Effect of Pulsed Electromagnetic Field (PEMF) on Pressure Ulcer in BALB/c and C57BL/6 Mice
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Pressure Ulcer (PU) Model and Magnetic Core-Type PEMF (mPEMF) Treatment
2.3. Mouse Histology
2.4. Wound Healing Assay and Solenoid-Type PEMF (sPEMF) Treatment
3. Results
3.1. PEMF Treatment Parameters
3.2. Macroscopic Wound Healing Response to PEMF Treatment in BALB/c Mice
3.3. Histological Analysis of Epidermal Regeneration in BALB/c Mice
3.4. Histological Analysis of Collagen Regeneration in BALB/c Mice
3.5. Macroscopic Wound Healing Response to PEMF Treatment in C57BL/6 Mice
3.6. Histological Analysis of Epidermal Regeneration and Collagen Regeneration in C57BL/6 c Mice
3.7. Effect of PEMF on In Vitro Scratch Wound Closure in HaCaT Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kottner, J.; Cuddigan, J.; Carville, K.; Balzer, K.; Berlowitz, D.; Law, S.; Litchford, M.; Mitchell, P.; Moore, Z.; Pittman, J.; et al. Pressure ulcer/injury classification today: An international perspective. J. Tissue Viability 2020, 29, 197–203. [Google Scholar] [CrossRef]
- Jaul, E.; Barron, J.; Rosenzweig, J.P.; Menczel, J. An overview of co-morbidities and the development of pressure ulcers among older adults. BMC Geriatr. 2018, 18, 305. [Google Scholar] [CrossRef] [PubMed]
- Noie, A.; Jackson, A.C.; Taheri, M.; Sayadi, L.; Bahramnezhad, F. Determining the frequency of pressure ulcers incidence and associated risk factors in critical care patients: A 3-year retrospective study. Int. Wound J. 2024, 21, e70120. [Google Scholar] [CrossRef] [PubMed]
- Gorecki, C.; Brown, J.M.; Nelson, E.A.; Briggs, M.; Schoonhoven, L.; Dealey, C.; Defloor, T.; Nixon, J. Impact of pressure ulcers on quality of life in older patients: A systematic review. J. Am. Geriatr. Soc. 2009, 57, 1175–1183. [Google Scholar] [CrossRef]
- Edwards, R.; Harding, K.G. Bacteria and wound healing. Curr. Opin. Infect. Dis. 2004, 17, 91–96. [Google Scholar] [CrossRef]
- Kaka, A.S.; Beekmann, S.E.; Gravely, A.; Filice, G.A.; Polgreen, P.M.; Johnson, J.R. Diagnosis and management of osteomyelitis associated with stage 4 pressure ulcers: Report of a query to the emerging infections network of the infectious diseases society of America. Open Forum Infect. Dis. 2019, 6, ofz406. [Google Scholar] [CrossRef] [PubMed]
- Afzali Borojeny, L.; Albatineh, A.N.; Hasanpour Dehkordi, A.; Ghanei Gheshlagh, R. The incidence of pressure ulcers and its associations in different wards of the hospital: A systematic review and meta-analysis. Int. J. Prev. Med. 2020, 11, 171. [Google Scholar] [CrossRef]
- Abdi, M.A.; Yan, M.; Hanna, T.P. Systematic review of modern case series of squamous cell cancer arising in a chronic ulcer (Marjolin’s ulcer) of the skin. JCO Glob. Oncol. 2020, 6, 809–818. [Google Scholar] [CrossRef]
- Dehghani, M.; Pourmontaseri, H. Aetiology, risk factors and treatment of typical and atypical pressure ulcers in patients with traumatic brain injury: A narrative review. Int. Wound J. 2024, 21, e14788. [Google Scholar] [CrossRef]
