Synthesis and Antioxidant Activity of Novel Biginelli Adducts with Phenolic Fragments
Abstract
1. Introduction
2. Materials and Methods
3. Experimental Section
3.1. General Procedure for the Preparation of Dihydropyrimidinones (-thiones) 1a and 2–5a,b (Method A)
3.2. General Procedure for the Preparation of Dihydropyrimidinones (-thiones) 3–5a,b (Method B)
3.3. Antioxidant Activity
3.3.1. ABTS Assay
3.3.2. Ferric Ion-Reducing Capacity (PFRAP) Assay
3.3.3. AAPH-Induced Oxidation of the DNA Assay
4. Results and Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kohen, R.; Nyska, A. Invited review: Oxidation of biological systems: Oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol. Pathol. 2002, 30, 620–650. [Google Scholar] [CrossRef]
- Kovalsky, B.; Shram, V.; Bezborodov, Y.N.; Petrov, O.; Lysyannikova, N.; Kravtsova, E. The results of the study of the mechanism of oxidation of motor oil. J. Phys. Conf. Ser. 2019, 1399, 055014. [Google Scholar] [CrossRef]
- Aguilar, G.; Mazzamaro, G.; Rasberger, M. Oxidative degradation and stabilisation of mineral oil-based lubricants. In Chemistry and Technology of Lubricants; Springer: Berlin/Heidelberg, Germany, 2009; pp. 107–152. [Google Scholar] [CrossRef]
- Afzal, S.; Abdul Manap, A.S.; Attiq, A.; Albokhadaim, I.; Kandeel, M.; Alhojaily, S.M. From imbalance to impairment: The central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Front. Pharmacol. 2023, 14, 1269581. [Google Scholar] [CrossRef] [PubMed]
- Velena, A.; Zarkovic, N.; Gall Troselj, K.; Bisenieks, E.; Krauze, A.; Poikans, J.; Duburs, G. 1, 4-Dihydropyridine Derivatives: Dihydronicotinamide Analogues—Model Compounds Targeting Oxidative Stress. Oxidative Med. Cell. Longev. 2016, 2016, 1892412. [Google Scholar] [CrossRef] [PubMed]
- Natarajan, R.; Anthoni Samy, H.N.; Sivaperuman, A.; Subramani, A. Structure-activity relationships of pyrimidine derivatives and their biological activity—A review. Med. Chem. 2023, 19, 10–30. [Google Scholar] [CrossRef]
- Nair, N.; Majeed, J.; Pandey, P.; Sweety, R.; Thakur, R. Antioxidant potential of pyrimidine derivatives against oxidative stress. Indian J. Pharm. Sci. 2022, 84, 14–26. [Google Scholar] [CrossRef]
- Parkhomenko, Y.M.; Vovk, A.; Protasova, Z.; Chornyy, S.; Kobzar, O.; Stepanenko, S.; Chekhivska, L. Molecular Structural Features that Determine the Neurotropic Activity of Thiamine Derivatives. Neurophysiology 2022, 54, 82–93. [Google Scholar] [CrossRef]
- Manzoor, S.; Prajapati, S.K.; Majumdar, S.; Raza, M.K.; Gabr, M.T.; Kumar, S.; Pal, K.; Rashid, H.; Kumar, S.; Krishnamurthy, S. Discovery of new phenyl sulfonyl-pyrimidine carboxylate derivatives as the potential multi-target drugs with effective anti-Alzheimer’s action: Design, synthesis, crystal structure and in-vitro biological evaluation. Eur. J. Med. Chem. 2021, 215, 113224. [Google Scholar] [CrossRef]
- Nerkar, A.U. Use of pyrimidine and its derivative in pharmaceuticals: A review. J. Adv. Chem. Sci. 2021, 7, 729–732. [Google Scholar] [CrossRef]
- Kappe, C.O. 100 years of the Biginelli dihydropyrimidine synthesis. Tetrahedron 1993, 49, 6937–6963. [Google Scholar] [CrossRef]
- Zohny, Y.M.; Awad, S.M.; Rabie, M.A.; Al-Saidan, O.A. Synthesis of dihydropyrimidines: Isosteres of Nifedipine and evaluation of their calcium channel blocking efficiency. Molecules 2023, 28, 784. [Google Scholar] [CrossRef]
