Microbiological Air Quality in Healthcare Environments: A Review of Selected Facilities
Abstract
Featured Application
Abstract
1. Introduction
2. Bioaerosols
3. Control and Reduction Strategies
3.1. Air Filtration
3.2. Air Disinfection
4. Formation of Microbial Contamination Levels
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IAQ | Indoor air quality |
HAI | Healthcare-associated infections |
WHO | World Health Organization |
EDCD | The European Center for Disease Prevention and Control |
ASHARE | American Society of Heating, Refrigerating, and Air-Conditioning Engineers |
HVAC | Heating, ventilation, and air conditioning |
HEPA | High-efficiency particulate air |
ULPA | Ultra-low penetration air |
UV | Ultraviolet radiation |
CFU | Colony forming unit |
N/A | Not applicable |
MDR | Multidrug-resistant bacteria |
EU/EEA | European Union and European Economic Area |
References
- Rogerson, A.; Detwiler, A. Abundance of Airborne Heterotrophic Protists in Ground Level Air of South Dakota. Atmos. Res. 1999, 51, 35–44. [Google Scholar] [CrossRef]
- Brągoszewska, E.; Biedroń, I.; Kozielska, B.; Pastuszka, J.S. Microbiological Indoor Air Quality in an Office Building in Gliwice, Poland: Analysis of the Case Study. Air Qual. Atmos. Health 2018, 11, 729–740. [Google Scholar] [CrossRef]
- Matthias-Maser, S.; Jaenicke, R. The Size Distribution of Primary Biological Aerosol Particles in the Multiphase Atmosphere. Aerobiologia 2000, 16, 207–210. [Google Scholar] [CrossRef]
- ECDC. Healthcare-Associated Infections. Available online: https://www.ecdc.europa.eu/en/healthcare-associated-infections (accessed on 10 May 2025).
- WHO. Key Facts and Figures. High-Level Messaging on the HAI and AMR Burden. Available online: https://www.who.int/campaigns/world-hand-hygiene-day/key-facts-and-figures (accessed on 10 May 2025).
- Maugeri, A.; Casini, B.; Esposito, E.; Bracaloni, S.; Scarpaci, M.; Patanè, F.; Milazzo, G.; Agodi, A.; Barchitta, M. Impact of Ultraviolet Light Disinfection on Reducing Hospital-Associated Infections: A Systematic Review in Healthcare Environments. J. Hosp. Infect. 2025, 159, 32–41. [Google Scholar] [CrossRef]
- Szabó, S.; Feier, B.; Capatina, D.; Tertis, M.; Cristea, C.; Popa, A. An Overview of Healthcare Associated Infections and Their Detection Methods Caused by Pathogen Bacteria in Romania and Europe. J. Clin. Med. 2022, 11, 3204. [Google Scholar] [CrossRef]
- Memarzadeh, F.; Xu, W. Role of Air Changes per Hour (ACH) in Possible Transmission of Airborne Infections. Build. Simul. 2012, 5, 15–28. [Google Scholar] [CrossRef]
- Kumar, P.; Kausar, M.A.; Singh, A.B.; Singh, R. Biological Contaminants in the Indoor Air Environment and Their Impacts on Human Health. Air Qual. Atmos. Health 2021, 14, 1723–1736. [Google Scholar] [CrossRef]
- Owen, M.K.; Ensor, D.S.; Sparks, L.E. Airborne Particle Sizes and Sources Found in Indoor Air. Atmos. Environ. Part A General. Top. 1992, 26, 2149–2162. [Google Scholar] [CrossRef]
- Gołofit-Szymczak, M.; Górny, R. Bioaerozole w Budynkach Biurowych. Kosmos 2017, 66, 491–502. [Google Scholar]
- Brągoszewska, E.; Mainka, A. Assessment of Personal Deposited Dose and Particle Size Distribution of Bacterial Aerosol in Kindergarten Located in Southern Poland. Environ. Pollut. 2024, 343, 123208. [Google Scholar] [CrossRef] [PubMed]
- Tomar, S.; Sharma, H. Role of Bioaerosols in Indoor Air Quality and Respiratory Diseases. IJRTI 2025, 10, 320. [Google Scholar]
- Verdier, T.; Coutand, M.; Bertron, A.; Roques, C. A Review of Indoor Microbial Growth across Building Materials and Sampling and Analysis Methods. Build. Environ. 2014, 80, 136–149. [Google Scholar] [CrossRef]
- Feng, X.; Xu, X.; Yao, X.; Zhao, Y.; Tang, Y.; Zhao, Z.; Wei, Y.; Mehmood, T.; Luo, X.S. Sources, Compositions, Spatio-Temporal Distributions, and Human Health Risks of Bioaerosols: A Review. Atmos. Res. 2024, 305, 107453. [Google Scholar] [CrossRef]
