mechatronics 2023, 92, 103015. [Google Scholar] [CrossRef]
- Lee, J.; Kwon, K.; Soltis, I.; Matthews, J.; Lee, Y.J.; Kim, H.; Romero, L.; Zavanelli, N.; Kwon, Y.; Kwon, S.; et al. Intelligent Upper-Limb Exoskeleton Integrated with Soft Wearable Bioelectronics and Deep Learning for Human Intention-Driven Strength Augmentation. npj Flex. Electron. 2024, 8, 11. [Google Scholar] [CrossRef]
- Sup, F.C.; Bohara, A.; Goldfarb, M. Design and Control of a Powered Transfemoral Prosthesis. Int. J. Rob. Res. 2008, 27, 263–273. [Google Scholar] [CrossRef]
- Li, Z.; Fang, Y.; Luo, Y.; He, H.; Wang, X. A Survey on Myoelectric Control for Lower Limb Prostheses. Sensors 2022, 22, 2281. [Google Scholar] [CrossRef]
- Fleming, A.; Bryson, B.J.; Boone, A.D.; Kudrick, S.C.; Bjorlie, M.J.; Lum, P.S.; Dingwell, J.B.; Moran, C.E. Neural prosthesis control restores near-normative neuromechanics in postural control. Sci. Robot. 2023, 4, eaef5758. [Google Scholar] [CrossRef] [PubMed]
- Knight, A.D.; Lee, S.C.K.; Swanson, B.T.; Esposito, E.R. Toward Developing a Powered Ankle-Foot Prosthesis with Electromyographic Control to Enhance Functional Performance: A Case Study in a U.S. Service Member. Mil. Med. 2022, 187, e534–e541. [Google Scholar] [CrossRef]
- Ding, Y.; Udompanyawit, C.; Zhang, Y.; He, B. EEG-based Brain–Computer Interface Enables Real-time Robotic Hand Control at Individual Finger Level. Nat. Commun. 2025, 16, 5401. [Google Scholar] [CrossRef]
- Abiri, R.; Borhani, S.; Sellers, E.W.; Jiang, Y.; Zhao, X. A Comprehensive Review of EEG-Based Brain–Computer Interface Paradigms. J. Neural Eng. 2019, 16, 011001. [Google Scholar] [CrossRef]
- Śliwowski, W.; Leroy, A.; Hueber, T.; Lainé, A.; Fantenberg, M.; Serre, A.; Roche, N.; Jutten, C.; Mattout, J.; Guan, C.; et al. Adaptive LDA Classifier Enhances Real-Time Control of an EEG-Based Imagined Speech Brain–Computer Interface. Brain Sci. 2024, 14, 196. [Google Scholar] [CrossRef]
- Cheron, G.; Coenen, V.; Grishin, A.; Leurs, K.; Lourenço, A.P.; Ivanenko, Y. MindWalker: BCI-Controlled Lower-Limb Exoskeleton for Gait Assistance. Brain Sci. 2021, 11, 374. [Google Scholar] [CrossRef]
- Bundy, D.T.; Pandarinath, C.; Kirchner, J.; Franklin, R.J.; Hart, J.; Tucker, R.; Broderick, B.; Botvinick, M.M.; Contreras-Vidal, J.L. BCI–Robot Hybrid Systems for Stroke Rehabilitation: Current Trends and Challenges. Front. Hum. Neurosci. 2020, 14, 162. [Google Scholar] [CrossRef]
- Shih, J.J.; Krusienski, D.J.; Wolpaw, J.R. Brain–Computer Interfaces in Medicine. Mayo Clin. Proc. 2012, 87, 268–279. [Google Scholar] [CrossRef]
- Tramontano, M.; Li, X.; Miskovic, P.; Ijspeert, A.; Gassert, R. Multimodal Sensor Integration in Robotic Neurorehabilitation: A Review. Sensors 2021, 21, 4563. [Google Scholar] [CrossRef]
- An, Y.; Li, Y.; Wang, H.; Duffield, R.; Su, S.W. Human–Machine Co-Adaptation for Robot-Assisted Rehabilitation via Dual-Agent Multiple-Model Reinforcement Learning. arXiv 2024, arXiv:2407.21734. [Google Scholar] [CrossRef]
- Ganesan, Y.; Gobee, S.; Durairajah, V. Development of an Upper Limb Exoskeleton for Rehabilitation with Feedback from EMG and IMU Sensor. Procedia Comput. Sci. 2015, 76, 53–59. [Google Scholar] [CrossRef]
- Dissanayake, H.; Wijesundara, P.; Gunaratne, H.; Samaranayake, T.; Perera, C. Sensor Fusion Framework Using EMG, IMU, and Visual Feedback in Upper-Limb Rehabilitation Robots. Sensors 2022, 22, 5236. [Google Scholar] [CrossRef]
