Preparation and Performance of Alkali-Activated Coal Gasification Slag-Based Backfill Materials
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Testing Procedures
2.3. Test Methods
2.3.1. Setting Time Test
2.3.2. Rheological Properties Tests
2.3.3. Mechanical Properties Tests
2.3.4. XRD Tests
2.3.5. BET Tests
2.3.6. SEM Tests
3. Experimental Results and Discussion
3.1. Effect of Alkali Equivalent on the ACBM Performance
3.1.1. Setting Time
3.1.2. Rheological Properties
3.2. Effect of Alkali Equivalent on Mechanical Properties of ACBM Samples
3.3. Microstructure of ACBM Samples
3.3.1. XRD Results
3.3.2. BET Results
3.3.3. Morphology and Microstructure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, C.; Shenoy, S.; Pan, Y.; Sasaki, K.; Tian, Q.; Zhang, H. Mechanical activation of coal gasification slag for one-part geopolymer synthesis by alkali fusion and component additive method. Constr. Build. Mater. 2024, 411, 134585. [Google Scholar] [CrossRef]
- Zhao, Y.; Gu, X.; Xu, X. Physical-chemical performance of coal gasification slag with calcination activation utilized as supplementary cementitious material. Constr. Build. Mater. 2024, 451, 138776. [Google Scholar] [CrossRef]
- Lv, B.; Deng, X.; Jiao, F.; Dong, B.; Fang, C.; Xing, B. Enrichment and utilization of residual carbon from coal gasification slag: A review. Process Saf. Environ. Prot. 2023, 171, 859–873. [Google Scholar] [CrossRef]
- Sun, X.; Lu, Q.; Tan, J.; Liang, L.; Gao, H.; Xie, G. The impact of metal ions on flotation of coal gasification fine slag: An experimental study. Int. J. Coal Prep. Util. 2025, 45, 213–230. [Google Scholar] [CrossRef]
- Liu, X.; Jin, Z.; Jing, Y.; Fan, P.; Qi, Z.; Bao, W.; Wang, J.; Yan, X.; Lv, P.; Dong, L. Review of the characteristics and graded utilisation of coal gasification slag. Chin. J. Chem. Eng. 2021, 35, 92–106. [Google Scholar] [CrossRef]
- Liu, B.; Lv, P.; Ma, H.; Bai, Y.; Wang, J.; Su, W.; Song, X.; Yu, G. Study on physicochemical properties, distribution modes, and formation mechanism of coal gasification fine slag in an industrial entrained-flow gasifier. Chem. Eng. Sci. 2024, 299, 120509. [Google Scholar] [CrossRef]
- Yan, S.; Xuan, W.; Cao, C.; Zhang, J. A review of sustainable utilization and prospect of coal gasification slag. Environ. Res. 2023, 238, 117186. [Google Scholar] [CrossRef]
- Zhang, S.; Lv, L.; Liu, L.; Dai, F.; Sui, J. An efficient low-carbon hydrogen production system based on novel staged gasification coupling with chemical looping technology. Energy Conv. Manag. 2025, 328, 119625. [Google Scholar] [CrossRef]
- Deng, X.; Chen, L.; Zhao, Z.; Wu, J.; Zhong, G.; Fang, C. Effect of ultrasonic-hydraulic coupling cavitation pretreatment on carbon extraction from coal gasification coarse slag by flotation. Fuel 2024, 378, 132898. [Google Scholar] [CrossRef]
- Cao, X.; Peng, B.; Kong, L.; Bai, J.; Ge, Z.; Li, H.; Liu, Z.; Feng, Z.; Bi, D.; Bai, Z.; et al. Flow properties of ash and slag under co-gasification of coal and extract residue of direct coal liquefaction residue. Fuel 2020, 264, 116850. [Google Scholar] [CrossRef]
