FEM and FVM Methods for Design and Manufacturing of Hierarchical Aerospace Composites: A Review
Abstract
1. Introduction
2. FEM in Composite Manufacturing
2.1. FEM: Governing PDEs to Algebraic Form
2.2. Review of FEM-Based Numerical Studies
3. FVM in Composite Manufacturing
3.1. FVM: Governing PDEs to Algebraic Form
3.2. Review of FVM-Based Numerical Studies
4. Multiphysics Coupling: Fluid, Thermo-Chemical, and Structural Domains
4.1. Coupling Hypothesis
4.2. Review of Numerical Studies on Multiphysics Coupling
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Fluid Flow, Heat Transfer, and Species Transport
Appendix A.1. Flow Model
Appendix A.2. Heat Transfer and Species Transport Models
References
- Advani, S.; Sozer, E. Liquid molding of thermoset composites. In Comprehensive Composite Materials; Elsevier: Amsterdam, The Netherlands, 2000; pp. 807–844. [Google Scholar] [CrossRef]
- Das, B.; Steinberg, S.; Weber, S.; Schaffer, S. Finite difference methods for modeling porous media flows. Transp. Porous Media 1994, 17, 171–200. [Google Scholar] [CrossRef]
- Shabro, V.; Torres-Verdín, C.; Javadpour, F.; Sepehrnoori, K. Finite-difference approximation for fluid-flow simulation and calculation of permeability in porous media. Transp. Porous Media 2012, 94, 775–793. [Google Scholar] [CrossRef]
- Belov, E.; Lomov, S.; Verpoest, I.; Peters, T.; Roose, D.; Parnas, R.; Hoes, K.; Sol, H. Modelling of permeability of textile reinforcements: Lattice Boltzmann method. Compos. Sci. Technol. 2004, 64, 1069–1080. [Google Scholar] [CrossRef]
- Eshghinejadfard, A.; Daróczy, L.; Janiga, G.; Thévenin, D. Calculation of the permeability in porous media using the lattice Boltzmann method. Int. J. Heat Fluid Flow 2016, 62, 93–103. [Google Scholar] [CrossRef]
- Liu, H.; Kang, Q.; Leonardi, C.R.; Schmieschek, S.; Narváez, A.; Jones, B.D.; Williams, J.R.; Valocchi, A.J.; Harting, J. Multiphase lattice Boltzmann simulations for porous media applications: A review. Comput. Geosci. 2016, 20, 777–805. [Google Scholar] [CrossRef]
- Sadd, M.H. 15—Numerical Finite and Boundary Element Methods. In Elasticity; Sadd, M.H., Ed.; Academic Press: Burlington, NJ, USA, 2005; pp. 413–436. [Google Scholar] [CrossRef]
- Kibrete, F.; Trzepieciński, T.; Gebremedhen, H.S.; Woldemichael, D.E. Artificial intelligence in predicting mechanical properties of composite materials. J. Compos. Sci. 2023, 7, 364. [Google Scholar] [CrossRef]
- Karuppusamy, M.; Thirumalaisamy, R.; Palanisamy, S.; Nagamalai, S.; El Sayed Massoud, E.; Ayrilmis, N. A review of machine learning applications in polymer composites: Advancements, challenges, and future prospects. J. Mater. Chem. A 2025, 13, 16290–16308. [Google Scholar] [CrossRef]
- Wu, L.; Nguyen, V.D.; Kilingar, N.G.; Noels, L. A recurrent neural network-accelerated multi-scale model for elasto-plastic heterogeneous materials subjected to random cyclic and non-proportional loading paths. Comput. Methods Appl. Mech. Eng. 2020, 369, 113234. [Google Scholar] [CrossRef]
- Yang, C.; Kim, Y.; Ryu, S.; Gu, G.X. Using convolutional neural networks to predict composite properties beyond the elastic limit. MRS Commun. 2019, 9, 609–617. [Google Scholar] [CrossRef]
- Wang, Y.; Soutis, C.; Ando, D.; Sutou, Y.; Narita, F. Application of deep neural network learning in composites design. Eur. J. Mater. 2022, 2, 117–170. [Google Scholar] [CrossRef]
- Gunzburger, M.D. Chapter 3—Navier-Stokes equations for incompressible flows: Finite-element methods. In Handbook of Computational Fluid Mechanics; Peyret, R., Ed.; Academic Press: London, UK, 1996; pp. 99–157. [Google Scholar] [CrossRef]
- Brenner, S.C.; Scott, L.R. The Mathematical Theory of Finite Element Methods, 3rd ed.; Number 15 in Texts in Applied Mathematics; Springer: New York, NY, USA, 2008. [Google Scholar]
- Donea, J.; Huerta, A. Finite Element Methods for Flow Problems, 1st ed.; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar] [CrossRef]