- Pertegal, V.; Lacasa, E.; Cañizares, P.; Rodrigo, M.A.; Sáez, C. Understanding the Influence of the Bioaerosol Source on the Distribution of Airborne Bacteria in Hospital Indoor Air. Environ. Res. 2023, 216, 114458. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liang, L.; Lyu, B.; Cai, Y.S.; Zuo, Y.; Su, J.; Tong, Z. Double Trouble: The Interaction of PM2.5 and O3 on Respiratory Hospital Admissions. Environ. Pollut. 2023, 338, 122665. [Google Scholar] [CrossRef]
- Kirwa, K.; Eckert, C.M.; Vedal, S.; Hajat, A.; Kaufman, J.D. Ambient Air Pollution and Risk of Respiratory Infection among Adults: Evidence from the Multiethnic Study of Atherosclerosis (MESA). BMJ Open Respir. Res. 2021, 8, e000866. [Google Scholar] [CrossRef]
- Chawla, H.; Anand, P.; Garg, K.; Bhagat, N.; Varmani, S.G.; Bansal, T.; McBain, A.J.; Marwah, R.G. A Comprehensive Review of Microbial Contamination in the Indoor Environment: Sources, Sampling, Health Risks, and Mitigation Strategies. Front. Public Health 2023, 11, 1285393. [Google Scholar] [CrossRef] [PubMed]
- Heo, K.J.; Lim, C.E.; Kim, H.B.; Lee, B.U. Effects of Human Activities on Concentrations of Culturable Bioaerosols in Indoor Air Environments. J. Aerosol Sci. 2017, 104, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Kauch, K.; Halladin, M.; Patoń, N.; Rytczak, J.; Szczęsny, M.; Palmowska, A.; Brągoszewska, E. Ocena Efektywności Działania Urządzeń Oczyszczających Powietrze Wewnętrzne w Zakresie Usuwania Szkodliwych Czynników Biologicznych (SCB). In Nowoczesne Rozwiązania w Ochronie Środowiska. Zagadnienia Wybrane; Wydawnictwo Naukowe TYGIEL: Lublin, Poland, 2023; pp. 230–238. [Google Scholar]
- Pastuszka, J.S. Narażenie Na Aerozole Ziarniste, Włókniste i Biologiczne (Bakterie i Grzyby Mikroskopijne) Populacji Generalnej Górnośląskiego Okręgu Przemysłowego. Pr. Nauk. Inst. Inżynierii Ochr. Sr. Politech. Wrocławskiej Monogr. 2001, 73, 7–131. [Google Scholar]
- Song, L.; Zhou, J.; Wang, C.; Meng, G.; Li, Y.; Jarin, M.; Wu, Z.; Xie, X. Airborne Pathogenic Microorganisms and Air Cleaning Technology Development: A Review. J. Hazard. Mater. 2022, 424, 127429. [Google Scholar] [CrossRef]
- Układ Oddechowy—Opis Układu i Jego Chorób. Available online: https://vitamarket.pl/g6-Uklad-oddechowy.html (accessed on 19 February 2025).
- El-Sharkawy, M.; Noweir, M. Indoor Air Quality Levels in a University Hospital in the Eastern Province of Saudi Arabia. J. Fam. Community Med. 2014, 21, 39. [Google Scholar] [CrossRef]
- Ekhaise, F.O.; Blessing, O. Microbiological Indoor and Outdoor Air Quality of Two Major Hospitals in Benin City, Nigeria. Sierra Leone J. Biomed. Res. 2011, 3, 169–174. [Google Scholar]
- Sivagnanasundaram, P.; Amarasekara, R.W.K.; Madegedara, R.M.D.; Ekanayake, A.; Magana-Arachchi, D.N. Assessment of Airborne Bacterial and Fungal Communities in Selected Areas of Teaching Hospital, Kandy, Sri Lanka. Biomed. Res. Int. 2019, 2019, 7393926. [Google Scholar] [CrossRef]
- Augustowska, M.; Dutkiewicz, J. Variability of Airborne Microflora in a Hospital Ward within a Period of One Year. Ann. Agric. Environ. Med. 2006, 13, 99–106. [Google Scholar]
- Cabo Verde, S.; Almeida, S.M.; Matos, J.; Guerreiro, D.; Meneses, M.; Faria, T.; Botelho, D.; Santos, M.; Viegas, C. Microbiological Assessment of Indoor Air Quality at Different Hospital Sites. Res. Microbiol. 2015, 166, 557–563. [Google Scholar] [CrossRef]
- Park, D.U.; Yeom, J.K.; Lee, W.J.; Lee, K.M. Assessment of the Levels of Airborne Bacteria, Gram-Negative Bacteria, and Fungi in Hospital Lobbies. Int. J. Environ. Res. Public Health 2013, 10, 541–555. [Google Scholar] [CrossRef] [PubMed]