- Hu, Z.; Qu, A.; Zhong, Z.; Zhang, X.; Peng, H.; Li, J. Study on pulverized coal gasification using waste heat from high temperature blast furnace slag particles. Int. J. Hydrogen Energy 2021, 46, 26848–26860. [Google Scholar] [CrossRef]
- Zhang, R.; Li, X.; Wang, P.; Xue, P.; Li, X.; Zhang, H. Research on the application of coal gasification slag in soil improvement. Processes 2022, 10, 2690. [Google Scholar] [CrossRef]
- Li, J.; Fan, S.; Zhang, X.; Chen, Z.; Qiao, Y.; Yuan, Z.; Zeng, L.; Li, Z. Physicochemical structure, combustion characteristics and SiO2 properties of entrained flow gasification ash. Energy 2022, 251, 123930. [Google Scholar] [CrossRef]
- Yang, H.; Wang, H. Coal Gasification Slag as a Green Additive in Supplementary Cementitious Materials: Mechanical Properties and Microstructure. Materials 2024, 18, 86. [Google Scholar] [CrossRef] [PubMed]
- You, X.; Sun, Z.; Guo, F.; Yang, C.; Wu, S. Synthesis of zeolite/porous carbon composites from coal gasification fine slag for the pine pyrolysis oil deoxygenation and upgrading. Fuel 2026, 403, 136140. [Google Scholar] [CrossRef]
- Guo, S.; Fang, N.; Liang, C.; Li, W.; Ren, Q. Regasification feasibility of carbon-rich coal gasification fine slag: A pilot scale study. Fuel 2025, 388, 134500. [Google Scholar] [CrossRef]
- Zeng, W.; Zhang, T.; Wen, P.; Cheng, C.; Li, Y.; Wang, C. Workability, mechanical properties and durability of poured solidified waste mucky soil with high moisture content as subgrade backfill material. Int. J. Pavement Eng. 2025, 26, 2508345. [Google Scholar] [CrossRef]
- Sun, K.; Zhang, J.; He, M.; Li, M.; Wang, C.; Feng, W.; Li, F. Mechanical properties and damage evolution characteristics based on the acoustic emission of gangue and high-water-content materials based cemented paste backfill. Constr. Build. Mater. 2023, 395, 132324. [Google Scholar] [CrossRef]
- Ying, Y.; Hu, M.; Han, J.; Liu, W.; Qi, B.; Guo, J. Self-healing in cementitious system using interface enhanced capsules prepared at room temperature. J. Clean Prod. 2023, 395, 136465. [Google Scholar] [CrossRef]
- Feng, W.; Yu, Z.; Bao, R.; Xiong, J.; Yan, K.; Liu, R.; Zhang, R.; Lu, X. Manufacture of tailings-based cementitious materials: Insights into tailings activation strategies. Constr. Build. Mater. 2024, 439, 137194. [Google Scholar] [CrossRef]
- Yu, X.; Yang, K.; He, X.; Hou, X.; Fang, J.; He, S. Research progress on multi-source coal-based solid waste (MCSW) resource utilization and backfill mining basic theory: A systematic literature review. Process Saf. Environ. Prot. 2025, 195, 106670. [Google Scholar] [CrossRef]
- Xie, G.; Liu, L.; Suo, Y.; Yang, P.; Zhang, C.; Qu, H.; Lv, Y. Hydration mechanism of calcium chloride modified coal gasification slag-based backfill materials. Process Saf. Environ. Prot. 2024, 182, 127–138. [Google Scholar] [CrossRef]
- Xiang, J.; Qiu, J.; Zhao, Y.; Zheng, P.; Peng, H.; Fei, X. Rheology, mechanical properties, and hydration of synergistically activated coal gasification slag with three typical solid wastes. Cem. Concr. Compos. 2024, 147, 105418. [Google Scholar] [CrossRef]
- Guo, L.; Liu, J.; Chen, D.; An, S. Mechanical properties and microstructure evolution of alkali-activated GGBS-fly ash-steel slag ternary cements. Constr. Build. Mater. 2024, 444, 137727. [Google Scholar] [CrossRef]
