Modelling of Cathinone–Carbon Nanotube Complexes’ Stability: Theory with a Cancer Treatment Perspective
Abstract
Featured Application
Abstract
1. Introduction
2. Methods
3. Results and Discussion
3.1. The Impact of Environment Polarity and SWCNT-Model Length on the Structure and Intermolecular Interactions Energies in the Complex
3.2. Effect of the CNT Substituent Type and Cathinone Structural Modifications on the Intermolecular Interaction Energy Values
3.3. The Influence of pH on the Complex Stability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Casolino, R.; Sullivan, R.; Jobanputra, K.; Abdel-Wahab, M.; Grbic, M.; Hammad, N.; Kutluk, T.; Melnitchouk, N.; Mueller, A.; Ortiz, R.; et al. Integrating Cancer into Crisis: A Global Vision for Action from WHO and Partners. Lancet Oncol. 2025, 26, e55–e66. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Yan, M.; Wu, S.; Wang, Y.; Liang, M.; Wang, M.; Hu, W.; Yu, G.; Mao, Z.; Huang, F.; Zhou, J. Recent Progress of Supramolecular Chemotherapy Based on Host–Guest Interactions. Adv. Mater. 2024, 36, 2304249. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Du, Q.; Wan, J.; Yu, D.-G.; Tan, F.; Yang, X. Improved Synergistic Anticancer Action of Quercetin and Tamoxifen Citrate Supported by an Electrospun Complex Nanostructure. Mater. Des. 2024, 238, 112657. [Google Scholar] [CrossRef]
- Sikov, W.M.; Berry, D.A.; Perou, C.M.; Singh, B.; Cirrincione, C.T.; Tolaney, S.M.; Kuzma, C.S.; Pluard, T.J.; Somlo, G.; Port, E.R.; et al. Impact of the Addition of Carboplatin and/or Bevacizumab to Neoadjuvant Once-per-Week Paclitaxel Followed by Dose-Dense Doxorubicin and Cyclophosphamide on Pathologic Complete Response Rates in Stage II to III Triple-Negative Breast Cancer: CALGB 40603 (Alliance). J. Clin. Oncol. 2015, 33, 13–21. [Google Scholar] [CrossRef]
- Loibl, S.; O’Shaughnessy, J.; Untch, M.; Sikov, W.M.; Rugo, H.S.; McKee, M.D.; Huober, J.; Golshan, M.; von Minckwitz, G.; Maag, D.; et al. Addition of the PARP Inhibitor Veliparib plus Carboplatin or Carboplatin Alone to Standard Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer (BrighTNess): A Randomised, Phase 3 Trial. Lancet Oncol. 2018, 19, 497–509. [Google Scholar] [CrossRef]
- Lencioni, R.; Llovet, J.M.; Han, G.; Tak, W.Y.; Yang, J.; Guglielmi, A.; Paik, S.W.; Reig, M.; Kim, D.Y.; Chau, G.-Y.; et al. Sorafenib or Placebo plus TACE with Doxorubicin-Eluting Beads for Intermediate Stage HCC: The SPACE Trial. J. Hepatol. 2016, 64, 1090–1098. [Google Scholar] [CrossRef]
- Eryilmaz, I.E.; Colakoglu Bergel, C.; Arioz, B.; Huriyet, N.; Cecener, G.; Egeli, U. Luteolin Induces Oxidative Stress and Apoptosis via Dysregulating the Cytoprotective Nrf2-Keap1-Cul3 Redox Signaling in Metastatic Castration-Resistant Prostate Cancer Cells. Mol. Biol. Rep. 2024, 52, 65. [Google Scholar] [CrossRef]