- Janczarek, M.; Ślosarczyk, A.; Klapiszewska, I.; Riha, J.; Jesionowski, T.; Klapiszewski, Ł. Airborne Bioaerosols in Healthcare Facilities—Transmission Routes and Mitigation Strategies: A Review. J. Build. Eng. 2024, 97, 111015. [Google Scholar] [CrossRef]
- Voidazan, S.; Albu, S.; Toth, R.; Grigorescu, B.; Rachita, A.; Moldovan, I. Healthcare Associated Infections—A New Pathology in Medical Practice? Int. J. Environ. Res. Public. Health 2020, 17, 760. [Google Scholar] [CrossRef] [PubMed]
- Facciolà, A.; Pellicanò, G.F.; Visalli, G.; Paolucci, I.A.; Rullo, E.V.; Ceccarelli, M.; D’Aleo, F.; Di Pietro, A.; Squeri, R.; Nunnari, G.; et al. The Role of the Hospital Environment in the Healthcare-Associated Infections: A General Review of the Literature. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 1266–1278. [Google Scholar] [CrossRef] [PubMed]
- ECDC. Most Frequently Isolated Microorganisms. Available online: https://www.ecdc.europa.eu/en/all-topics-z/healthcare-associated-infections-long-term-care-facilities/surveillance-and-disease-5 (accessed on 9 May 2025).
- Bereket, W.; Hemalatha, K.; Getenet, B.; Wondwossen, T.; Solomon, A.; Zeynudin, A.; Kannan, S. Update on Bacterial Nosocomial Infections—PubMed. Eur. Rev. Med. Pharmacol. Sci. 2012, 16, 1039–1044. [Google Scholar]
- Haque, M.; Sartelli, M.; McKimm, J.; Bakar, M.A. Health Care-Associated Infections—An Overview. Infect. Drug Resist. 2018, 11, 2321–2333. [Google Scholar] [CrossRef]
- Garg, S. Staphylococcus Cohnii: Not so Innocuous. J. Acute Dis. 2017, 6, 239. [Google Scholar] [CrossRef]
- Khan, H.A.; Ahmad, A.; Mehboob, R. Nosocomial Infections and Their Control Strategies. Asian Pac. J. Trop. Biomed. 2015, 5, 509–514. [Google Scholar] [CrossRef]
- Motta, J.C.; Forero-Carreño, C.; Arango, Á.; Sánchez, M. Staphylococcus Cohnii Endocarditis in Native Valve. New Microbes New Infect. 2020, 38, 100825. [Google Scholar] [CrossRef]
- Szymanski, M.; Skiba, M.M.; Piasecka, M.; Olender, A. A Rare Case of Invasive Enterococcus Cecorum Infection and Related Diagnostic Difficulties. Clin. Case Rep. 2024, 12, e9386. [Google Scholar] [CrossRef]
- Tsantes, A.G.; Papadopoulos, D.V.; Markou, E.; Zarokostas, K.; Sokou, R.; Trikoupis, I.; Mavrogenis, A.F.; Houhoula, D.; Piovani, D.; Bonovas, S.; et al. Aspergillus Spp. Osteoarticular Infections: An Updated Systematic Review on the Diagnosis, Treatment and Outcomes of 186 Confirmed Cases. Med. Mycol. 2022, 60, myac052. [Google Scholar] [CrossRef] [PubMed]
- ECDC. Healthcare-Associated Infections in European Hospitals (PPS Survey) 2022–2023. Available online: https://www.ecdc.europa.eu/en/publications-data/healthcare-associated-infections-european-hospitals-pps-survey-2022-2023 (accessed on 11 May 2025).
- Wu, M.J.; Feng, Y.S.; Sung, W.P.; Surampalli, R.Y. Quantification and Analysis of Airborne Bacterial Characteristics in a Nursing Care Institution. J. Air Waste Manag. Assoc. 2011, 61, 732–739. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Chen, R.; Wang, C.; Wang, W.; Jiang, J.; Wu, W.; Cai, J.; Zhao, Z.; Xu, X.; Kan, H. Ozone Exposure Leads to Changes in Airway Permeability, Microbiota and Metabolome: A Randomised, Double-Blind, Crossover Trial. Eur. Respir. J. 2020, 56, 2000165. [Google Scholar] [CrossRef] [PubMed]
- Narodowy Instytut Zdrowia Publicznego PZH. Zalecenia Dot. Działań Mających Na Celu Ograniczenie Ryzyka Związanego z Przenoszeniem Się Wirusa SARS-CoV-2 Za Pośrednictwem Systemów Wentylacyjno-Klimatyzacyjnych Wewnątrz Budynków Użyteczności Publicznej Oraz Wielkopowierzchniowych Obiektów Handlowych. Available online: https://www.gov.pl/web/psse-aleksandrow-kujawski/zalecenia-dot-dzialan-majacych-na-celu-ograniczenie-ryzyka-zwiazanego-z-przenoszeniem-sie-wirusa-sars-cov-2-za-posrednictwem-systemow-wentylacyjno-klimatyzacyjnych-wewnatrz-budynkow-uzytecznosci-publicznej-oraz-wielkopowierzchniowych-obiektow-handlowych (accessed on 10 May 2025).