- Bahador, N.; Ferreira, D.; Tamminen, S.; Kortelainen, J. Deep Learning–Based Multimodal Data Fusion: Case Study in Food Intake Episodes Detection Using Wearable Sensors. JMIR Mhealth Uhealth 2021, 9, e21926. [Google Scholar] [CrossRef]
- Nicora, G.; Pe, S.; Santangelo, G.; Billeci, L.; Aprile, I.G.; Germanotta, M.; Bellazzi, R.; Parimbelli, E.; Quaglini, S. Systematic Review of AI/ML Applications in Multi-Domain Robotic Rehabilitation: Trends, Gaps, and Future Directions. J. NeuroEng. Rehabil. 2025, 22, 79. [Google Scholar] [CrossRef]
- Banyai, A.D.; Brișan, C. Robotics in Physical Rehabilitation: Systematic Review. Healthcare 2024, 12, 1720. [Google Scholar] [CrossRef]
- Esquenazi, A.; Talaty, M. From Bench to Bedside: Translating Robotic Rehabilitation into Clinical Practice. NeuroRehabilitation 2021, 48, 145–157. [Google Scholar] [CrossRef]
- Kaczmarek, Ł.; Jaworski, W.; Gancarczyk, M.; Winiarski, S.; Rykała, Ł.; Przybyła, A.; Rojek, A.; Tabor, D.; Krawczyk, A.; Kostka, P.; et al. OpenExo: An Open-Source Modular Exoskeleton to Augment Human Walking. Sci. Robot. 2025, 10, eadt1591. [Google Scholar] [CrossRef]
- Coppola, M.; Rossi, M.; Bianchi, F.; Santini, P.; Rossi, L.; Ferrari, P. AI at the Edge: Challenges and Strategies for On-Device Deep Learning in Wearable Rehab Systems. Sensors 2022, 22, 3221. [Google Scholar] [CrossRef]
- Schütz, S.; Nejadfard, A.; Reichardt, M.; Berns, K. FPGA-Based Embedded System Designed for the Deployment in the Compliant Robotic Leg CARL. In Proceedings of the 16th International Conference on Informatics in Control, Automation and Robotics-Volume 2: ICINCO, Prague, Czech Republic, 29–31 July 2019; pp. 537–543. [Google Scholar] [CrossRef]
- Morley, J.; Floridi, L.; Kinros, G.; Lewis, D.; Vandemeulebroucke, T. Ethics of AI in Health Care: A Mapping Review. J. Am. Med. Inform. Assoc. 2021, 28, 394–405. [Google Scholar] [CrossRef]
- Yang, Z.; Li, H.; Huang, G.; Fu, C. Explainability for Artificial Intelligence in Healthcare: A Comprehensive Assessment. BMC Med. Inform. Decis. Mak. 2020, 20, 263. [Google Scholar] [CrossRef]
- Amodei, D.; Olah, C.; Steinhardt, J.; Christiano, P.; Schulman, J.; Mané, D. Concrete Problems in AI Safety. Commun. ACM 2020, 63, 54–64. [Google Scholar] [CrossRef]
- Chavarrías, A.; Rodriguez-Cianca, D.; Lanillos, P. Adaptive Torque Control of Exoskeletons under Spasticity Conditions via Reinforcement Learning. arXiv 2025, arXiv:2503.11433. [Google Scholar] [CrossRef]
- Khan, A.; Patel, R.; Singh, A.; Zhao, L.; Tan, W. Fatigue Detection and Adaptive Assistance in Upper-Limb Exoskeletons Using EMG and AI. Sensors 2022, 22, 8491. [Google Scholar] [CrossRef]
- Wang, Y.; Chan, S.S.; Lei, M.; Lim, L.S.; Johan, H.; Zuo, B.; Ang, W.T. A Human-In-The-Loop Simulation Framework for Evaluating Control Strategies in Gait Assistive Robots. arXiv 2025, arXiv:2503.05825. [Google Scholar] [CrossRef]
- Nicora, G.; Parimbelli, E.; Mauro, M.C.; Falchini, F.; Germanotta, M.; Fasano, A.; Sgandurra, G.; Beani, E.; Gruppioni, E.; Bugané, F.; et al. Healthcare Practitioners and Robotic-Assisted Rehabilitation: Understanding Needs and Barriers. J. NeuroEng. Rehabil. 2025, 22, 112. [Google Scholar] [CrossRef]
- IEC 60601-1:2005; Medical Electrical Equipment—Part 1: General Requirements for Basic Safety and Essential Performance. International Electrotechnical Commission: Geneva, Switzerland, 2005.