- Elman, H.; Silvester, D.; Wathen, A. Finite Elements and Fast Iterative Solvers: With Applications in Incompressible Fluid Dynamics, 2nd ed.; Oxford University Press: Oxford, UK, 2014. [Google Scholar] [CrossRef]
- Tan, H.; Pillai, K.M. Multiscale modeling of unsaturated flow in dual-scale fiber preforms of liquid composite molding I: Isothermal flows. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1–13. [Google Scholar] [CrossRef]
- Simacek, P.; Advani, S.G. A numerical model to predict fiber tow saturation during liquid composite molding. Compos. Sci. Technol. 2003, 63, 1725–1736. [Google Scholar] [CrossRef]
- Oliveira, I.; Amico, S.C.; Souza, J.; De Lima, A.G.B. Numerical analysis of the resin transfer molding process via pam-rtm software. Defect Diffus. Forum 2015, 365, 88–93. [Google Scholar] [CrossRef]
- Cheung, A.; Yu, Y.; Pochiraju, K. Three-dimensional finite element simulation of curing of polymer composites. Finite Elem. Anal. Des. 2004, 40, 895–912. [Google Scholar] [CrossRef]
- Sandberg, M.; Yuksel, O.; Baran, I.; Hattel, J.H.; Spangenberg, J. Numerical and experimental analysis of resin-flow, heat-transfer, and cure in a resin-injection pultrusion process. Compos. Part A Appl. Sci. Manuf. 2021, 143, 106231. [Google Scholar] [CrossRef]
- Perić, M. Finite-Volume Methods for Navier-Stokes Equations. In Fluids Under Pressure; Bodnár, T., Galdi, G.P., Nečasová, Š., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 575–638. [Google Scholar] [CrossRef]
- Versteeg, H.K.; Malalasekera, W. An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd ed.; Pearson Education Ltd.: Harlow, UK; New York, NY, USA, 2007. [Google Scholar]
- Patankar, S.V. Numerical Heat Transfer and Fluid Flow, 1st ed.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Ferziger, J.H.; Perić, M.; Street, R.L. Computational Methods for Fluid Dynamics; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Grössing, H.; Stadlmajer, N.; Fauster, E.; Fleischmann, M.; Schledjewski, R. Flow front advancement during composite processing: Predictions from numerical filling simulation tools in comparison with real-world experiments. Polym. Compos. 2016, 37, 2782–2793. [Google Scholar] [CrossRef]
- Alotaibi, H.; Jabbari, M.; Soutis, C. A numerical analysis of resin flow in woven fabrics: Effect of local tow curvature on dual-scale permeability. Materials 2021, 14, 405. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.J.; Chuang, Y.C.; Wang, K.H.; Yao, Y. Model-assisted control of flow front in resin transfer molding based on real-time estimation of permeability/porosity ratio. Polymers 2016, 8, 337. [Google Scholar] [CrossRef] [PubMed]
- Alotaibi, H.; Abeykoon, C.; Soutis, C.; Jabbari, M. A numerical thermo-chemo-flow analysis of thermoset resin impregnation in lcm processes. Polymers 2023, 15, 1572. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Liu, W.; Jia, Y.; Chen, W. Coupled filling-curing simulation and optimized design of cure cycle in liquid composite molding. Int. J. Adv. Manuf. Technol. 2024, 132, 2489–2501. [Google Scholar] [CrossRef]
- Wittemann, F.; Maertens, R.; Bernath, A.; Hohberg, M.; Kärger, L.; Henning, F. Simulation of reinforced reactive injection molding with the finite volume method. J. Compos. Sci. 2018, 2, 5. [Google Scholar] [CrossRef]
- Shojaei, A.; Reza Ghaffarian, S.; Mohammad Hossein Karimian, S. Three-dimensional process cycle simulation of composite parts manufactured by resin transfer molding. Composite Structures 2004, 65, 381–390. [Google Scholar] [CrossRef]
- Hou, G.; Wang, J.; Layton, A. Numerical methods for fluid-structure interaction—A review. Commun. Comput. Phys. 2012, 12, 337–377. [Google Scholar] [CrossRef]
- Sigrist, J.F. Fluid-Structure Interaction: An Introduction to Finite Element Coupling; Wiley: Chichester, UK, 2015. [Google Scholar]
- Modarres-Sadeghi, Y. Introduction to Fluid-Structure Interactions; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Richter, T. Fluid-structure interactions: Models, analysis and finite elements. In Lecture Notes in Computational Science and Engineering; Springer International Publishing: Cham, Switzerland, 2017; Volume 118. [Google Scholar] [CrossRef]