- Jędrzejewski, T.; Sobocińska, J.; Maciejewski, B.; Spisz, P.; Walczak-Skierska, J.; Pomastowski, P.; Wrotek, S. In Vitro Treatment of Triple-Negative Breast Cancer Cells with an Extract from the Coriolus Versicolor Mushroom Changes Macrophage Properties Related to Tumourigenesis. Immunol. Res. 2024, 73, 14. [Google Scholar] [CrossRef]
- Chunarkar-Patil, P.; Kaleem, M.; Mishra, R.; Ray, S.; Ahmad, A.; Verma, D.; Bhayye, S.; Dubey, R.; Singh, H.N.; Kumar, S. Anticancer Drug Discovery Based on Natural Products: From Computational Approaches to Clinical Studies. Biomedicines 2024, 12, 201. [Google Scholar] [CrossRef]
- Yadav, A.K.; Maharjan Shrestha, R.; Yadav, P.N. Anticancer Mechanism of Coumarin-Based Derivatives. Eur. J. Med. Chem. 2024, 267, 116179. [Google Scholar] [CrossRef]
- Wang, R.; Wang, C.; Lu, L.; Yuan, F.; He, F. Baicalin and Baicalein in Modulating Tumor Microenvironment for Cancer Treatment: A Comprehensive Review with Future Perspectives. Pharmacol. Res. 2024, 199, 107032. [Google Scholar] [CrossRef] [PubMed]
- Casini, A.; Pöthig, A. Metals in Cancer Research: Beyond Platinum Metallodrugs. ACS Cent. Sci. 2024, 10, 242–250. [Google Scholar] [CrossRef] [PubMed]
- Zahirović, A.; Fetahović, S.; Feizi-Dehnayebi, M.; Višnjevac, A.; Bešta-Gajević, R.; Kozarić, A.; Martić, L.; Topčagić, A.; Roca, S. Dual Antimicrobial-Anticancer Potential, Hydrolysis, and DNA/BSA Binding Affinity of a Novel Water-Soluble Ruthenium-Arene Ethylenediamine Schiff Base (RAES) Organometallic. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 318, 124528. [Google Scholar] [CrossRef] [PubMed]
- Glorieux, C.; Liu, S.; Trachootham, D.; Huang, P. Targeting ROS in Cancer: Rationale and Strategies. Nat. Rev. Drug Discov. 2024, 23, 583–606. [Google Scholar] [CrossRef]
- Galluzzi, L.; Guilbaud, E.; Schmidt, D.; Kroemer, G.; Marincola, F.M. Targeting Immunogenic Cell Stress and Death for Cancer Therapy. Nat. Rev. Drug Discov. 2024, 23, 445–460. [Google Scholar] [CrossRef]
- Zhou, Q.; Meng, Y.; Li, D.; Yao, L.; Le, J.; Liu, Y.; Sun, Y.; Zeng, F.; Chen, X.; Deng, G. Ferroptosis in Cancer: From Molecular Mechanisms to Therapeutic Strategies. Sig. Transduct. Target. Ther. 2024, 9, 55. [Google Scholar] [CrossRef]
- Kim, S.E.; Zhang, L.; Ma, K.; Riegman, M.; Chen, F.; Ingold, I.; Conrad, M.; Turker, M.Z.; Gao, M.; Jiang, X.; et al. Ultrasmall Nanoparticles Induce Ferroptosis in Nutrient-Deprived Cancer Cells and Suppress Tumour Growth. Nat. Nanotechnol. 2016, 11, 977–985. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Zhang, J.; Yang, Y.; Fleishman, J.S.; Wang, Y.; Wang, J.; Chen, J.; Li, Y.; Wang, H. Cuproptosis: A Novel Therapeutic Target for Overcoming Cancer Drug Resistance. Drug Resist. Updates 2024, 72, 101018. [Google Scholar] [CrossRef]
- Klein, C.; Brinkmann, U.; Reichert, J.M.; Kontermann, R.E. The Present and Future of Bispecific Antibodies for Cancer Therapy. Nat. Rev. Drug Discov. 2024, 23, 301–319. [Google Scholar] [CrossRef]