- Shi, C.; Shi, Z.; Hu, X.; Zhao, R.; Chong, L. A review on alkali-aggregate reactions in alkali-activated mortars/concretes made with alkali-reactive aggregates. Mater. Struct. 2015, 48, 621–628. [Google Scholar] [CrossRef]
- Qin, L.; Yang, J.; Sun, J.; Bao, J.; Niu, D.; Gao, X. Preparation and properties investigation of alkali-activated coal gangue-slag cementitious materials. Acta. Materiae. Compositae. Sin. 2025, 1–17. [Google Scholar] [CrossRef]
- Fang, G.; Ho, W.; Tu, W.; Zhang, M. Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature. Constr. Build. Mater. 2018, 172, 476–487. [Google Scholar] [CrossRef]
- Ji, X.; Gu, X.; Wang, Z.; Xu, S.; Jiang, H.; Yilmaz, E. Admixture effects on the rheological/mechanical behavior and micro-structure evolution of alkali-activated slag backfills. Minerals 2022, 13, 30. [Google Scholar] [CrossRef]
- Guo, Q.; Huo, B.; Yu, K.; Xiong, Y.; Li, B. Using acetic acid as a preconditioner to optimize rheology of alkali-activated coal gasification slag based backfill pastes. Miner. Eng. 2024, 218, 109040. [Google Scholar] [CrossRef]
- Huang, M.; Zheng, Q.; Liu, Q.; Gao, Z. Improvement of Fluidity and Long-term Strength of Cemented Paste Backfill with Low Calcium Fly-ash. J. Geol. Soc. India. 2024, 100, 1338–1346. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, L.; Qiu, J.; Hou, C.; Guo, Z. Fluidity and strength behaviors of cemented foam backfill: Effect of particle size distribution and foaming agent dosage. Bull. Eng. Geol. Environ. 2021, 80, 3177–3191. [Google Scholar] [CrossRef]
- Zheng, Y.; Sun, C.; Qiu, C.; Wu, S.; Rao, F.; Yang, L. Addition of ceramic waste for the preparation of VA-based alkali-activated material with high temperature resistance. J. Build. Eng. 2024, 82, 108385. [Google Scholar] [CrossRef]
- Palacios, M.; Alonso, M.; Varga, C.; Puertas, F. Influence of the alkaline solution and temperature on the rheology and reactivity of alkali-activated fly ash pastes. Cem. Concr. Comp. 2019, 95, 277–284. [Google Scholar] [CrossRef]
- Zhang, L.; Ji, Y.; Huang, G.; Gao, F.; Dong, Z. Effect of borax on early hydration and rheological properties of reactivated cementitious material. Adv. Cem. Res. 2019, 31, 235–242. [Google Scholar] [CrossRef]
- Keser, H.; Ramyar, K.; Gultekin, A. Effect of water-reducing admixtures water content on rheology, workability, and mechanical properties of fly ash-based geopolymer and slag-based alkali-activated mixtures. Struct. Concr. 2023, 24, 7561–7575. [Google Scholar] [CrossRef]
- Zhang, D.; Zhao, K.; Wang, D.; Li, H. Relationship of amorphous gel-microstructure-elastoviscosity properties of alkali-activated materials fresh pastes with different Ms waterglass. Constr. Build. Mater. 2021, 287, 123023. [Google Scholar] [CrossRef]
- Xu, L.; Matalkah, F.; Soroushian, P. Effects of citric acid on the rheology, hydration and strength development of alkali aluminosilicate cement. Adv. Cem. Res. 2018, 30, 75–82. [Google Scholar] [CrossRef]
- Xie, F.; Liu, Z.; Zhang, D.; Wang, J.; Wang, D.; Ni, J. The effect of NaOH content on rheological properties, microstructures and interfacial characteristic of alkali activated phosphorus slag fresh pastes. Constr. Build. Mater. 2020, 252, 119132. [Google Scholar] [CrossRef]