- Alotaibi, H.; Soutis, C.; Zhang, D.; Jabbari, M. A numerical framework of simulating flow-induced deformation during liquid composite moulding. J. Compos. Sci. 2024, 8, 401. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, Y.; Yang, G.; Tang, A.; Yang, Z.; Li, S.; Li, Y.; Song, D. Evolution of curing residual stresses in composite using multi-scale method. Compos. Part B Eng. 2018, 155, 49–61. [Google Scholar] [CrossRef]
- Gonçalves, P.T.; Arteiro, A.; Rocha, N.; Pina, L. Numerical analysis of micro-residual stresses in a carbon/epoxy polymer matrix composite during curing process. Polymers 2022, 14, 2653. [Google Scholar] [CrossRef]
- Dewangan, B.; Chakladar, N. Modelling of residual stress during curing of a polymer under autoclave conditions and experimental validation. Comput. Mater. Sci. 2024, 241, 113038. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, S.W.; Lee, I. Evaluation of curing process-induced deformation in plain woven composite structures based on cure kinetics considering various fabric parameters. Compos. Struct. 2022, 287, 115379. [Google Scholar] [CrossRef]
- Hwang, W.R.; Advani, S.G. Numerical simulations of Stokes–Brinkman equations for permeability prediction of dual scale fibrous porous media. Phys. Fluids 2010, 22, 113101. [Google Scholar] [CrossRef]
- Kuentzer, N.; Simacek, P.; Advani, S.G.; Walsh, S. Permeability characterization of dual scale fibrous porous media. Compos. Part A Appl. Sci. Manuf. 2006, 37, 2057–2068. [Google Scholar] [CrossRef]
- Parnas, R.S.; Salem, A.J.; Sadiq, T.A.; Wang, H.P.; Advani, S.G. The interaction between micro- and macro-scopic flow in RTM preforms. Compos. Struct. 1994, 27, 93–107. [Google Scholar] [CrossRef]
- Parseval, Y.D.; Pillai, K.M.; Advani, S.G. A simple model for the variation of permeability due to partial saturation in dual scale porous media. Transp. Porous Media 1997, 27, 243–264. [Google Scholar] [CrossRef]
- Gascón, L.; García, J.A.; Le Bel, F.; Ruiz, E.; Trochu, F. A two-phase flow model to simulate mold filling and saturation in Resin Transfer Molding. Int. J. Mater. Form. 2016, 9, 229–239. [Google Scholar] [CrossRef]
- Happel, J. Viscous flow relative to arrays of cylinders. AIChE J. 1959, 5, 174–177. [Google Scholar] [CrossRef]
- Sangani, A.S.; Acrivos, A. Slow flow past periodic arrays of cylinders with application to heat transfer. Int. J. Multiph. Flow 1982, 8, 193–206. [Google Scholar] [CrossRef]
- Drummond, J.E.; Tahir, M.I. Laminar viscous flow through regular arrays of parallel solid cylinders. Int. J. Multiph. Flow 1984, 10, 515–540. [Google Scholar] [CrossRef]
- Gutowski, T.G.; Cai, Z.; Bauer, S.; Boucher, D.; Kingery, J.; Wineman, S. Consolidation experiments for laminate composites. J. Compos. Mater. 1987, 21, 650–669. [Google Scholar] [CrossRef]
- Gebart, B.R. Permeability of unidirectional reinforcements for RTM. J. Compos. Mater. 1992, 26, 1100–1133. [Google Scholar] [CrossRef]
- Cai, Z.; Berdichevsky, A.L. An improved self-consistent method for estimating the permeability of a fiber assembly. Polym. Compos. 1993, 14, 314–323. [Google Scholar] [CrossRef]
- Phelan, F.R.; Wise, G. Analysis of transverse flow in aligned fibrous porous media. Compos. Part A Appl. Sci. Manuf. 1996, 27, 25–34. [Google Scholar] [CrossRef]
- Castro, J.M.; Macosko, C.W. Studies of mold filling and curing in the reaction injection molding process. AIChE J. 1982, 28, 250–260. [Google Scholar] [CrossRef]
- Bruschke, M.V.; Advani, S.G. A numerical approach to model non-isothermal viscous flow through fibrous media with free surfaces. Int. J. Numer. Methods Fluids 1994, 19, 575–603. [Google Scholar] [CrossRef]
- Abbassi, A.; Shahnazari, M.R. Numerical modeling of mold filling and curing in non-isothermal RTM process. Appl. Therm. Eng. 2004, 24, 2453–2465. [Google Scholar] [CrossRef]
- Shojaei, A.; Ghaffarian, S.R.; Karimian, S.M. Modeling and simulation approaches in the resin transfer molding process: A review. Polym. Compos. 2003, 24, 525–544. [Google Scholar] [CrossRef]