- Lasser, S.A.; Ozbay Kurt, F.G.; Arkhypov, I.; Utikal, J.; Umansky, V. Myeloid-Derived Suppressor Cells in Cancer and Cancer Therapy. Nat. Rev. Clin. Oncol. 2024, 21, 147–164. [Google Scholar] [CrossRef] [PubMed]
- Fenis, A.; Demaria, O.; Gauthier, L.; Vivier, E.; Narni-Mancinelli, E. New Immune Cell Engagers for Cancer Immunotherapy. Nat. Rev. Immunol. 2024, 24, 471–486. [Google Scholar] [CrossRef] [PubMed]
- Radhakrishnan, R.; Wilkinson, S.T.; D’Souza, D.C. Gone to Pot—A Review of the Association between Cannabis and Psychosis. Front. Psychiatry 2014, 5, 72718. [Google Scholar] [CrossRef] [PubMed]
- Munson, A.E.; Harris, L.S.; Friedman, M.A.; Dewey, W.L.; Carchman, R.A. Antineoplastic Activity of Cannabinoids2. JNCI: J. Natl. Cancer Inst. 1975, 55, 597–602. [Google Scholar] [CrossRef]
- Barbado, M.V.; Medrano, M.; Caballero-Velázquez, T.; Álvarez-Laderas, I.; Sánchez-Abarca, L.I.; García-Guerrero, E.; Martín-Sánchez, J.; Rosado, I.V.; Piruat, J.I.; Gonzalez-Naranjo, P.; et al. Cannabinoid Derivatives Exert a Potent Anti-Myeloma Activity Both in Vitro and in Vivo. Int. J. Cancer 2017, 140, 674–685. [Google Scholar] [CrossRef]
- Notaro, A.; Emanuele, S.; Geraci, F.; D’Anneo, A.; Lauricella, M.; Calvaruso, G.; Giuliano, M. WIN55,212-2-Induced Expression of Mir-29b1 Favours the Suppression of Osteosarcoma Cell Migration in a SPARC-Independent Manner. Int. J. Mol. Sci. 2019, 20, 5235. [Google Scholar] [CrossRef]
- Gurley, S.N.; Abidi, A.H.; Allison, P.; Guan, P.; Duntsch, C.; Robertson, J.H.; Kosanke, S.D.; Keir, S.T.; Bigner, D.D.; Elberger, A.J.; et al. Mechanism of Anti-Glioma Activity and in Vivo Efficacy of the Cannabinoid Ligand KM-233. J. Neurooncol. 2012, 110, 163–177. [Google Scholar] [CrossRef]
- Greish, K.; Mathur, A.; Al Zahrani, R.; Elkaissi, S.; Al Jishi, M.; Nazzal, O.; Taha, S.; Pittalà, V.; Taurin, S. Synthetic Cannabinoids Nano-Micelles for the Management of Triple Negative Breast Cancer. J. Control Release 2018, 291, 184–195. [Google Scholar] [CrossRef]
- Selvi, E.; Lorenzini, S.; Garcia-Gonzalez, E.; Maggio, R.; Lazzerini, P.E.; Capecchi, P.L.; Balistreri, E.; Spreafico, A.; Niccolini, S.; Pompella, G.; et al. Inhibitory Effect of Synthetic Cannabinoids on Cytokine Production in Rheumatoid Fibroblast-like Synoviocytes. Clin. Exp. Rheumatol. 2008, 26, 574. [Google Scholar]
- Fichna, J.; Bawa, M.; Thakur, G.A.; Tichkule, R.; Makriyannis, A.; McCafferty, D.-M.; Sharkey, K.A.; Storr, M. Cannabinoids Alleviate Experimentally Induced Intestinal Inflammation by Acting at Central and Peripheral Receptors. PLoS ONE 2014, 9, e109115. [Google Scholar] [CrossRef]
- Gui, H.; Liu, X.; Liu, L.-R.; Su, D.-F.; Dai, S.-M. Activation of Cannabinoid Receptor 2 Attenuates Synovitis and Joint Distruction in Collagen-Induced Arthritis. Immunobiology 2015, 220, 817–822. [Google Scholar] [CrossRef]
- Tolón, R.M.; Núñez, E.; Pazos, M.R.; Benito, C.; Castillo, A.I.; Martínez-Orgado, J.A.; Romero, J. The Activation of Cannabinoid CB2 Receptors Stimulates in Situ and in Vitro Beta-Amyloid Removal by Human Macrophages. Brain Res. 2009, 1283, 148–154. [Google Scholar] [CrossRef]