- Wei, J.; Li, Y. Airborne Spread of Infectious Agents in the Indoor Environment. Am. J. Infect. Control 2016, 44, S102. [Google Scholar] [CrossRef]
- Pan, J.; Deng, Y.; Yang, Y.; Zhang, Y. Location-Allocation Modelling for Rational Health Planning: Applying a Two-Step Optimization Approach to Evaluate the Spatial Accessibility Improvement of Newly Added Tertiary Hospitals in a Metropolitan City of China. Soc. Sci. Med. 2023, 338, 116296. [Google Scholar] [CrossRef]
- Wang, X.; Yang, H.; Duan, Z.; Pan, J. Spatial Accessibility of Primary Health Care in China: A Case Study in Sichuan Province. Soc. Sci. Med. 2018, 209, 14–24. [Google Scholar] [CrossRef]
- ASHARE. Health Care Facilities. In ASHRAE Handbook—HVAC Applications; American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.: Atlanta, GA, USA, 2019. [Google Scholar]
- Bonadonna, L.; Briancesco, R.; Coccia, A.M.; Meloni, P.; La Rosa, G.; Moscato, U. Microbial Air Quality in Healthcare Facilities. Int. J. Environ. Res. Public. Health 2021, 18, 6226. [Google Scholar] [CrossRef] [PubMed]
- Bolashikov, Z.D.; Melikov, A.K. Methods for Air Cleaning and Protection of Building Occupants from Airborne Pathogens. Build. Environ. 2008, 44, 1378. [Google Scholar] [CrossRef] [PubMed]
- EPA. What Is a HEPA Filter? Available online: https://www.epa.gov/indoor-air-quality-iaq/what-hepa-filter (accessed on 10 May 2025).
- Atkinson, J.; Chartier, Y.; Lúcia Pessoa-Silva, C.; Jensen, P.; Li, Y.; Seto, H. Natural Ventilation for Infection Control in Health-Care Settings; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Ko, G.; First, M.W.; Burge, H.A. The Characterization of Upper-Room Ultraviolet Germicidal Irradiation in Inactivating Airborne Microorganisms. Environ. Health Perspect. 2002, 110, 95. [Google Scholar] [CrossRef]
- Wang, C.; Lu, S.; Zhang, Z. Inactivation of Airborne Bacteria Using Different UV Sources: Performance Modeling, Energy Utilization, and Endotoxin Degradation. Sci. Total Environ. 2019, 655, 787–795. [Google Scholar] [CrossRef]
- Pigeot-Remy, S.; Lazzaroni, J.C.; Simonet, F.; Petinga, P.; Vallet, C.; Petit, P.; Vialle, P.J.; Guillard, C. Survival of Bioaerosols in HVAC System Photocatalytic Filters. Appl. Catal. B 2014, 144, 654–664. [Google Scholar] [CrossRef]
- Mamaghani, A.H.; Haghighat, F.; Lee, C.S. Photocatalytic Oxidation Technology for Indoor Environment Air Purification: The State-of-the-Art. Appl. Catal. B 2017, 203, 247–269. [Google Scholar] [CrossRef]
- Li, J.; Gao, H.; Lan, C.; Nie, L.; Liu, D.; Lu, X.; (Ken) Ostrikov, K. Plasma Air Filtration System for Intercepting and Inactivation of Pathogenic Microbial Aerosols. J. Environ. Chem. Eng. 2023, 11, 110728. [Google Scholar] [CrossRef]
- Olmedo, I.; Nielsen, P.V.; Ruiz de Adana, M.; Jensen, R.L.; Grzelecki, P. Distribution of Exhaled Contaminants and Personal Exposure in a Room Using Three Different Air Distribution Strategies. Indoor Air 2012, 22, 64–76. [Google Scholar] [CrossRef]
- Goyal, R.; Khare, M. Indoor Air Quality: Current Status, Missing Links and Future Road Map for India. J. Civ. Environ. Eng. 2012, 2, 1000118. [Google Scholar] [CrossRef]