- Murata, E.; Fujii, J. Ischemia/reperfusion-associated oxidative stress is an aggravating factor for pressure ulcers. J. Clin. Biochem. Nutr. 2025, 76, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Kesarwani, A.; Nagpal, P.S.; Chhabra, H.S. Experimental animal modelling for pressure injury: A systematic review. J. Clin. Orthop. Trauma 2021, 17, 273–279. [Google Scholar] [CrossRef]
- Peirce, S.M.; Skalak, T.C.; Rodeheaver, G.T. Ischemia-reperfusion injury in chronic pressure ulcer formation: A skin model in the rat. Wound Repair. Regen. 2000, 8, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, S.; Ichioka, S.; Sekiya, N.; Nakatsuka, T. Analysis of ischemia-reperfusion injury in a microcirculatory model of pressure ulcers. Wound Repair. Regen. 2005, 13, 209–215. [Google Scholar] [CrossRef]
- Bluestein, D.; Javaheri, A. Pressure ulcers: Prevention, evaluation, and management. Am. Fam. Physician 2008, 78, 1186–1194. [Google Scholar] [PubMed]
- Gould, L.J.; Alderden, J.; Aslam, R.; Barbul, A.; Bogie, K.M.; El Masry, M.; Graves, L.Y.; White-Chu, E.F.; Ahmed, A.; Boanca, K.; et al. WHS guidelines for the treatment of pressure ulcers-2023 update. Wound Repair. Regen. 2024, 32, 6–33. [Google Scholar] [CrossRef] [PubMed]
- Vadala, M.; Morales-Medina, J.C.; Vallelunga, A.; Palmieri, B.; Laurino, C.; Iannitti, T. Mechanisms and therapeutic effectiveness of pulsed electromagnetic field therapy in oncology. Cancer Med. 2016, 5, 3128–3139. [Google Scholar] [CrossRef]
- Athanasiou, A.; Karkambounas, S.; Batistatou, A.; Lykoudis, E.; Katsaraki, A.; Kartsiouni, T.; Papalois, A.; Evangelou, A. The effect of pulsed electromagnetic fields on secondary skin wound healing: An experimental study. Bioelectromagnetics 2007, 28, 362–368. [Google Scholar] [CrossRef]
- Su, D.B.; Zhao, Z.X.; Yin, D.C.; Ye, Y.J. Promising application of pulsed electromagnetic fields on tissue repair and regeneration. Prog. Biophys. Mol. Biol. 2024, 187, 36–50. [Google Scholar] [CrossRef]
- Fukushima, A.; Yamaguchi, T.; Ishida, W.; Fukata, K.; Taniguchi, T.; Liu, F.T.; Ueno, H. Genetic background determines susceptibility to experimental immune-mediated blepharoconjunctivitis: Comparison of Balb/c and C57BL/6 mice. Exp. Eye Res. 2006, 82, 210–218. [Google Scholar] [CrossRef]
- Serezani, A.P.M.; Bozdogan, G.; Sehra, S.; Walsh, D.; Krishnamurthy, P.; Sierra Potchanant, E.A.; Nalepa, G.; Goenka, S.; Turner, M.J.; Spandau, D.F.; et al. IL-4 impairs wound healing potential in the skin by repressing fibronectin expression. J. Allergy Clin. Immunol. 2017, 139, 142–151.e5. [Google Scholar] [CrossRef]
- Watanabe, H.; Numata, K.; Ito, T.; Takagi, K.; Matsukawa, A. Innate immune response in Th1- and Th2-dominant mouse strains. Shock 2004, 22, 460–466. [Google Scholar] [CrossRef] [PubMed]
- Ishida, Y.; Kondo, T.; Takayasu, T.; Iwakura, Y.; Mukaida, N. The essential involvement of cross-talk between IFN-γ and TGF-β in the skin wound-healing process. J. Immunol. 2004, 172, 1848–1855. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Liu, X.; Wang, C.; Qu, L.; Deng, J.; Wang, H.; Qin, Z. Resolution of PMA-induced skin inflammation involves interaction of IFN-gamma and ALOX15. Mediat. Inflamm. 2013, 2013, 930124. [Google Scholar] [CrossRef]