- Jimenez Del Rio, M.; Velez-Pardo, C. Paraquat Induces Apoptosis in Human Lymphocytes: Protective and Rescue Effects of Glucose, Cannabinoids and Insulin-like Growth Factor-1. Growth Factors 2008, 26, 49–60. [Google Scholar] [CrossRef]
- Hu, S.; Sheng, W.S.; Rock, R.B. CB2 Receptor Agonists Protect Human Dopaminergic Neurons against Damage from HIV-1 Gp120. PLoS ONE 2013, 8, e77577. [Google Scholar] [CrossRef] [PubMed]
- Idris, A.I.; van ’t Hof, R.J.; Greig, I.R.; Ridge, S.A.; Baker, D.; Ross, R.A.; Ralston, S.H. Regulation of Bone Mass, Bone Loss and Osteoclast Activity by Cannabinoid Receptors. Nat. Med. 2005, 11, 774–779. [Google Scholar] [CrossRef] [PubMed]
- Bort, A.; Alvarado-Vazquez, P.A.; Moracho-Vilrriales, C.; Virga, K.G.; Gumina, G.; Romero-Sandoval, A.; Asbill, S. Effects of JWH015 in Cytokine Secretion in Primary Human Keratinocytes and Fibroblasts and Its Suitability for Topical/Transdermal Delivery. Mol. Pain. 2017, 13, 1744806916688220. [Google Scholar] [CrossRef]
- Gebissa, E. Khat in the Horn of Africa: Historical Perspectives and Current Trends. J. Ethnopharmacol. 2010, 132, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Van Hout, M.C. Kitchen Chemistry: A Scoping Review of the Diversionary Use of Pharmaceuticals for Non-Medicinal Use and Home Production of Drug Solutions. Drug Test. Anal. 2014, 6, 778–787. [Google Scholar] [CrossRef]
- Archer, R.P. Fluoromethcathinone, a New Substance of Abuse. Forensic Sci. Int. 2009, 185, 10–20. [Google Scholar] [CrossRef]
- Liu, C.; Jia, W.; Li, T.; Hua, Z.; Qian, Z. Identification and Analytical Characterization of Nine Synthetic Cathinone Derivatives N-Ethylhexedrone, 4-Cl-Pentedrone, 4-Cl-α-EAPP, Propylone, N-Ethylnorpentylone, 6-MeO-Bk-MDMA, α-PiHP, 4-Cl-α-PHP, and 4-F-α-PHP. Drug Test. Anal. 2017, 9, 1162–1171. [Google Scholar] [CrossRef]
- Kehr, J.; Ichinose, F.; Yoshitake, S.; Goiny, M.; Sievertsson, T.; Nyberg, F.; Yoshitake, T. Mephedrone, Compared with MDMA (Ecstasy) and Amphetamine, Rapidly Increases Both Dopamine and 5-HT Levels in Nucleus Accumbens of Awake Rats. Br. J. Pharmacol. 2011, 164, 1949–1958. [Google Scholar] [CrossRef]
- Smith, D.A.; Negus, S.S.; Poklis, J.L.; Blough, B.E.; Banks, M.L. Cocaine-like Discriminative Stimulus Effects of Alpha-Pyrrolidinovalerophenone, Methcathinone and Their 3,4-Methylenedioxy or 4-Methyl Analogs in Rhesus Monkeys. Addict. Biol. 2017, 22, 1169–1178. [Google Scholar] [CrossRef] [PubMed]
- Vendrell-Dones, M.O.; Hernandez, E.; Dogruer Erkok, S.; McCord, B. Detection of Synthetic Cathinones in Seized Drugs Using Surface-Enhanced Raman Spectroscopy (SERS). Forensic Chem. 2024, 41, 100613. [Google Scholar] [CrossRef]