- Cappitelli, F.; Fermo, P.; Vecchi, R.; Piazzalunga, A.; Valli, G.; Zanardini, E.; Sorlini, C. Chemical-Physical and Microbiological Measurements for Indoor Air Quality Assessment at the ca’ Granda Historical Archive, Milan (Italy). Water Air Soil. Pollut. 2009, 201, 109–120. [Google Scholar] [CrossRef]
- WHO. WHO Guidelines for Indoor Air Quality: Dampness and Mould; Heseltine, E., Rosen, J., Eds.; WHO: Geneva, Switzerland, 2009; ISBN 978 92 890 4168 3. [Google Scholar]
- Bielawska-Drózd, A.; Cieślik, P.; Bohacz, J.; Korniłłowicz-Kowalska, T.; Żakowska, D.; Bartoszcze, M.; Wlizło-Skowronek, B.; Winnicka, I.; Brytan, M.; Kubiak, L.; et al. Microbiological Analysis of Bioaerosols Collected from Hospital Emergency Departments and Ambulances. Ann. Agric. Environ. Med. 2018, 25, 274–279. [Google Scholar] [CrossRef]
- Hosseini, S.; Kafil, H.S.; Mousavi, S.; Gholampour, A. Seasonal and Spatial Variations of Bioaerosols and Antibiotic Resistance Bacteria in Different Wards of the Hospital. J. Air Pollut. Health 2022, 7, 409–422. [Google Scholar] [CrossRef]
- Baudet, A.; Baurès, E.; Guegan, H.; Blanchard, O.; Guillaso, M.; Le Cann, P.; Gangneux, J.P.; Florentin, A. Indoor Air Quality in Healthcare and Care Facilities: Chemical Pollutants and Microbiological Contaminants. Atmosphere 2021, 12, 1337. [Google Scholar] [CrossRef]
- Božić, J.; Ilić, P.; ilić, S. Indoor Air Quality in the Hospital: The Influence of Heating, Ventilating and Conditioning Systems. Braz. Arch. Biol. Technol. 2019, 62, e19180295. [Google Scholar] [CrossRef]
- Tselebonis, A.; Nena, E.; Panopoulou, M.; Kontogiorgis, C.; Bezirtzoglou, E.; Constantinidis, T. Air Contamination in Different Departments of a Tertiary Hospital: Assessment of Microbial Load and of Antimicrobial Susceptibility. Biomedicines 2020, 8, 163. [Google Scholar] [CrossRef] [PubMed]
- Onmek, N.; Kongcharoen, J.; Singtong, A.; Penjumrus, A.; Junnoo, S. Environmental Factors and Ventilation Affect Concentrations of Microorganisms in Hospital Wards of Southern Thailand. J. Environ. Public. Health 2020, 2020, 7292198. [Google Scholar] [CrossRef]
- Scaltriti, S.; Cencetti, S.; Rovesti, S.; Marchesi, I.; Bargellini, A.; Borella, P. Risk Factors for Particulate and Microbial Contamination of Air in Operating Theatres. J. Hosp. Infect. 2007, 66, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Sudharsanam, S.; Swaminathan, S.; Ramalingam, A.; Thangavel, G.; Annamalai, R.; Steinberg, R.; Balakrishnan, K.; Srikanth, P. Characterization of Indoor Bioaerosols from a Hospital Ward in a Tropical Setting. Afr. Health Sci. 2012, 12, 217. [Google Scholar] [CrossRef]
- de Oliveira, M.T.; Cunha, L.M.S.; Cruz, F.C.; Batista, N.K.R.; Gil, E. de S.; Alves, V.F.; Bara, M.T.F.; Torres, I.M.S. Potentially Pathogenic Bacteria Isolated from Neglected Air and Surfaces in Hospitals. Braz. J. Pharm. Sci. 2021, 57, e18989. [Google Scholar] [CrossRef]
- Ortiz, G.; Yagüe, G.; Segovia, M.; Catalán, V. A Study of Air Microbe Levels in Different Areas of a Hospital. Curr. Microbiol. 2009, 59, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Curtis, L.; Cali, S.; Conroy, L.; Baker, K.; Ou, C.H.; Hershow, R.; Norlock-Cruz, F.; Scheff, P. Aspergillus Surveillance Project at a Large Tertiary-Care Hospital. J. Hosp. Infect. 2005, 59, 188–196. [Google Scholar] [CrossRef]