- Kanno, E.; Tanno, H.; Masaki, A.; Sasaki, A.; Sato, N.; Goto, M.; Shisai, M.; Yamaguchi, K.; Takagi, N.; Shoji, M.; et al. Defect of Interferon γ leads to impaired wound healing through prolonged neutrophilic inflammatory response and enhanced MMP-2 activation. Int. J. Mol. Sci. 2019, 20, 5657. [Google Scholar] [CrossRef]
- Pal-Ghosh, S.; Tadvalkar, G.; Jurjus, R.A.; Zieske, J.D.; Stepp, M.A. BALB/c and C57BL6 mouse strains vary in their ability to heal corneal epithelial debridement wounds. Exp. Eye Res. 2008, 87, 478–486. [Google Scholar] [CrossRef]
- Li, L.; Zhang, J.; Zhang, Q.; Zhang, D.; Xiang, F.; Jia, J.; Wei, P.; Zhang, J.; Hu, J.; Huang, Y. High glucose suppresses keratinocyte migration through the inhibition of p38 MAPK/Autophagy pathway. Front. Physiol. 2019, 10, 24. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Graves, D.T. Keratinocyte function in normal and diabetic wounds and modulation by FOXO1. J. Diabetes Res. 2020, 2020, 3714704. [Google Scholar] [CrossRef]
- Ross, C.L.; Zhou, Y.; McCall, C.E.; Soker, S.; Criswell, T.L. The use of pulsed electromagnetic field to modulate inflammation and improve tissue regeneration: A review. Bioelectricity 2019, 1, 247–259. [Google Scholar] [CrossRef]
- Das, B.; Shrirao, A.; Golberg, A.; Berthiaume, F.; Schloss, R.; Yarmush, M.L. Differential cell death and regrowth of dermal fibroblasts and keratinocytes after application of pulsed electric Fields. Bioelectricity 2020, 2, 175–185. [Google Scholar] [CrossRef]
- Yates, C.C.; Hebda, P.; Wells, A. Skin wound healing and scarring: Fetal wounds and regenerative restitution. Birth Defects Res. Part C 2012, 96, 325–333. [Google Scholar] [CrossRef]
- Singh, D.; Rai, V.; K Agrawal, D. Regulation of Collagen I and Collagen III in tissue injury and regeneration. Cardiol. Cardiovasc. Med. 2023, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Ayala, M.R.; Syrovets, T.; Hafner, S.; Zablotskii, V.; Dejneka, A.; Simmet, T. Spatiotemporal magnetic fields enhance cytosolic Ca2+ levels and induce actin polymerization via activation of voltage-gated sodium channels in skeletal muscle cells. Biomaterials 2018, 163, 174–184. [Google Scholar] [CrossRef]
- Zablotskii, V.; Polyakova, T.; Dejneka, A. Exploring ion channel magnetic pharmacology: Are magnetic cues a viable alternative to ion channel drugs? Bioessays 2025, 47, e202400200. [Google Scholar] [CrossRef]
- Gorobets, O.; Gorobets, S.; Polyakova, T.; Zablotskii, V. Modulation of calcium signaling and metabolic pathways in endothelial cells with magnetic fields. Nanoscale Adv. 2024, 6, 1163–1182. [Google Scholar] [CrossRef]
- Zhu, L.N.; Chen, D.; He, C. Metabolomics comparison of metabolites and functional pathways in the SH-SY5Y cell model of Parkinson’s disease under PEMF exposure. Heliyon 2024, 10, e26540. [Google Scholar] [CrossRef]
- Kaadan, A.; Salati, S.; Cadossi, R.; Aaron, R. Regulation of inflammatory responses by pulsed electromagnetic fields. Bioengineering 2025, 12, 474. [Google Scholar] [CrossRef]
- Costantini, E.; Sinjari, B.; D’Angelo, C.; Murmura, G.; Reale, M.; Caputi, S. Human gingival fibroblasts exposed to extremely low-frequency electromagnetic fields: In vitro model of wound-healing improvement. Int. J. Mol. Sci. 2019, 20, 2108. [Google Scholar] [CrossRef]