- Wilkes, S. The Use of Bupropion SR in Cigarette Smoking Cessation. COPD 2008, 3, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Fava, M.; Rush, A.J.; Thase, M.E.; Clayton, A.; Stahl, S.M.; Pradko, J.F.; Johnston, J.A. 15 Years of Clinical Experience With Bupropion HCl: From Bupropion to Bupropion SR to Bupropion XL. Prim. Care Companion J. Clin. Psychiatry 2005, 7, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, J.; Gardos, G.; Cole, J.O. A Controlled Evaluation of Pyrovalerone in Chronically Fatigued Volunteers. Int. Pharmacopsychiatry 2017, 8, 60–69. [Google Scholar] [CrossRef]
- Seaton, D.A.; Duncan, L.J.P.; Rose, K.; Scott, A.M. Diethylpropion in the Treatment of “Refractory” Obesity. Br. Med. J. 1961, 1, 1009–1011. [Google Scholar] [CrossRef]
- Lu, Y.; Li, Y.; Xiang, M.; Zhou, J.; Chen, J. Khat Promotes Human Breast Cancer MDA-MB-231 Cell Apoptosis via Mitochondria and MAPK-Associated Pathways. Oncol. Lett. 2017, 14, 3947–3952. [Google Scholar] [CrossRef]
- Soares, J.; Costa, V.M.; Gaspar, H.; Santos, S.; de Lourdes Bastos, M.; Carvalho, F.; Capela, J.P. Structure-Cytotoxicity Relationship Profile of 13 Synthetic Cathinones in Differentiated Human SH-SY5Y Neuronal Cells. NeuroToxicology 2019, 75, 158–173. [Google Scholar] [CrossRef]
- Soares, J.; Costa, V.M.; Gaspar, H.; Santos, S.; Bastos, M.d.L.; Carvalho, F.; Capela, J.P. Adverse Outcome Pathways Induced by 3,4-Dimethylmethcathinone and 4-Methylmethcathinone in Differentiated Human SH-SY5Y Neuronal Cells. Arch. Toxicol. 2020, 94, 2481–2503. [Google Scholar] [CrossRef]
- Paškan, M.; Rimpelová, S.; Svobodová Pavlíčková, V.; Spálovská, D.; Setnička, V.; Kuchař, M.; Kohout, M. 4-Isobutylmethcathinone—A Novel Synthetic Cathinone with High In Vitro Cytotoxicity and Strong Receptor Binding Preference of Enantiomers. Pharmaceuticals 2022, 15, 1495. [Google Scholar] [CrossRef]
- Matsunaga, T.; Morikawa, Y.; Kamata, K.; Shibata, A.; Miyazono, H.; Sasajima, Y.; Suenami, K.; Sato, K.; Takekoshi, Y.; Endo, S.; et al. α-Pyrrolidinononanophenone Provokes Apoptosis of Neuronal Cells through Alterations in Antioxidant Properties. Toxicology 2017, 386, 93–102. [Google Scholar] [CrossRef]
- Silva, B.; Palmeira, A.; Silva, R.; Fernandes, C.; Guedes de Pinho, P.; Remião, F. S-(+)-Pentedrone and R-(+)-Methylone as the Most Oxidative and Cytotoxic Enantiomers to Dopaminergic SH-SY5Y Cells: Role of MRP1 and P-Gp in Cathinones Enantioselectivity. Toxicol. Appl. Pharmacol. 2021, 416, 115442. [Google Scholar] [CrossRef] [PubMed]
- Valente, M.J.; Bastos, M.d.L.; Fernandes, E.; Carvalho, F.; Guedes de Pinho, P.; Carvalho, M. Neurotoxicity of β-Keto Amphetamines: Deathly Mechanisms Elicited by Methylone and MDPV in Human Dopaminergic SH-SY5Y Cells. ACS Chem. Neurosci. 2017, 8, 850–859. [Google Scholar] [CrossRef] [PubMed]
- Leong, H.S.; Philp, M.; Simone, M.; Witting, P.K.; Fu, S. Synthetic Cathinones Induce Cell Death in Dopaminergic SH-SY5Y Cells via Stimulating Mitochondrial Dysfunction. Int. J. Mol. Sci. 2020, 21, 1370. [Google Scholar] [CrossRef]