- Marchand, G.; Duchaine, C.; Lavoie, J.; Veillette, M.; Cloutier, Y. Bacteria Emitted in Ambient. Air during Bronchoscopy—A Risk to Health Care Workers? Am. J. Infect. Control 2016, 44, 1634–1638. [Google Scholar] [CrossRef]
- Veysi, R.; Heibati, B.; Jahangiri, M.; Kumar, P.; Latif, M.T.; Karimi, A. Indoor Air Quality-Induced Respiratory Symptoms of a Hospital Staff in Iran. Environ. Monit. Assess. 2019, 191, 50. [Google Scholar] [CrossRef]
- Montazer, M.; Soleimani, N.; Vahabi, M.; Abtahi, M.; Etemad, K.; Zendehdel, R. Assessment of Bacterial Pathogens and Their Antibiotic Resistance in the Air of Different Wards of Selected Teaching Hospitals in Tehran. Indian. J. Occup. Environ. Med. 2021, 25, 78. [Google Scholar] [CrossRef]
- Nourmoradi, H.; Amin, M.M.; Hatamzadeh, M.; Nikaeen, M. Evaluation of Bio-Aerosols Concentration in the Different Wards of Three Educational Hospitals in Iran. Int. J. Environ. Health Eng. 2012, 1, 47. [Google Scholar] [CrossRef]
- Shokri, S.; Nikpey, A.; Varyani, A.S. Evaluation of Hospital Wards Indoor Air Quality: The Particles Concentration. J. Air Pollut. Health 2016, 1, 205–214. [Google Scholar]
- Viegas, C.; Sabino, R.; Veríssimo, C.; Rosado, L. Assessment of Fungal Contamination in a Portuguese Maternity Unit. WIT Trans. Biomed. Health 2011, 15, 127–133. [Google Scholar] [CrossRef]
- ECDC. Factsheet for the General Public—Antimicrobial Resistance. Available online: https://www.ecdc.europa.eu/en/antimicrobial-resistance/facts/factsheets/general-public (accessed on 3 March 2025).
- Frye, J.; Galgano, M.; Pellegrini, F.; Catalano, E.; Capozzi, L.; Del Sambro, L.; Sposato, A.; Stella Lucente, M.; Iris Vasinioti, V.; Catella, C.; et al. Acquired Bacterial Resistance to Antibiotics and Resistance Genes: From Past to Future. Antibiotics 2025, 14, 222. [Google Scholar] [CrossRef]
- Gajic, I.; Tomic, N.; Lukovic, B.; Jovicevic, M.; Kekic, D.; Petrovic, M.; Jankovic, M.; Trudic, A.; Culafic, D.M.; Milenkovic, M.; et al. A Comprehensive Overview of Antibacterial Agents for Combating Multidrug-Resistant Bacteria: The Current Landscape, Development, Future Opportunities, and Challenges. Antibiotics 2025, 14, 221. [Google Scholar] [CrossRef]
- Nguyen, B.A.T.; Chen, Q.L.; He, J.Z.; Hu, H.W. Microbial Regulation of Natural Antibiotic Resistance: Understanding the Protist-Bacteria Interactions for Evolution of Soil Resistome. Sci. Total Environ. 2020, 705, 135882. [Google Scholar] [CrossRef]
- Agyepong, N.; Govinden, U.; Owusu-Ofori, A.; Essack, S.Y. Multidrug-Resistant Gram-Negative Bacterial Infections in a Teaching Hospital in Ghana. Antimicrob. Resist. Infect. Control 2018, 7, 1–8. [Google Scholar] [CrossRef]
- Vaithiyam, V.S.; Rastogi, N.; Ranjan, P.; Mahishi, N.; Kapil, A.; Dwivedi, S.N.; Soneja, M.; Wig, N.; Biswas, A. Antimicrobial Resistance Patterns in Clinically Significant Isolates from Medical Wards of a Tertiary Care Hospital in North India. J. Lab. Physicians 2020, 12, 196–202. [Google Scholar] [CrossRef]
- Merk, H.; Diaz Högberg, L.; Plachouras, D.; Suetens, C.; Monnet, D.L. Assessing the Health Burden of Infections with Antibiotic-Resistant Bacteria in the EU/EEA, 2016–2020; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2022.
