Direction-Dependent Limb Asymmetries in Female Lateral Jumps: A Ground Reaction Force and Knee Torque Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Characteristics of Study Participants and Procedures
2.2. Parameters and Statistical Analysis
3. Results
3.1. Muscle Torque at the Knee Joint
3.2. Vertical Component of the Ground Reaction Force
3.3. The Anterior–Posterior Component of the Ground Reaction Force
3.4. The Mediolateral Component of the Ground Reaction Force
3.5. Correlation Analysis Between Knee Muscle Torque Values and GRF Symmetry Indices
4. Discussion
4.1. Relationship Between Knee Muscle Torque and Vertical Component of GRF
4.2. Relationship Between Knee Muscle Torque and Anterior–Posterior Component of GRF
4.3. Relationship Between Knee Muscle Torque and Mediolateral Component of GRF
4.4. Limb Specialization and Neuromechanical Strategy in Lateral Movement
4.5. Practical Implications for Training and Rehabilitation
4.6. Limitations and Future Research
- Include larger and more heterogeneous participant groups, incorporating both sexes, various age categories, and different dominance profiles;
- Integrate dynamic and multi-joint strength assessments, alongside kinetic and kinematic analyses, to capture a broader spectrum of neuromuscular contributions;
- Employ randomized task orders and varied movement conditions to reduce anticipatory adaptations;
- Design testing environments that simulate competitive constraints to better reveal functional asymmetries under realistic performance stressors.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dos’Santos, T.; Thomas, C.; Comfort, P.; Jones, P.A. The Effect of Training Interventions on Change of Direction Biomechanics Associated with Increased Anterior Cruciate Ligament Loading: A Scoping Review. Sports Med. 2019, 49, 1837–1859. [Google Scholar] [CrossRef]
- Mirkov, D.M.; Nedeljkovic, A.; Milanovic, S.; Jaric, S. Muscle strength testing: Evaluation of tests of explosive force production. Eur. J. Appl. Physiol. 2004, 91, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Góra, T.; Mosler, D.; Ortenburger, D.; Wąsik, J. Sex differences in utilizing effective mass among taekwon-do athletes performing turning and side kick. Phys. Act. Rev. 2024, 12, 78–85. [Google Scholar] [CrossRef]
- Kędziorek, J.; Błażkiewicz, M.; Wąsik, J.; Szopa, J.; Sołdacka, A. Reaction Time and Postural Control Under Dual-Task Conditions in Brazilian Jiu-Jitsu Athletes. Appl. Sci. 2025, 15, 3877. [Google Scholar] [CrossRef]
- McCurdy, K.W.; Langford, G.A.; Doscher, M.W.; Wiley, L.P.; Mallard, K.G. The effects of short-term unilateral and bilateral lower-body resistance training on measures of strength and power. J. Strength Cond. Res. 2005, 19, 9–15. [Google Scholar] [CrossRef]
- Hewett, T.E.; Myer, G.D.; Ford, K.R. Reducing knee and anterior cruciate ligament injuries among female athletes: A systematic review of neuromuscular training interventions. J. Knee Surg. 2005, 18, 82–88. [Google Scholar] [CrossRef]
- Marián, V.; Katarína, L.; Dávid, O.; Matúš, K.; Simon, W. Improved Maximum Strength, Vertical Jump and Sprint Performance after 8 Weeks of Jump Squat Training with Individualized Loads. J. Sports Sci. Med. 2016, 15, 492–500. [Google Scholar]
- Petrigna, L.; Karsten, B.; Marcolin, G.; Paoli, A.; D’Antona, G.; Palma, A.; Bianco, A. A Review of Countermovement and Squat Jump Testing Methods in the Context of Public Health Examination in Adolescence: Reliability and Feasibility of Current Testing Procedures. Front. Physiol. 2019, 10, 1384. [Google Scholar] [CrossRef]
- Huang, H.; Huang, W.-Y.; Wu, C.-E. The Effect of Plyometric Training on the Speed, Agility, and Explosive Strength Performance in Elite Athletes. Appl. Sci. 2023, 13, 3605. [Google Scholar] [CrossRef]
- Bartosz, M.; Latocha, A.; Motowidło, J.; Krzysztofik, M.; Zajac, A. The relationship between countermovement jump performance and sprinting speed in elite sprinters. Phys. Act. Rev. 2024, 12, 29–37. [Google Scholar] [CrossRef]