- Valente, M.J.; Amaral, C.; Correia-da-Silva, G.; Duarte, J.A.; Bastos, M.d.L.; Carvalho, F.; Guedes de Pinho, P.; Carvalho, M. Methylone and MDPV Activate Autophagy in Human Dopaminergic SH-SY5Y Cells: A New Insight into the Context of β-Keto Amphetamines-Related Neurotoxicity. Arch. Toxicol. 2017, 91, 3663–3676. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, Y.; Miyazono, H.; Kamase, K.; Suenami, K.; Sasajima, Y.; Sato, K.; Endo, S.; Monguchi, Y.; Takekoshi, Y.; Ikari, A.; et al. Protective Effect of Aldo–Keto Reductase 1B1 Against Neuronal Cell Damage Elicited by 4′-Fluoro-α-Pyrrolidinononanophenone. Neurotox. Res. 2021, 39, 1360–1371. [Google Scholar] [CrossRef]
- Morikawa, Y.; Miyazono, H.; Sakai, Y.; Suenami, K.; Sasajima, Y.; Sato, K.; Takekoshi, Y.; Monguchi, Y.; Ikari, A.; Matsunaga, T. 4′-Fluoropyrrolidinononanophenone Elicits Neuronal Cell Apoptosis through Elevating Production of Reactive Oxygen and Nitrogen Species. Forensic Toxicol. 2021, 39, 123–133. [Google Scholar] [CrossRef]
- Sakai, Y.; Morikawa, Y.; Nagao, Y.; Hattori, J.; Suenami, K.; Yanase, E.; Takayama, T.; Ikari, A.; Matsunaga, T. 4′-Iodo-α-Pyrrolidinononanophenone Provokes Differentiated SH-SY5Y Cell Apoptosis Through Downregulating Nitric Oxide Production and Bcl-2 Expression. Neurotox. Res. 2022, 40, 1322–1336. [Google Scholar] [CrossRef]
- Zawilska, J.B.; Wojcieszak, J. α-Pyrrolidinophenones: A New Wave of Designer Cathinones. Forensic Toxicol. 2017, 35, 201–216. [Google Scholar] [CrossRef]
- Wojcieszak, J.; Andrzejczak, D.; Kedzierska, M.; Milowska, K.; Zawilska, J.B. Cytotoxicity of α-Pyrrolidinophenones: An Impact of α-Aliphatic Side-Chain Length and Changes in the Plasma Membrane Fluidity. Neurotox. Res. 2018, 34, 613–626. [Google Scholar] [CrossRef]
- Zhou, X.; Bouitbir, J.; Liechti, M.E.; Krähenbühl, S.; Mancuso, R.V. Para-Halogenation of Amphetamine and Methcathinone Increases the Mitochondrial Toxicity in Undifferentiated and Differentiated SH-SY5Y Cells. Int. J. Mol. Sci. 2020, 21, 2841. [Google Scholar] [CrossRef] [PubMed]
- Nadal-Gratacós, N.; Ríos-Rodríguez, E.; Pubill, D.; Batllori, X.; Camarasa, J.; Escubedo, E.; Berzosa, X.; López-Arnau, R. Structure–Activity Relationship of N-Ethyl-Hexedrone Analogues: Role of the α-Carbon Side-Chain Length in the Mechanism of Action, Cytotoxicity, and Behavioral Effects in Mice. ACS Chem. Neurosci. 2023, 14, 787–799. [Google Scholar] [CrossRef] [PubMed]
- Marszalek-Grabska, M.; Lemieszek, M.K.; Chojnacki, M.; Winiarczyk, S.; Jakubowicz-Gil, J.; Zarzyka, B.; Pawelec, J.; Kotlinska, J.H.; Rzeski, W.; Turski, W.A. Cell-Specific Vulnerability of Human Glioblastoma and Astrocytoma Cells to Mephedrone—An In Vitro Study. Molecules 2025, 30, 2277. [Google Scholar] [CrossRef] [PubMed]
- Marszalek-Grabska, M.; Zakrocka, I.; Budzynska, B.; Marciniak, S.; Kaszubska, K.; Lemieszek, M.K.; Winiarczyk, S.; Kotlinska, J.H.; Rzeski, W.; Turski, W.A. Binge-like Mephedrone Treatment Induces Memory Impairment Concomitant with Brain Kynurenic Acid Reduction in Mice. Toxicol. Appl. Pharmacol. 2022, 454, 116216. [Google Scholar] [CrossRef]