- Naghavi, M.; Vollset, S.E.; Ikuta, K.S.; Swetschinski, L.R.; Gray, A.P.; Wool, E.E.; Aguilar, G.R.; Mestrovic, T.; Smith, G.; Han, C.; et al. Global Burden of Bacterial Antimicrobial Resistance 1990–2021: A Systematic Analysis with Forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef] [PubMed]
- Poletajew, S.; Pawlik, K.; Bonder-Nowicka, A.; Pakuszewski, A.; Nyk, Ł.; Kryst, P. Multi-Drug Resistant Bacteria as Aetiological Factors of Infections in a Tertiary Multidisciplinary Hospital in Poland. Antibiotics 2021, 10, 1232. [Google Scholar] [CrossRef] [PubMed]
- Tian, L.; Zhang, Z.; Sun, Z. Antimicrobial Resistance Trends in Bloodstream Infections at a Large Teaching Hospital in China: A 20-Year Surveillance Study (1998–2017). Antimicrob. Resist. Infect. Control 2019, 8, 86. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Daneman, N.; Tan, C.; Brownstein, J.S.; MacFadden, D.R. Evaluating the Relationship Between Hospital Antibiotic Use and Antibiotic Resistance in Common Nosocomial Pathogens. Infect. Control Hosp. Epidemiol. 2017, 38, 1457–1463. [Google Scholar] [CrossRef]
No. | Criterion |
---|---|
1. | Publication in peer-reviewed and reputable scientific journals |
2. | Relevance to the core research topic |
3. | Inclusion of studies from geographically diverse locations |
4. | Application of active microbiological sampling techniques |
5. | Availability of the full text in an accessible language (e.g., English) |
Infection Type | Relative Frequency of Occurrence During the Patient’s Hospital Stay | Genus/Species |
---|---|---|
Pneumonia, lower respiratory tract infection | 31% | Aspergillus spp., Enterobacter spp., Escherichia coli, Klebsiella spp., Staphylococcus aureus |
Urinary tract infection | 20% | Enterococcus spp., Escherichia coli, Klebsiella spp., Pseudomonas aeruginosa, Staphylococcus aureus |
Surgical site infection | 12% | Enterococcus spp., Pseudomonas aeruginosa, Staphylococcus aureus |
Bloodstream infection | 13% | Enterobacter spp., Enterococcus spp., Escherichia coli, Klebsiella spp., Staphylococcus aureus |
Gastrointestinal infections | 9% | Clostridium difficile, Enterobacter spp. Escherichia coli, Klebsiella spp., Staphylococcus aureus |
Systemic infections | 5% | Aspergillus spp., Escherichia coli |
Skin/soft tissue infections | 4% | Enterobacter spp., Pseudomonas aeruginosa, Staphylococcus aureus |
Unspecified | 5% | - |
Method | Mechanism | Overview | Refs. |
---|---|---|---|
Ultraviolet germicidal irradiation | Damage to the nucleic acids of microorganisms and inhibition of further replication of pathogens. | Effectiveness depends on wavelength, microbe type, and exposure time. | [31,54,55] |
Photocatalytic oxidation | Generation of reactive oxygen species and destruction of cell walls or viral capsids. | Radical reactions can create secondary pollutants harmful to health, air quality, and human health. | [51,56,57] |
Plasma disinfection | Damage to enzymes and structural proteins in microorganisms, disruption of metabolism, and inactivation. | Reactions may release water vapor, potentially raising ozone (O3) levels—effects on health and air quality are not well understood. | [51,58] |
Selected Hospital Facilities | Unit Area | Bioaerosol Concentrations | Ref. |
---|---|---|---|
Bacteria | |||
Educational and Medical Hospital; Tabriz, Iran | Women’s infectious disease ward | 835 CFU/m3 (highest value) | [64] |
Men’s infectious disease ward | 119 CFU/m3 (lowest value) | ||
Hospital; Warsaw, Poland | Health emergency department | 130–4200 CFU/m3 (range) 470 CFU/m3 (mean value) | [63] |
Ambulance | 130–1400 CFU/m3 (range) 300 CFU/m3 (mean value) | ||
Private healthcare facilities; Nancy and Rennes, France | Dental office | 0–11 CFU/m3 (range) | [65] |
Pharmacies | 40–680 CFU/m3 (range) | ||
University Clinical Centre; Banja Luka, Bosnia and Herzegovina | All the examined wards | 30–6295 CFU/m3 (range) | [66] |
University Hospital; Greece | Internal medicine ward | 689 CFU/m3 (mean value) | [67] |
Surgical ward | 596 CFU/m3 (mean value) | ||
Neonatal unit | 509 CFU/m3 (mean value) | ||
Intensive care unit | 353 CFU/m3 (mean value) | ||
Hospital; Thailand | Male surgery | 533.81 CFU/m3 (mean value) | [68] |
Female surgery | 550.15 CFU/m3 (mean value) | ||
Male medicine | 577 CFU/m3 (mean value) | ||