- Liu, L.; Lyu, Y.; Zhou, J.; Zhao, Y.; Sun, W. Effect and mechanism of the salt-alkali composite for the improvement of the early mechanical properties of high-content fly ash-based filling materials. Constr. Build. Mater. 2025, 464, 140138. [Google Scholar] [CrossRef]
- Shi, P.; Zhang, J.; Yan, H.; Zhou, N.; Mao, W. Ensemble learning evaluation of mechanical property for mining waste cemented backfill. Constr. Build. Mater. 2024, 441, 137568. [Google Scholar] [CrossRef]
- Zhao, Z.; Ma, L.; Ngo, I.; Yu, K.; Xu, Y.; Zhai, J.; Gao, Q.; Peng, C.; Wang, D.; Alarifi, S.; et al. Experimental Investigation on Hydrophobic Alteration of Mining Solid Waste Backfill Material. Minerals 2024, 14, 580. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, D.; Li, L.; Wang, J.; Shao, N.; Wang, D. Microstructure and phase evolution of alkali-activated steel slag during early age. Constr. Build. Mater. 2019, 204, 158–165. [Google Scholar] [CrossRef]
- Ma, H.; Zhu, H.; Yi, C.; Fan, J.; Chen, H.; Xu, X.; Wang, T. Preparation and reaction mechanism characterization of alkali-activated coal gangue–slag materials. Materials 2019, 12, 2250. [Google Scholar] [CrossRef] [PubMed]
Composition | SiO2 | Al2O3 | Fe2O3 | CaO | K2O | MgO | Na2O | TiO2 | SO3 |
---|---|---|---|---|---|---|---|---|---|
CGS | 58.45 | 24.36 | 4.70 | 2.35 | 3.12 | 0.96 | 1.73 | 1.95 | 0.87 |
CG | 52.61 | 19.85 | 8.74 | 1.49 | 5.51 | 2.43 | 1.02 | 1.46 | 1.93 |
Sample | CGS/g | CG/g | Water–Binder Ratio | Alkali Activator Modulus | Alkali Equivalent/% |
---|---|---|---|---|---|
ACBM0 | 70 | 30 | 0.5 | 1.2 | 0 |
ACBM1 | 1 | ||||
ACBM2 | 2 | ||||
ACBM4 | 4 | ||||
ACBM6 | 6 |
Sample | Rheological Model | Fitting Results | τ0/Pa | η/Pa·s | n | R2 |
---|---|---|---|---|---|---|
ACBM0 | H-B | τ = 56.14 + 2.53γ0.80 | 56.14 | 2.53 | 0.80 | 0.9995 |
ACBM1 | τ = 16.87 + 0.91γ0.66 | 16.87 | 0.91 | 0.66 | 0.9996 | |
ACBM2 | τ = 9.34 + 0.76γ0.55 | 9.34 | 0.76 | 0.55 | 0.9989 | |
ACBM4 | τ = 9.22 + 0.74γ0.72 | 9.22 | 0.74 | 0.72 | 0.9969 | |
ACBM6 | τ = 36.75 + 1.81γ0.85 | 36.75 | 1.81 | 0.85 | 0.9998 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Q.; Tan, L.; Li, M.; Yin, Z.; Sun, Z.; Xia, Y. Preparation and Performance of Alkali-Activated Coal Gasification Slag-Based Backfill Materials. Appl. Sci. 2025, 15, 8995. https://doi.org/10.3390/app15168995
Guo Q, Tan L, Li M, Yin Z, Sun Z, Xia Y. Preparation and Performance of Alkali-Activated Coal Gasification Slag-Based Backfill Materials. Applied Sciences. 2025; 15(16):8995. https://doi.org/10.3390/app15168995
Chicago/Turabian StyleGuo, Qiang, Longyan Tan, Meng Li, Zhangjie Yin, Zhihui Sun, and Yuyang Xia. 2025. "Preparation and Performance of Alkali-Activated Coal Gasification Slag-Based Backfill Materials" Applied Sciences 15, no. 16: 8995. https://doi.org/10.3390/app15168995
APA StyleGuo, Q., Tan, L., Li, M., Yin, Z., Sun, Z., & Xia, Y. (2025). Preparation and Performance of Alkali-Activated Coal Gasification Slag-Based Backfill Materials. Applied Sciences, 15(16), 8995. https://doi.org/10.3390/app15168995