- Hu, H.; Yang, W.; Zeng, Q.; Chen, W.; Zhu, Y.; Liu, W.; Wang, S.; Wang, B.; Shao, Z.; Zhang, Y. Promising application of pulsed electromagnetic fields (PEMFs) in musculoskeletal disorders. Biomed. Pharmacother. 2020, 131, 110767. [Google Scholar] [CrossRef] [PubMed]
- Helmy, J.; Valdebran, M. An integrative review of pulsed electromagnetic field therapy (PEMF) and wound healing. Wound Pract. Res. 2024, 32, 58–65. [Google Scholar] [CrossRef]
- Lee, C.G.; Park, C.; Hwang, S.; Hong, J.E.; Jo, M.; Eom, M.; Lee, Y.; Rhee, K.J. Pulsed electromagnetic field (PEMF) treatment reduces lipopolysaccharide-induced septic shock in Mice. Int. J. Mol. Sci. 2022, 23, 5661. [Google Scholar] [CrossRef] [PubMed]
- Goto, T.; Fujioka, M.; Ishida, M.; Kuribayashi, M.; Ueshima, K.; Kubo, T. Noninvasive up-regulation of angiopoietin-2 and fibroblast growth factor-2 in bone marrow by pulsed electromagnetic field therapy. J. Orthop. Sci. 2010, 15, 661–665. [Google Scholar] [CrossRef] [PubMed]
- Kottakis, F.; Polytarchou, C.; Foltopoulou, P.; Sanidas, I.; Kampranis, S.C.; Tsichlis, P.N. FGF-2 regulates cell proliferation, migration, and angiogenesis through an NDY1/KDM2B-miR-101-EZH2 pathway. Mol. Cell 2011, 43, 285–298. [Google Scholar] [CrossRef]
- Peng, L.; Fu, C.; Wang, L.; Zhang, Q.; Liang, Z.; He, C.; Wei, Q. The effect of pulsed electromagnetic fields on angiogenesis. Bioelectromagnetics 2021, 42, 250–258. [Google Scholar] [CrossRef]
- Wang, A.; Ma, X.; Bian, J.; Jiao, Z.; Zhu, Q.; Wang, P.; Zhao, Y. Signalling pathways underlying pulsed electromagnetic fields in bone repair. Front. Bioeng. Biotechnol. 2024, 12, 1333566. [Google Scholar] [CrossRef] [PubMed]
- Tanimura, S.; Hashizume, J.; Arichika, N.; Watanabe, K.; Ohyama, K.; Takeda, K.; Kohno, M. ERK signaling promotes cell motility by inducing the localization of myosin 1E to lamellipodial tips. J. Cell Biol. 2016, 214, 475–489. [Google Scholar] [CrossRef]
- Barati, M.T.; Scherzer, J.; Wu, R.; Rane, M.J.; Klein, J.B. Cytoskeletal rearrangement and Src and PI-3K-dependent Akt activation control GABA(B)R-mediated chemotaxis. Cell. Signal. 2015, 27, 1178–1185. [Google Scholar] [CrossRef] [PubMed]
- Celik, C.; Franco-Obregon, A.; Lee, E.H.; Hui, J.H.; Yang, Z. Directionalities of magnetic fields and topographic scaffolds synergise to enhance MSC chondrogenesis. Acta Biomater. 2021, 119, 169–183. [Google Scholar] [CrossRef]
- Diniz, P.; Shomura, K.; Soejima, K.; Ito, G. Effects of pulsed electromagnetic field (PEMF) stimulation on bone tissue like formation are dependent on the maturation stages of the osteoblasts. Bioelectromagnetics 2002, 23, 398–405. [Google Scholar] [CrossRef]
- Aziz, Z.; Bell-Syer, S.E. Electromagnetic therapy for treating pressure ulcers. Cochrane Database Syst. Rev. 2015, 2015, CD002930. [Google Scholar] [CrossRef]
- Hong, J.E.; Lee, C.G.; Hwang, S.; Kim, J.; Jo, M.; Kang, D.H.; Yoo, S.H.; Kim, W.S.; Lee, Y.; Rhee, K.J. Pulsed electromagnetic field (PEMF) treatment ameliorates murine model of collagen-induced arthritis. Int. J. Mol. Sci. 2023, 24, 1137. [Google Scholar] [CrossRef]