Female medicine | 880.19 CFU/m3 (mean value) | ||
Municipal Hospital; Setúbal, Portugal | Emergency service | 240–736 CFU/m3 (range) | [29] |
Surgical ward | 99–495 CFU/m3 (range) | ||
Operating theater | 12–170 CFU/m3 (range) | ||
Community hospital; Modena, Italy | During operations | 13–82 CFU/500 L (range) | [69] |
Hospital; Chennai, India | Orthopedic department | 3788–191,111 CFU/m3 (range) | [70] |
Hospitals; Korea | Hospital lobbies (at 6 hospitals) | 50–2300 CFU/m3 (range) 720 CFU/m3 (mean value) | [30] |
Private hospital; Goiânia/GO, Brazil | Post-surgical rest room | 566 CFU/m3 | [71] |
Operating room theater | 124.5 CFU/m3 | ||
Hospital; Murcia, Spain | Operating theaters | 1.67–157 CFU/m3 (range) | [72] |
Hospital rooms | 4.12–1293 CFU/m3 (range) | ||
Maternity wards | 14.33–224 CFU/m3 (range) | ||
Specialty hospital; Midwestern U.S. | Cardiac intensive care unit | N/A | [73] |
Organ transplant unit | |||
AIDS unit | |||
Bone marrow transplant unit | |||
Two hospitals; Canada | Bronchoscopy room, hospital 1 | 43–208 CFU/m3 (range) | [74] |
Bronchoscopy room, hospital 2 | 40–370 CFU/m3 (range) |
Selected Hospital Facilities | Unit Area | Bioaerosol Concentrations | Ref. |
---|---|---|---|
Fungi | |||
Educational and Medical Hospital; Tabriz, Iran | Burn surgery unit and men’s infectious disease ward | 49 CFU/m3 (highest value) | [64] |
Pediatric burn unit | 28 CFU/m3 (lowest value) | ||
Hospital; Warsaw, Poland | Health emergency department | 3.4–81 CFU/m3 (range) 67 CFU/m3 (mean value) | [63] |
Ambulance | 6.7–650 CFU/m3 (range) 67 CFU/m3 (mean value) | ||
Private healthcare facilities; Nancy and Rennes, France | Dental office | 0–240 CFU/m3 (range) | [65] |
Pharmacies | 2–150 CFU/m3 (range) | ||
University Clinical Centre; Banja Luka, Bosnia and Herzegovina | All the examined wards | 20–1125 CFU/m3 (range) | [66] |
University Hospital; Greece | Internal medicine ward | N/A | [67] |
Surgical ward | |||
Neonatal unit | |||
Intensive care unit | |||
Hospital; Thailand | Male surgery | 351.19 CFU/m3 (mean value) | [68] |
Female surgery | 261.36 CFU/m3 (mean value) | ||
Male medicine | 264.67 CFU/m3 (mean value) | ||
Female medicine | 318.70 CFU/m3 (mean value) | ||
Municipal Hospital; Setúbal, Portugal | Emergency service | 27–933 CFU/m3 (range) | [29] |
Surgical ward | 1–32 CFU/m3 (range) | ||
Operating theater | <1 CFU/m3 (range) | ||
Community hospital; Modena, Italy | During operations | N/A | [69] |
Hospital; Chennai, India | Orthopedic department | 0–15,150 CFU/m3 (range) | [70] |
Six hospitals; Korea | Hospital lobbies (at 6 hospitals) | 11–2200 CFU/m3 (range) 77 CFU/m3 (mean value) | [30] |
Private hospital; Goiânia/GO, Brazil | Post-surgical rest room | N/A | [71] |
Operating room theater | |||
Hospital; Murcia, Spain | Operating theaters | 0–7.33 CFU/m3 (range) | [72] |
Hospital rooms | 0–266 CFU/m3 (range) | ||
Maternity wards | 0.44–44.67 CFU/m3 (range) | ||
Specialty hospital; Midwestern U.S. | Cardiac intensive care unit | 0–360 CFU/m3 (range) 54.9 CFU/m3 (mean value) | [73] |
Organ transplant unit | 2–680 CFU/m3 (range) 83.5 CFU/m3 (mean value) | ||
AIDS unit | 0–198 CFU/m3 (range) 41.7 CFU/m3 (mean value) | ||
Bone marrow transplant unit | 0–260 CFU/m3 (range) 41 CFU/m3 (mean value) | ||
Two hospitals; Canada | Bronchoscopy room, hospital 1 | N/A | [74] |
Bronchoscopy room, hospital 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kauch, K.; Brągoszewska, E.; Mainka, A. Microbiological Air Quality in Healthcare Environments: A Review of Selected Facilities. Appl. Sci. 2025, 15, 8976. https://doi.org/10.3390/app15168976
Kauch K, Brągoszewska E, Mainka A. Microbiological Air Quality in Healthcare Environments: A Review of Selected Facilities. Applied Sciences. 2025; 15(16):8976. https://doi.org/10.3390/app15168976
Chicago/Turabian StyleKauch, Katarzyna, Ewa Brągoszewska, and Anna Mainka. 2025. "Microbiological Air Quality in Healthcare Environments: A Review of Selected Facilities" Applied Sciences 15, no. 16: 8976. https://doi.org/10.3390/app15168976
APA StyleKauch, K., Brągoszewska, E., & Mainka, A. (2025). Microbiological Air Quality in Healthcare Environments: A Review of Selected Facilities. Applied Sciences, 15(16), 8976. https://doi.org/10.3390/app15168976