- Zwierko, M.; Jedziniak, W.; Popowczak, M.; Rokita, A. Effects of six-week stroboscopic training program on visuomotor reaction speed in goal-directed movements in young volleyball players: A study focusing on agility performance. BMC Sports Sci. Med. Rehabil. 2024, 16, 59. [Google Scholar] [CrossRef]
- Blazek, D.; Pisz, A.; Hojka, V.; Uhlir, P.; Kolinger, D.; Zajac, A.; Stastny, P. The bench press prime mover muscles firing frequency changes according to sticking region during maximal and submaximal effort. Phys. Act. Rev. 2024, 14, 150. [Google Scholar] [CrossRef]
- Kędziorek, J.; Błażkiewicz, M. Influence of the base of support widths on postural control and feet loading symmetry during squat—Preliminary study. Acta Bioeng. Biomech. 2022, 24, 55–63. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Bizzini, M.; Rampinini, E.; Cereda, F.; Maffiuletti, N.A. Reliability of isokinetic strength imbalance ratios measured using the Cybex NORM dynamometer. Clin. Physiol. Funct. Imaging 2008, 28, 113–119. [Google Scholar] [CrossRef]
- Gulatowska, M.; Błażkiewicz, M. The Effect of Repetitive Mechanical Perturbations on Lower Limb Symmetry in Postural Control. Symmetry 2025, 17, 245. [Google Scholar] [CrossRef]
- Sadeghi, H.; Allard, P.; Prince, F.; Labelle, H. Symmetry and limb dominance in able-bodied gait: A review. Gait Posture 2000, 12, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.; Turner, A.; Read, P. Effects of Inter-limb Asymmetries on Physical and Sports Performance: A Systematic Review. J. Sports Sci. 2017, 36, 1135–1144. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, Y.; Kubo, J.; Matsubayashi, T.; Matsuo, A.; Kobayashi, K.; Ishii, N. Relationship between bilateral differences in single-leg jumps and asymmetry in isokinetic knee strength. J. Appl. Biomech. 2013, 29, 61–67. [Google Scholar] [CrossRef]
- Robinson, R.O.; Herzog, W.; Nigg, B.M. Use of force platform variables to quantify the effects of chiropractic manipulation on gait symmetry. J. Manip. Physiol. Ther. 1987, 10, 172–176. [Google Scholar]
- Hart, N.H.; Nimphius, S.; Spiteri, T.; Newton, R.U. Leg strength and lean mass symmetry influences kicking performance in Australian football. J. Sports Sci. Med. 2014, 13, 157–165. [Google Scholar] [PubMed]
- Prończuk, M.; Skalski, D.; Zak, M.; Motowidło, J.; Markowski, J.; Pilch, J.; Kostrzewa, M.; Tsos, A.; Maszczyk, A. The influence of EEG-biofeedback training and Beta waves in normoxia and normobaric hypoxia on the bench press in judo athletes. Phys. Act. Rev. 2024, 12, 65–77. [Google Scholar] [CrossRef]
- Dahab, K.S.; McCambridge, T.M. Strength training in children and adolescents: Raising the bar for young athletes? Sports Health 2009, 1, 223–226. [Google Scholar] [CrossRef]
- Hadamus, A.; Błażkiewicz, M.; Wydra, K.T.; Kowalska, A.J.; Łukowicz, M.; Białoszewski, D.; Marczyński, W. Effectiveness of Early Rehabilitation with Exergaming in Virtual Reality on Gait in Patients after Total Knee Replacement. J. Clin. Med. 2022, 11, 4950. [Google Scholar] [CrossRef]
- Hadamus, A.; Błażkiewicz, M.; Kowalska, A.J.; Wydra, K.T.; Grabowicz, M.; Łukowicz, M.; Białoszewski, D.; Marczyński, W. Nonlinear and Linear Measures in the Differentiation of Postural Control in Patients after Total Hip or Knee Replacement and Healthy Controls. Diagnostics 2022, 12, 1595. [Google Scholar] [CrossRef]
- Promsri, A.; Haid, T.; Federolf, P. How does lower limb dominance influence postural control movements during single leg stance? Hum. Mov. Sci. 2018, 58, 165–174. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum Assiociates: New York, NY, USA, 1988. [Google Scholar]
- Błażkiewicz, M.; Wiszomirska, I.; Wit, A. Comparison of four methods of calculating the symmetry of spatial-temporal parameters of gait. Acta Bioeng. Biomech. 2014, 16, 29–35. [Google Scholar] [PubMed]