- Antonucci, V.; Giordano, M.; Nicolais, L.; Di Vita, G. A simulation of the non-isothermal resin transfer molding process. Polym. Eng. Sci. 2000, 40, 2471–2481. [Google Scholar] [CrossRef]
- Liu, B.; Advani, S.G. Operator splitting scheme for 3-D temperature solution based on 2-D flow approximation. Comput. Mech. 1995, 16, 74–82. [Google Scholar] [CrossRef]
- Dessenberger, R.B.; Tucker, C.L. Thermal dispersion in resin transfer molding. Polym. Compos. 1995, 16, 495–506. [Google Scholar] [CrossRef]
- Kamal, M.R.; Sourour, S. Kinetics and thermal characterization of thermoset cure. Polym. Eng. Sci. 1973, 13, 59–64. [Google Scholar] [CrossRef]
- Sourour, S.; Kamal, M.R. Differential scanning calorimetry of epoxy cure: Isothermal cure kinetics. Thermochim. Acta 1976, 14, 41–59. [Google Scholar] [CrossRef]
- Kamal, M.R. Thermoset characterization for moldability analysis. Polym. Eng. Sci. 1974, 14, 231–239. [Google Scholar] [CrossRef]
References | Flow Model | Thermal Model | Cure Model | Numerical Method |
---|---|---|---|---|
Tan et al. [17] | ✓ | × | × | FEM/CV (PoreFlow) |
Simacek et al. [18] | ✓ | × | × | FEM/CV (LIMS) |
Oliveira et al. [19] | ✓ | × | × | FEM/CV (PAM-RTM) |
Cheung et al. [20] | × | ✓ | ✓ | FEM (Apaqus) |
Sandberg et al. [21] | ✓ | ✓ | ✓ | FEM (COMSOL) |
Flow Model: | Navier–Stokes or Stokes equations are numerically solved (see Appendix A.1). | |||
Thermal Model: | Energy or heat balance equations are numerically solved (see Appendix A.2). | |||
Cure Model: | Species transport or chemical equations are numerically solved (see Appendix A.2). |
References | Flow Model | Thermal Model | Cure Model | Numerical Method |
---|---|---|---|---|
Grössing et al. [26] | ✓ | × | × | FVM/VOF (OpenFoam) |
Alotaibi et al. [27] | ✓ | × | × | FVM/VOF (Fluent) |
Wei et al. [28] | ✓ | × | × | FVM/VOF (Moldex3D) |
Alotaibi et al. [29] | ✓ | ✓ | ✓ | FVM/VOF (Fluent) |
Yang et al. [30] | ✓ | ✓ | ✓ | FVM/VOF (Fluent) |
Wittemann et al. [31] | × | ✓ | ✓ | FVM (OpenFoam) |
Flow Model: | Navier–Stokes or Stokes equations are numerically solved (see Appendix A.1). | |||
Thermal Model: | Energy or heat balance equations are numerically solved (see Appendix A.2). | |||
Cure Model: | Species transport or chemical equations are numerically solved (see Appendix A.2). |
References | Flow Model | Thermo-Chemical Model | Structural Model | Numerical Method |
---|---|---|---|---|
Yuan et al. [38] | × | ✓ | ✓ | FEM (Abaqus) |
Alotaibi et al. [37] | ✓ | ✓ | ✓ | FVM + FEM (Fluent + ANSYS Mechanical) |
Goncalves et al. [39] | × | ✓ | ✓ | FEM (Abaqus) |
Dewangan et al. [40] | × | ✓ | ✓ | FEM (Abaqus + Fortran) |
Kim et al. [41] | × | ✓ | ✓ | FEM (Abaqus + MATLAB) |
Flow Model: | Navier–Stokes or Stokes equations are numerically solved (see Appendix A.1). | |||
Thermo-chemical Model: | Both energy and chemical equations are numerically solved (see Appendix A.2). | |||
Structural Model: | Deformations or residual stresses/strains are numerically solved (see Section 4.1). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alotaibi, H.; Soutis, C.; Jabbari, M. FEM and FVM Methods for Design and Manufacturing of Hierarchical Aerospace Composites: A Review. Appl. Sci. 2025, 15, 8896. https://doi.org/10.3390/app15168896
Alotaibi H, Soutis C, Jabbari M. FEM and FVM Methods for Design and Manufacturing of Hierarchical Aerospace Composites: A Review. Applied Sciences. 2025; 15(16):8896. https://doi.org/10.3390/app15168896
Chicago/Turabian StyleAlotaibi, Hatim, Constantinos Soutis, and Masoud Jabbari. 2025. "FEM and FVM Methods for Design and Manufacturing of Hierarchical Aerospace Composites: A Review" Applied Sciences 15, no. 16: 8896. https://doi.org/10.3390/app15168896
APA StyleAlotaibi, H., Soutis, C., & Jabbari, M. (2025). FEM and FVM Methods for Design and Manufacturing of Hierarchical Aerospace Composites: A Review. Applied Sciences, 15(16), 8896. https://doi.org/10.3390/app15168896