- Kappe, C.O. 4-Aryldihydropyrimidines via the Biginelli condensation: Aza-analogs of nifedipine-type calcium channel modulators. Molecules 1998, 3, 1–9. [Google Scholar] [CrossRef]
- Dowarah, J.; Patel, D.; Marak, B.N.; Yadav, U.C.S.; Shah, P.K.; Shukla, P.K.; Singh, V.P. Green synthesis, structural analysis and anticancer activity of dihydropyrimidinone derivatives. RSC Adv. 2021, 11, 35737–35753. [Google Scholar] [CrossRef] [PubMed]
- Ragab, F.A.; Abou-Seri, S.M.; Abdel-Aziz, S.A.; Alfayomy, A.M.; Aboelmagd, M. Design, synthesis and anticancer activity of new monastrol analogues bearing 1, 3, 4-oxadiazole moiety. Eur. J. Med. Chem. 2017, 138, 140–151. [Google Scholar] [CrossRef]
- Castro Jara, M.; Silva, A.C.A.; Ritter, M.; da Silva, A.F.; Gonçalves, C.L.; Dos Santos, P.R.; Borja, L.S.; de Pereira, C.M.P.; da Silva Nascente, P. Dihydropyrimidinones against multiresistant bacteria. Front. Microbiol. 2022, 13, 743213. [Google Scholar] [CrossRef]
- Sarvaiya, B.H.; Vaja, P.I.; Paghdar, N.A.; Ghelani, S.M. Medicinal perspective of a promising scaffold–dihydropyrimidinones: A review. J. Heterocycl. Chem. 2024, 61, 1325–1348. [Google Scholar] [CrossRef]
- Gawdzik, B.; Kowalczyk, P.; Koszelewski, D.; Brodzka, A.; Masternak, J.; Kramkowski, K.; Wypych, A.; Ostaszewski, R. The Evaluation of DHPMs as Biotoxic Agents on Pathogen Bacterial Membranes. Membranes 2022, 12, 238. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Chaudhary, S.; Kumar, K.; Gupta, M.K.; Rawal, R.K. Recent synthetic and medicinal perspectives of dihydropyrimidinones: A review. Eur. J. Med. Chem. 2017, 132, 108–134. [Google Scholar] [CrossRef]
- Panda, S.S.; Khanna, P.; Khanna, L. Biginelli reaction: A green perspective. Curr. Org. Chem. 2012, 16, 507–520. [Google Scholar] [CrossRef]
- Kappe, C.O. The generation of dihydropyrimidine libraries utilizing Biginelli multicomponent chemistry. QSAR Comb. Sci. 2003, 22, 630–645. [Google Scholar] [CrossRef]
- Mohammadizadeh, M.R.; Firoozi, N. Trifluoroacetic Acid as an Effective Catalyst for Biginelli Reaction: One-Pot, Three-Component Synthesis of 3, 4-Dihydropyrimidin-2 (1H)-ones (and-Thiones). J. Chem. 2011, 8, S266–S270. [Google Scholar] [CrossRef]
- Jin, T.; Zhang, S.; Li, T. p-toluenesulfonic acid-catalyzed efficient synthesis of dihydropyrimidines: Improved high yielding protocol for the Biginelli reaction. Synth. Commun. 2002, 32, 1847–1851. [Google Scholar] [CrossRef]
- Xin, J.; Chang, L.; Hou, Z.; Shang, D.; Liu, X.; Feng, X. An enantioselective Biginelli reaction catalyzed by a simple chiral secondary amine and achiral Brønsted acid by a dual-activation route. Chem. A Eur. J. 2008, 14, 3177–3181. [Google Scholar] [CrossRef]
- Wan, J.-P.; Lin, Y.; Liu, Y. Catalytic asymmetric Biginelli reaction for the enantioselective synthesis of 3, 4-dihydropyrimidinones (DHPMs). Curr. Org. Chem. 2014, 18, 687–699. [Google Scholar] [CrossRef]
- Wang, L.; Qian, C.; Tian, H.; Ma, Y. Lanthanide triflate catalyzed one-pot synthesis of dihydropyrimidin-2 (1 H)-thiones by a three-component of 1, 3-dicarbonyl compounds, aldehydes, and thiourea using a solvent-free Biginelli condensation. Synth. Commun. 2003, 33, 1459–1468. [Google Scholar] [CrossRef]
- Heravi, M.M.; Moradi, R.; Mohammadkhani, L.; Moradi, B. Current progress in asymmetric Biginelli reaction: An update. Mol. Divers. 2018, 22, 751–767. [Google Scholar] [CrossRef]