- ISO 13482:2014; Robots and Robotic Devices—Safety Requirements for Personal Care Robots. International Organization for Standardization: Geneva, Switzerland, 2014.
- IEC 80601-2-78:2019; Medical Electrical Equipment—Part 2-78: Particular Requirements for Basic Safety and Essential Performance of Robotic Medical Equipment. International Electrotechnical Commission: Geneva, Switzerland, 2019.
- Regulation (EU) 2017/745; Medical Device Regulation (MDR). European Parliament and Council: Brussels, Belgium, 2017.
No. | System Name | Hard Working Type | System Type | Control Type | Application Area | Reference |
---|---|---|---|---|---|---|
1 | Lokomat (Hocoma) | Active | Exoskeleton | Impedance/admission | Assisted walking after stroke | [15] |
2 | ArmeoSpring (Hocoma) | Passive | 3D device with supported arm | Position + force | Arm–shoulder rehabilitation | [15] |
3 | MIT-Manuscript | Active | Parallel plane robot | Force + hybrid PID | Arm/forearm plane movements | [10] |
4 | ReWalk | Active | Exoskeleton | Position | Paraplegia, walking | [16] |
5 | HAL (Cyberdyne) | Active | EMG exoskeleton | EMG + AI hybrid | Lower-limb movement | [17] |
6 | EksoGT (Ekso Bionics) | Active | Exoskeleton | Position + feedback | Stroke, spinal cord injuries | [18] |
7 | Bionic InMotion ARM | Active | End effector | Adaptive force | Stroke arm recovery | [19] |
8 | MyoPro (Myomo) | Active | EMG orthosis | EMG + position | Neuromuscular weakness | [20] |
Control Type | Main Advantages | Main Limitations/Challenges | Common Areas |
---|---|---|---|
PID | Simplicity, stability, easy to implement | Limited to linear dynamics, no adaptivity | Positional rehabilitation |
Force | Realistic feedback, safety | Requires precise sensors, instability with delays | Assisted movement |
Impedance | Flexibility, natural human–robot interaction | Fine tuning, noise sensitive | Exoskeletons |
Adaptive | Adapts to the patient in real time | Increased complexity, risk of instability | Post-stroke recovery |
AI/ML/RL | Prediction, personalization, learning from data | Lack of transparency (XAI), computational cost | Cognitive rehabilitation |
Hybrid | Combines the benefits of multiple methods | Complex implementation, difficult tuning | Advanced exoskeletons |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rad, O.L.; Brisan, C. Control Algorithms in Robot-Assisted Rehabilitation: A Systematic Review. Appl. Sci. 2025, 15, 9184. https://doi.org/10.3390/app15169184
Rad OL, Brisan C. Control Algorithms in Robot-Assisted Rehabilitation: A Systematic Review. Applied Sciences. 2025; 15(16):9184. https://doi.org/10.3390/app15169184
Chicago/Turabian StyleRad, Ovidiu Liviu, and Cornel Brisan. 2025. "Control Algorithms in Robot-Assisted Rehabilitation: A Systematic Review" Applied Sciences 15, no. 16: 9184. https://doi.org/10.3390/app15169184
APA StyleRad, O. L., & Brisan, C. (2025). Control Algorithms in Robot-Assisted Rehabilitation: A Systematic Review. Applied Sciences, 15(16), 9184. https://doi.org/10.3390/app15169184