- Lv, H.; Liu, J.; Zhen, C.; Wang, Y.; Wei, Y.; Ren, W.; Shang, P. Magnetic fields as a potential therapy for diabetic wounds based on animal experiments and clinical trials. Cell Prolif. 2021, 54, e12982. [Google Scholar] [CrossRef] [PubMed]
- Bedja-Iacona, L.; Scorretti, R.; Ducrot, M.; Vollaire, C.; Franqueville, L. Pulsed electromagnetic fields used in regenerative medicine: An in vitro study of the skin wound healing proliferative phase. Bioelectromagnetics 2024, 45, 293–309. [Google Scholar] [CrossRef] [PubMed]
- Masante, B.; Gabetti, S.; Silva, J.C.; Putame, G.; Israel, S.; Bignardi, C.; Massai, D. Insights into bone and cartilage responses to pulsed electromagnetic field stimulation: A review with quantitative comparisons. Front. Bioeng. Biotechnol. 2025, 13, 1557572. [Google Scholar] [CrossRef]
- Murray, H.B.; Pethica, B.A. A follow-up study of the in-practice results of pulsed electromagnetic field therapy in the management of nonunion fractures. Orthop. Res. Rev. 2016, 8, 67–72. [Google Scholar] [CrossRef]
- Huegel, J.; Choi, D.S.; Nuss, C.A.; Minnig, M.C.C.; Tucker, J.J.; Kuntz, A.F.; Waldorff, E.I.; Zhang, N.; Ryaby, J.T.; Soslowsky, L.J. Effects of pulsed electromagnetic field therapy at different frequencies and durations on rotator cuff tendon-to-bone healing in a rat model. J. Shoulder Elb. Surg. 2018, 27, 553–560. [Google Scholar] [CrossRef]
- Choi, H.M.C.; Cheing, A.K.K.; Ng, G.Y.F.; Cheing, G.L.Y. Effects of pulsed electromagnetic field (PEMF) on the tensile biomechanical properties of diabetic wounds at different phases of healing. PLoS ONE 2018, 13, e0191074. [Google Scholar] [CrossRef]
- Guerriero, F.; Botarelli, E.; Mele, G.; Polo, L.; Zoncu, D.; Renati, P.; Sgarlata, C.; Rollone, M.; Ricevuti, G.; Maurizi, N.; et al. Effectiveness of an innovative pulsed electromagnetic fields stimulation in healing of untreatable skin ulcers in the frail elderly: Two case reports. Case Rep. Dermatol. Med. 2015, 2015, 576580. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, X.; Xue, B. New insights into the role of cellular senescence and chronic wounds. Front. Endocrinol. 2024, 15, 1400462. [Google Scholar] [CrossRef]
- Shi, C.; Wang, Z. Cellular senescence is a promising target for chronic wounds: A comprehensive review. Burn. Trauma 2020, 8, tkaa021. [Google Scholar] [CrossRef]
- Wang, Y.-B.; Li, T.; Wang, F.-Y.; Yao, X.; Bai, Q.-X.; Su, H.-W.; Liu, J.; Wang, L.; Tan, R.-Z. The dual role of cellular senescence in macrophages: Unveiling the hidden driver of age-related inflammation in kidney disease. Int. J. Biol. Sci. 2025, 21, 632–657. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Usui, M.L.; Lippman, S.I.; James, G.A.; Stewart, P.S.; Fleckman, P.; Olerud, J.E. Biofilms and inflammation in chronic wounds. Adv. Wound Care 2013, 2, 389–399. [Google Scholar] [CrossRef]
- Tavecchio, M.; Fanni, S.; Wu, X.; Petruk, G.; Puthia, M.; Schmidtchen, A. A murine pressure ulcer model for evaluating persistence and treatment of Staphylococcus aureus infection. Front. Med. 2025, 12, 1561732. [Google Scholar] [CrossRef]