- den Hollander, B.; Sundström, M.; Pelander, A.; Ojanperä, I.; Mervaala, E.; Korpi, E.R.; Kankuri, E. Keto Amphetamine Toxicity—Focus on the Redox Reactivity of the Cathinone Designer Drug Mephedrone. Toxicol. Sci. 2014, 141, 120–131. [Google Scholar] [CrossRef]
- Alanazi, I.M.; Alzahrani, A.R.; Alsaad, M.A.; Moqeem, A.L.; Hamdi, A.M.; Taher, M.M.; Watson, D.G.; Helen Grant, M. The Effect of Mephedrone on Human Neuroblastoma and Astrocytoma Cells. Saudi Pharm. J. 2024, 32, 102011. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, Y.; Liu, L.; Wan, W.; Guo, P.; Nyström, A.M.; Zou, X. One-Pot Synthesis of Metal–Organic Frameworks with Encapsulated Target Molecules and Their Applications for Controlled Drug Delivery. J. Am. Chem. Soc. 2016, 138, 962–968. [Google Scholar] [CrossRef]
- Xu, X.; Saw, P.E.; Tao, W.; Li, Y.; Ji, X.; Bhasin, S.; Liu, Y.; Ayyash, D.; Rasmussen, J.; Huo, M.; et al. ROS-Responsive Polyprodrug Nanoparticles for Triggered Drug Delivery and Effective Cancer Therapy. Adv. Mater. 2017, 29, 1700141. [Google Scholar] [CrossRef]
- Kim, M.S.; Haney, M.J.; Zhao, Y.; Mahajan, V.; Deygen, I.; Klyachko, N.L.; Inskoe, E.; Piroyan, A.; Sokolsky, M.; Okolie, O.; et al. Development of Exosome-Encapsulated Paclitaxel to Overcome MDR in Cancer Cells. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 655–664. [Google Scholar] [CrossRef]
- Song, M.; Liu, T.; Shi, C.; Zhang, X.; Chen, X. Bioconjugated Manganese Dioxide Nanoparticles Enhance Chemotherapy Response by Priming Tumor-Associated Macrophages toward M1-like Phenotype and Attenuating Tumor Hypoxia. ACS Nano 2016, 10, 633–647. [Google Scholar] [CrossRef]
- Yang, T.; Martin, P.; Fogarty, B.; Brown, A.; Schurman, K.; Phipps, R.; Yin, V.P.; Lockman, P.; Bai, S. Exosome Delivered Anticancer Drugs Across the Blood-Brain Barrier for Brain Cancer Therapy in Danio Rerio. Pharm. Res. 2015, 32, 2003–2014. [Google Scholar] [CrossRef]
- Zhou, Q.; Shao, S.; Wang, J.; Xu, C.; Xiang, J.; Piao, Y.; Zhou, Z.; Yu, Q.; Tang, J.; Liu, X.; et al. Enzyme-Activatable Polymer–Drug Conjugate Augments Tumour Penetration and Treatment Efficacy. Nat. Nanotechnol. 2019, 14, 799–809. [Google Scholar] [CrossRef]
- Lin, T.; Zhao, P.; Jiang, Y.; Tang, Y.; Jin, H.; Pan, Z.; He, H.; Yang, V.C.; Huang, Y. Blood–Brain-Barrier-Penetrating Albumin Nanoparticles for Biomimetic Drug Delivery via Albumin-Binding Protein Pathways for Antiglioma Therapy. ACS Nano 2016, 10, 9999–10012. [Google Scholar] [CrossRef]
- Huo, M.; Wang, L.; Chen, Y.; Shi, J. Tumor-Selective Catalytic Nanomedicine by Nanocatalyst Delivery. Nat. Commun. 2017, 8, 357. [Google Scholar] [CrossRef] [PubMed]
- Qiu, M.; Wang, D.; Liang, W.; Liu, L.; Zhang, Y.; Chen, X.; Sang, D.K.; Xing, C.; Li, Z.; Dong, B.; et al. Novel Concept of the Smart NIR-Light–Controlled Drug Release of Black Phosphorus Nanostructure for Cancer Therapy. Proc. Natl. Acad. Sci. USA 2018, 115, 501–506. [Google Scholar] [CrossRef]