- Bishop, C.; Turner, A.; Gonzalo-Skok, O.; Read, P. Inter-limb Asymmetry during Rehabilitation: Understanding Formulas and Monitoring the “Magnitude” and “Direction”. Aspetar Sports Med. J. 2020, 9, 18–22. [Google Scholar]
- Lecce, E.; Del Vecchio, A.; Nuccio, S.; Felici, F.; Bazzucchi, I. Higher dominant muscle strength is mediated by motor unit discharge rates and proportion of common synaptic inputs. Sci. Rep. 2025, 15, 8269. [Google Scholar] [CrossRef] [PubMed]
- Zifchock, R.A.; Davis, I.; Higginson, J.; Royer, T. The symmetry angle: A novel, robust method of quantifying asymmetry. Gait Posture 2008, 27, 622–627. [Google Scholar] [CrossRef]
- Aizawa, J.; Hirohata, K.; Ohji, S.; Ohmi, T.; Yagishita, K. Limb-dominance and gender differences in the ground reaction force during single-leg lateral jump-landings. J. Phys. Ther. Sci. 2018, 30, 387–392. [Google Scholar] [CrossRef]
- Sañudo, B.; Sánchez-Hernández, J.; Bernardo-Filho, M.; Abdi, E.; Taiar, R.; Núñez, J. Integrative Neuromuscular Training in Young Athletes, Injury Prevention, and Performance Optimization: A Systematic Review. Appl. Sci. 2019, 9, 3839. [Google Scholar] [CrossRef]
- Fort-Vanmeerhaeghe, A.; Romero-Rodríguez, D.; Lloyd, R.; Kushner, A.; Myer, G. Integrative Neuromuscular Training in Youth Athletes. Part II: Strategies to Prevent Injuries and Improve Performance. Strength Cond. J. 2016, 38, 9–27. [Google Scholar] [CrossRef]
- Carpes, F.P.; Mota, C.B.; Faria, I.E. On the bilateral asymmetry during running and cycling—A review considering leg preference. Phys. Ther. Sport 2010, 11, 136–142. [Google Scholar] [CrossRef]
- Winter, D.A. Human balance and posture control during standing and walking. Gait Posture 1995, 3, 193–214. [Google Scholar] [CrossRef]
- Markovic, G.; Mikulic, P. Neuro-musculoskeletal and performance adaptations to lower-extremity plyometric training. Sports Med. 2010, 40, 859–895. [Google Scholar] [CrossRef]
- Babić, M.; Pobrić, I.; Čular, D. Physiological response and biomarkers in kickboxing -systematic review. Phys. Act. Rev. 2023, 11, 2023. [Google Scholar] [CrossRef]
- Xergia, S.; Tsepis, E.; Georgoulis, A.; Tsarbou, C.; Liveris, Ν.; Pappas, E. Association between hop tests and self-reported knee function in patients after anterior cruciate ligament reconstruction. Arch. Hell. Med./Arheia Ellenikes Iatr. 2024, 24, 475–480. [Google Scholar]
- Thomas, C.; Comfort, P.; Chiang, C.-Y.; Jones, P. Relationship between isometric mid-thigh pull variables and sprint and change of direction performance in collegiate athletes. J. Trainol. 2015, 4, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Dai, B.; Mao, M.; Garrett, W.; Yu, B. Biomechanical characteristics of an anterior cruciate ligament injury in javelin throwing. J. Sport Health Sci. 2015, 42, 333–340. [Google Scholar] [CrossRef]
- McLean, S.G.; Huang, X.; van den Bogert, A.J. Association between lower extremity posture at contact and peak knee valgus moment during sidestepping: Implications for ACL injury. Clin. Biomech. (Bristol. Avon.) 2005, 20, 863–870. [Google Scholar] [CrossRef] [PubMed]
- Claiborne, T.; Armstrong, C.; Gandhi, V.; Pincivero, D. Relationship between Hip and Knee Strength and Knee Valgus during a Single Leg Squat. J. Appl. Biomech. 2006, 22, 41–50. [Google Scholar] [CrossRef]
- Besier, T.F.; Lloyd, D.G.; Cochrane, J.L.; Ackland, T.R. External loading of the knee joint during running and cutting maneuvers. Med. Sci. Sports Exerc. 2001, 33, 1168–1175. [Google Scholar] [CrossRef]
- Hollman, J.H.; Ginos, B.E.; Kozuchowski, J.; Vaughn, A.S.; Krause, D.A.; Youdas, J.W. Relationships between knee valgus, hip-muscle strength, and hip-muscle recruitment during a single-limb step-down. J. Sport Rehabil. 2009, 18, 104–117. [Google Scholar] [CrossRef] [PubMed]
- Comfort, P.; Jones, P.A.; Smith, L.C.; Herrington, L. Joint Kinetics and Kinematics During Common Lower Limb Rehabilitation Exercises. J. Athl. Train. 2015, 50, 1011–1018. [Google Scholar] [CrossRef]