- Boyko, T.V.; Longaker, M.T.; Yang, G.P. Review of the current management of pressure ulcers. Adv. Wound Care 2018, 7, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Elloso, M.; Hutter, M.F.; Jeschke, N.; Rix, G.; Chen, Y.; Douglas, A.; Jeschke, M.G. Challenges of porcine wound models: A review. Int. J. Transl. Med. 2025, 5, 4. [Google Scholar] [CrossRef]
- Cho, S.W.; Malick, H.; Kim, S.J.; Grattoni, A. Advances in skin-on-a-chip technologies for dermatological disease modeling. J. Investig. Dermatol. 2024, 144, 1707–1715. [Google Scholar] [CrossRef]
- Trentini, M.; D’Amora, U.; Ronca, A.; Lovatti, L.; Calvo-Guirado, J.L.; Licastro, D.; Monego, S.D.; Delogu, L.G.; Wieckowski, M.R.; Barak, S.; et al. Bone regeneration revolution: Pulsed electromagnetic field modulates macrophage-derived exosomes to attenuate osteoclastogenesis. Int. J. Nanomed. 2024, 19, 8695–8707. [Google Scholar] [CrossRef]
- Ghanbari Ghoshchi, S.; Petroni, M.L.; Piras, A.; Marcora, S.M.; Raffi, M. Pulsed electromagnetic field (PEMF) stimulation as an adjunct to exercise: A brief review. Front. Sports Act. Living 2024, 6, 1471087. [Google Scholar] [CrossRef]
- Ehnert, S.; Fentz, A.K.; Schreiner, A.; Birk, J.; Wilbrand, B.; Ziegler, P.; Reumann, M.K.; Wang, H.; Falldorf, K.; Nussler, A.K. Extremely low frequency pulsed electromagnetic fields cause antioxidative defense mechanisms in human osteoblasts via induction of •O2− and H2O2. Sci. Rep. 2017, 7, 14544. [Google Scholar] [CrossRef]
- Yang, C.; Xu, L.; Liao, F.; Liao, C.; Zhao, Y.; Chen, Y.; Yu, Q.; Peng, B.; Liu, H. Pulsed electromagnetic fields regulate metabolic reprogramming and mitochondrial fission in endothelial cells for angiogenesis. Sci. Rep. 2024, 14, 19027. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Huang, J.; Zeng, A.; Long, X.; Yu, N.; Wang, X. The role of the skin microbiome in wound healing. Burn. Trauma 2024, 12, tkad059. [Google Scholar] [CrossRef]
- Juncker, R.B.; Lazazzera, B.A.; Billi, F. Pulsed electromagnetic fields disrupt Staphylococcus epidermidis biofilms and enhance the antibiofilm efficacy of antibiotics. Microbiol. Spectr. 2022, 10, e0194922. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoo, S.-H.; Han, E.; Hong, J.-E.; Hong, J.; Jang, H.-N.; Kim, S.-M.; Eom, M.; Lee, Y.; Rhee, K.-J. Effect of Pulsed Electromagnetic Field (PEMF) on Pressure Ulcer in BALB/c and C57BL/6 Mice. Appl. Sci. 2025, 15, 9071. https://doi.org/10.3390/app15169071
Yoo S-H, Han E, Hong J-E, Hong J, Jang H-N, Kim S-M, Eom M, Lee Y, Rhee K-J. Effect of Pulsed Electromagnetic Field (PEMF) on Pressure Ulcer in BALB/c and C57BL/6 Mice. Applied Sciences. 2025; 15(16):9071. https://doi.org/10.3390/app15169071
Chicago/Turabian StyleYoo, Sang-Hyeon, Eunju Han, Ju-Eun Hong, Jiyun Hong, Ha-Neul Jang, So-Min Kim, Minseob Eom, Yongheum Lee, and Ki-Jong Rhee. 2025. "Effect of Pulsed Electromagnetic Field (PEMF) on Pressure Ulcer in BALB/c and C57BL/6 Mice" Applied Sciences 15, no. 16: 9071. https://doi.org/10.3390/app15169071
APA StyleYoo, S.-H., Han, E., Hong, J.-E., Hong, J., Jang, H.-N., Kim, S.-M., Eom, M., Lee, Y., & Rhee, K.-J. (2025). Effect of Pulsed Electromagnetic Field (PEMF) on Pressure Ulcer in BALB/c and C57BL/6 Mice. Applied Sciences, 15(16), 9071. https://doi.org/10.3390/app15169071