- Pathak, V.N.; Gupta, R.; Varshney, B. An efficient, inexpensive’Green Chemistry’route to multicomponent Biginelli condensation catalyzed by CuCl2.2H2O-HCl. Indian J. Chem. Sect. B Org. Incl. Med. 2008, 47, 434. [Google Scholar]
- Liu, Z.-L.; Zhang, R.-M.; Liu, Y.; Guo, Y.; Meng, Q.-G. The effects of different catalysts, substituted aromatic aldehydes on one-pot three-component Biginelli reaction. Curr. Org. Synth. 2019, 16, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Chopda, L.V.; Dave, P.N. Recent advances in homogeneous and heterogeneous catalyst in Biginelli reaction from 2015-19: A concise review. ChemistrySelect 2020, 5, 5552–5572. [Google Scholar] [CrossRef]
- Shumaila, A.M.; Al-Thulaia, A.A. Mini-review on the synthesis of Biginelli analogs using greener heterogeneous catalysis: Recent strategies with the support or direct catalyzing of inorganic catalysts. Synth. Commun. 2019, 49, 1613–1632. [Google Scholar] [CrossRef]
- Bhatt, B.R.; Dixit, B.C.; Kataria, V.B.; Dixit, R.B.; Saiyad, S. Recent Advances in Biginelli Reaction using Nanoparticles, Zeolites and Metal Compounds as Catalyst: A Concise Review. Lett. Org. Chem. 2024, 21, 821–846. [Google Scholar] [CrossRef]
- Patil, R.V.; Chavan, J.U.; Dalal, D.S.; Shinde, V.S.; Beldar, A.G. Biginelli reaction: Polymer supported catalytic approaches. ACS Comb. Sci. 2019, 21, 105–148. [Google Scholar] [CrossRef]
- Clark, J.H.; Macquarrie, D.J.; Sherwood, J. The combined role of catalysis and solvent effects on the Biginelli reaction: Improving efficiency and sustainability. Chem. A Eur. J. 2013, 19, 5174–5182. [Google Scholar] [CrossRef]
- Beck, P.S.; Leitão, A.G.; Santana, Y.B.; Correa, J.R.; Rodrigues, C.V.; Machado, D.F.; Matos, G.D.; Ramos, L.M.; Gatto, C.C.; Oliveira, S.C. Revisiting Biginelli-like reactions: Solvent effects, mechanisms, biological applications and correction of several literature reports. Org. Biomol. Chem. 2024, 22, 3630–3651. [Google Scholar] [CrossRef]
- Costa dos Santos, P.H.; Guimar Souza, V.L.; Carvalho Santos, A.C.; Esteves, H.; Modolo, L.V.; de Fma, N. Synthesis of Biginelli Compounds using Microwave-Assisted Methods. Curr. Microw. Chem. 2023, 10, 70–87. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Bose, A.; Mal, P. Solvent-Free Ball-Milling Biginelli Reaction by Subcomponent Synthesis. Eur. J. Org. Chem. 2015, 2015, 6994–6998. [Google Scholar] [CrossRef]
- Matache, M.; Dobrota, C.; Bogdan, N.D.; Funeriu, D.P. Recent developments in the reactivity of the Biginelli compounds. Curr. Org. Synth. 2011, 8, 356–373. [Google Scholar] [CrossRef]
- Dallinger, D.; Kappe, C.O. Creating chemical diversity space by scaffold decoration of dihydropyrimidines. Pure Appl. Chem. 2005, 77, 155–161. [Google Scholar] [CrossRef]
- Wan, J.-P.; Pan, Y. Recent advance in the pharmacology of dihydropyrimidinone. Mini Rev. Med. Chem. 2012, 12, 337–349. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi-Ghalehbin, B.; Najafi, S.; Razzaghi-Asl, N. Synthesis and antileishmanial effect of a few cyclic and non-cyclic n-aryl enamino amide derivatives. Res. Pharm. Sci. 2020, 15, 340–349. [Google Scholar] [CrossRef]
- Singh, K.; Singh, S. A mild and practical method for the regioselective synthesis of N-acylated 3, 4-dihydropyrimidin-2-ones. New acyl transfer reagents. Tetrahedron Lett. 2006, 47, 8143–8146. [Google Scholar] [CrossRef]