- Distefano, L.J.; Blackburn, J.T.; Marshall, S.W.; Padua, D.A. Gluteal muscle activation during common therapeutic exercises. J. Orthop. Sports Phys. Ther. 2009, 39, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Acar, H.; Eler, N. The Effect of Balance Exercises on Speed and Agility in Physical Education Lessons. Univers. J. Educ. Res. 2019, 7, 74–79. [Google Scholar] [CrossRef]
- Bailey, C.A.; Sato, K.; Burnett, A.; Stone, M.H. Force-production asymmetry in male and female athletes of differing strength levels. Int. J. Sports Physiol. Perform. 2015, 10, 504–508. [Google Scholar] [CrossRef] [PubMed]
Jump Direction | GRF Value | SI Trend | Number of Participants | SI Range [%] | Interpretation |
---|---|---|---|---|---|
Leftward | Maximum | Negative | 19 | −0.47 to −59.41 | Higher vertical force in right/dominant limb |
Maximum | Positive | 2 | 1.49 to 7.77 | Slightly higher force in left/non-dominant limb | |
Minimal | Positive | 19 | 23.08 to 102.41 | Greater force absorption in left/non-dominant limb | |
Minimal | Negative | 1 | −1.28 | Near symmetry | |
Rightward | Maximum | Positive | 18 | 3.46 to 17.80 | Higher vertical force in left limb |
Maximum | Negative | 2 | −3.46 to −17.80 | Slightly higher force in right limb | |
Minimal | Negative | 16 | −3.29 to −64.85 | Greater force absorption in right limb | |
Minimal | Positive | 4 | 4.07 to 15.36 | Slightly higher absorption in left limb |
Jump Direction | GRF Value | SI Trend | Number of Participants | SI Range [%] | Interpretation |
---|---|---|---|---|---|
Leftward | Maximal | Negative | 16 | −0.20 to −174.87 | Higher AP GRF in right/dominant limb |
Maximal | Positive | 4 | 5.95 to 41.57 | Slightly higher AP force in left/non-dominant limb | |
Minimal | Negative | 14 | −9.39 to −82.51 | Greater braking in right/dominant limb | |
Minimal | Positive | 6 | 10.54 to 120.62 | Slightly higher braking in left/non-dominant limb | |
Rightward | Maximal | Positive | 15 | 5.92 to 126.10 | Higher AP force in left limb |
Maximal | Negative | 5 | −3.70 to −59.24 | Slightly higher force in right limb | |
Minimal | Positive | 11 | 14.92 to 90.99 | Slightly greater braking in left limb | |
Minimal | Negative | 9 | −9.10 to −83.41 | Greater braking in right limb |
Jump Direction | GRF Value | SI Trend | Number of Participants | SI Range [%] | Interpretation |
---|---|---|---|---|---|
Leftward | Maximum | Positive | 20 | 87.25 to 185.19 | Higher lateral force in left/non-dominant limb |
Minimal | Negative | 20 | −77.14 to −155.37 | Greater medial braking in right/dominant limb | |
Rightward | Maximal | Positive | 7 | 0.16 to 62.13 | Slightly higher lateral force in left limb |
Maximal | Negative | 13 | −1.35 to −79.67 | Higher lateral force in right limb | |
Minimal | Negative | 20 | −22.14 to −199.72 | Greater medial braking in right limb |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Błażkiewicz, M.; Malec, A.; Trawczyńska, M.; Skalik, M.; Wąsik, J. Direction-Dependent Limb Asymmetries in Female Lateral Jumps: A Ground Reaction Force and Knee Torque Study. Appl. Sci. 2025, 15, 9150. https://doi.org/10.3390/app15169150
Błażkiewicz M, Malec A, Trawczyńska M, Skalik M, Wąsik J. Direction-Dependent Limb Asymmetries in Female Lateral Jumps: A Ground Reaction Force and Knee Torque Study. Applied Sciences. 2025; 15(16):9150. https://doi.org/10.3390/app15169150
Chicago/Turabian StyleBłażkiewicz, Michalina, Aleksandra Malec, Marta Trawczyńska, Michał Skalik, and Jacek Wąsik. 2025. "Direction-Dependent Limb Asymmetries in Female Lateral Jumps: A Ground Reaction Force and Knee Torque Study" Applied Sciences 15, no. 16: 9150. https://doi.org/10.3390/app15169150
APA StyleBłażkiewicz, M., Malec, A., Trawczyńska, M., Skalik, M., & Wąsik, J. (2025). Direction-Dependent Limb Asymmetries in Female Lateral Jumps: A Ground Reaction Force and Knee Torque Study. Applied Sciences, 15(16), 9150. https://doi.org/10.3390/app15169150