- Fujisawa, S.; Kadoma, Y.; Yokoe, I. Radical-scavenging activity of butylated hydroxytoluene (BHT) and its metabolites. Chem. Phys. Lipids 2004, 130, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Dawidowicz, A.L.; Olszowy, M. Antioxidant properties of BHT estimated by ABTS assay in systems differing in pH or metal ion or water concentration. Eur. Food Res. Technol. 2011, 232, 837–842. [Google Scholar] [CrossRef]
- Wang, R.; Liu, Z.-Q. Ferrocene as a functional group enhances the inhibitive effect of dihydropyrimidine on radical-induced oxidation of DNA. Org. Chem. Front. 2014, 1, 792–797. [Google Scholar] [CrossRef]
- Gupta, D. Methods for determination of antioxidant capacity: A review. Int. J. Pharm. Sci. Res. 2015, 6, 546. [Google Scholar] [CrossRef]
- Koshelev, V.N.; Primerova, O.V.; Vorobyev, S.V.; Stupnikova, A.S.; Ivanova, L.V. Synthesis and Antioxidant Activity of Novel Thiazole and Thiazolidinone Derivatives with Phenolic Fragments. Appl. Sci. 2023, 13, 13112. [Google Scholar] [CrossRef]
- Qin, B.; Yang, K.; Cao, R. Synthesis, radical-scavenging activities, and protective effects against AAPH-induced oxidative damage in DNA and erythrocytes of piperine derivatives. J. Chem. 2020, 2020, 9026286. [Google Scholar] [CrossRef]
- Mittal, A.; Vashistha, V.K.; Das, D.K. Recent advances in the antioxidant activity and mechanisms of chalcone derivatives: A computational review. Free. Radic. Res. 2022, 56, 378–397. [Google Scholar] [CrossRef]
- Bhuyan, U.; Handique, J.G. Plant polyphenols as potent antioxidants: Highlighting the mechanism of antioxidant activity and synthesis/development of some polyphenol conjugates. Stud. Nat. Prod. Chem. 2022, 75, 243–266. [Google Scholar] [CrossRef]
- Shamim, S.; Khan, K.M.; Salar, U.; Ali, F.; Lodhi, M.A.; Taha, M.; Khan, F.A.; Ashraf, S.; Ul-Haq, Z.; Ali, M. 5-Acetyl-6-methyl-4-aryl-3, 4-dihydropyrimidin-2 (1H)-ones: As potent urease inhibitors; synthesis, in vitro screening, and molecular modeling study. Bioorganic Chem. 2018, 76, 37–52. [Google Scholar] [CrossRef]
- Liberto, N.A.; de Paiva Silva, S.; de Fatima, A.; Fernandes, S.A. β-Cyclodextrin-assisted synthesis of Biginelli adducts under solvent-free conditions. Tetrahedron 2013, 69, 8245–8249. [Google Scholar] [CrossRef]
- da Silva, D.L.; Reis, F.S.; Muniz, D.R.; Ruiz, A.L.T.; de Carvalho, J.E.; Sabino, A.A.; Modolo, L.V.; de Fátima, Â. Free radical scavenging and antiproliferative properties of Biginelli adducts. Bioorganic Med. Chem. 2012, 20, 2645–2650. [Google Scholar] [CrossRef] [PubMed]
- Dawidowicz, A.L.; Olszowy, M. The importance of solvent type in estimating antioxidant properties of phenolic compounds by ABTS assay. Eur. Food Res. Technol. 2013, 236, 1099–1105. [Google Scholar] [CrossRef]
- Işıl Berker, K.; Güçlü, K.; Tor, İ.; Demirata, B.; Apak, R. Total antioxidant capacity assay using optimized ferricyanide/prussian blue method. Food Anal. Methods 2010, 3, 154–168. [Google Scholar] [CrossRef]
- Smolyaninov, I.V.; Burmistrova, D.A.; Arsenyev, M.V.; Polovinkina, M.A.; Pomortseva, N.P.; Fukin, G.K.; Poddel’sky, A.I.; Berberova, N.T. Synthesis and antioxidant activity of new catechol thioethers with the methylene linker. Molecules 2022, 27, 3169. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, B.; Behbahani, F.K.; Marandi, G.B.; Mirza, B. One-pot synthesis of 3, 4-dihydropyrimidin-2 (1 H)-ones, thiones and 2-selenoxo DHPMs using 1-butyl-3-methylimidazolium hydrogen sulfate as non-halogenated ionic liquid. Phosphorus Sulfur Silicon Relat. Elem. 2020, 196, 54–60. [Google Scholar] [CrossRef]
- Jelic, M.D.; Mandic, A.D.; Maricic, S.M.; Srdjenovic, B.U. Oxidative stress and its role in cancer. J. Cancer Res. Ther. 2021, 17, 22–28. [Google Scholar] [CrossRef]
- Das, N.; Parvin, M.S.; Hasan, M.; Akter, M.; Hossain, M.S.; Parvez, G.M.; Sarker, A.K.; Rahman, M.A.A.; Mamun, A.; Islam, M.E. A flavone from the ethyl acetate extract of Leea rubra leaves with DNA damage protection and antineoplastic activity. Biochem. Biophys. Rep. 2022, 30, 101244. [Google Scholar] [CrossRef]
- Fuentes-Lemus, E.; Dorta, E.; Escobar, E.; Aspee, A.; Pino, E.; Abasq, M.; Speisky, H.; Silva, E.; Lissi, E.; Davies, M. Oxidation of free, peptide and protein tryptophan residues mediated by AAPH-derived free radicals: Role of alkoxyl and peroxyl radicals. Rsc Adv. 2016, 6, 57948–57955. [Google Scholar] [CrossRef]
- Chen, J.-F.; Liu, Z.-Q. Ferrocenyl-appended aurone and flavone: Which possesses higher inhibitory effects on DNA oxidation and radicals? Chem. Res. Toxicol. 2015, 28, 451–459. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Tang, Y.Z.; Wu, D. Antioxidant effects of phenothiazine, phenoxazine, and iminostilbene on free-radical-induced oxidation of linoleic acid and DNA. J. Phys. Org. Chem. 2009, 22, 1009–1014. [Google Scholar] [CrossRef]
- Zhao, F.; Liu, Z.Q. The protective effect of hydroxyl-substituted Schiff bases on the radical-induced oxidation of DNA. J. Phys. Org. Chem. 2009, 22, 791–798. [Google Scholar] [CrossRef]
- Dizdaroglu, M.; Jaruga, P.; Birincioglu, M.; Rodriguez, H. Free radical-induced damage to DNA: Mechanisms and measurement. Free. Radic. Biol. Med. 2002, 32, 1102–1115. [Google Scholar] [CrossRef] [PubMed]
Compound | Catalyst | Solvent | R1 | X | Yield % |
---|---|---|---|---|---|
1a | CAN | MeCN | -CH3 | O | 38.3 |
2a | CAN | -OC2H5 | O | 48.7 | |
2b | CAN | S | 75.2 | ||
3a | CAN | 4-CH3-C6H5-NH- | O | 21.9 | |
FeCl3·6H2O | EtOH | 81.5 | |||
3b | CAN | MeCN | S | 48.9 | |
FeCl3·6H2O | EtOH | 72.1 | |||
4a | CAN | MeCN | 4-I-C6H5-NH- | O | 29.2 |
FeCl3·6H2O | EtOH | 20.9 | |||
4b | CAN | MeCN | S | 48.0 | |
FeCl3·6H2O | EtOH | 27.2 | |||
5a | CAN | MeCN | C6H5-NH- | O | 47.9 |
FeCl3·6H2O | EtOH | 23.0 | |||
5b | CAN | MeCN | S | 22.2 | |
FeCl3·6H2O | EtOH | 12.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Snastina, O.V.; Sabitov, E.R.; Kuricheva, V.A.; Koshelev, V.N. Synthesis and Antioxidant Activity of Novel Biginelli Adducts with Phenolic Fragments. Appl. Sci. 2025, 15, 9152. https://doi.org/10.3390/app15169152
Snastina OV, Sabitov ER, Kuricheva VA, Koshelev VN. Synthesis and Antioxidant Activity of Novel Biginelli Adducts with Phenolic Fragments. Applied Sciences. 2025; 15(16):9152. https://doi.org/10.3390/app15169152
Chicago/Turabian StyleSnastina, Olga V., Erik R. Sabitov, Viktoria A. Kuricheva, and Vladimir N. Koshelev. 2025. "Synthesis and Antioxidant Activity of Novel Biginelli Adducts with Phenolic Fragments" Applied Sciences 15, no. 16: 9152. https://doi.org/10.3390/app15169152
APA StyleSnastina, O. V., Sabitov, E. R., Kuricheva, V. A., & Koshelev, V. N. (2025). Synthesis and Antioxidant Activity of Novel Biginelli Adducts with Phenolic Fragments. Applied Sciences, 15(16), 9152. https://doi.org/10.3390/app15169152