- Rodell, C.B.; Arlauckas, S.P.; Cuccarese, M.F.; Garris, C.S.; Li, R.; Ahmed, M.S.; Kohler, R.H.; Pittet, M.J.; Weissleder, R. TLR7/8-Agonist-Loaded Nanoparticles Promote the Polarization of Tumour-Associated Macrophages to Enhance Cancer Immunotherapy. Nat. Biomed. Eng. 2018, 2, 578–588. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tan, H.; Daniels, J.D.; Zandkarimi, F.; Liu, H.; Brown, L.M.; Uchida, K.; O’Connor, O.A.; Stockwell, B.R. Imidazole Ketone Erastin Induces Ferroptosis and Slows Tumor Growth in a Mouse Lymphoma Model. Cell Chem. Biol. 2019, 26, 623–633.e9. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhang, Z.; Wang, J.; Guo, R.; Zhang, L.; Kong, L.; Yu, Y.; Zang, J.; Liu, Y.; Li, X. Immunomodulatory and Anti-Ovarian Cancer Effects of Novel Astragalus Polysaccharide Micelles Loaded with Podophyllotoxin. Int. J. Biol. Macromol. 2025, 290, 138960. [Google Scholar] [CrossRef]
- Rocha, G.N.d.S.A.O.; Silva, J.Y.R.; Santos, D.K.D. do N.; Pereira, A.C.M.V.; Rocha, J.V.R.; Alves, C. dos S.C.; Almeida, J.R.G. da S.; Gomes, A.S.L.; Bakuzis, A.F.; Junior, S.A. Design of a Magnetic Nanocarrier Containing Phyllacanthone as Delivery of Anticancer Phytochemical: Characterization and Theranostic in Vitro Applications. J. Alloys Compd. 2025, 1010, 177860. [Google Scholar] [CrossRef]
- Xia, L.; Zhou, C.; Liu, X.; Yu, Y.; Xie, Q.; Lin, H.; Xiong, X.; Zhang, S.; Liang, W.; Shao, H. Transforming Bone Cancer Treatment: A Comprehensive Review of Green-Synthesized Metal Nanoparticles. Cancer Cell Int. 2025, 25, 193. [Google Scholar] [CrossRef]
- AbouAitah, K.; Abdelaziz, A.M.; Higazy, I.M.; Swiderska-Sroda, A.; Hassan, A.M.E.; Shaker, O.G.; Szałaj, U.; Stobinski, L.; Malolepszy, A.; Lojkowski, W. Functionalized Carbon Nanotubes for Delivery of Ferulic Acid and Diosgenin Anticancer Natural Agents. ACS Appl. Bio Mater. 2024, 7, 791–811. [Google Scholar] [CrossRef]
- Singh, G.; Nenavathu, B.P.; Imtiyaz, K.; Moshahid A Rizvi, M. Fabrication of Chlorambucil Loaded Graphene- Oxide Nanocarrier and Its Application for Improved Antitumor Activity. Biomed. Pharmacother. 2020, 129, 110443. [Google Scholar] [CrossRef]
- Madeo, L.F.; Schirmer, C.; Cirillo, G.; Asha, A.N.; Ghunaim, R.; Froeschke, S.; Wolf, D.; Curcio, M.; Tucci, P.; Iemma, F.; et al. ZnO–Graphene Oxide Nanocomposite for Paclitaxel Delivery and Enhanced Toxicity in Breast Cancer Cells. Molecules 2024, 29, 3770. [Google Scholar] [CrossRef] [PubMed]
- de Andrade, L.R.M.; Andrade, L.N.; Bahú, J.O.; Cárdenas Concha, V.O.; Machado, A.T.; Pires, D.S.; Santos, R.; Cardoso, T.F.M.; Cardoso, J.C.; Albuquerque-Junior, R.L.C.; et al. Biomedical Applications of Carbon Nanotubes: A Systematic Review of Data and Clinical Trials. J. Drug Deliv. Sci. Technol. 2024, 99, 105932. [Google Scholar] [CrossRef]
- Feazell, R.P.; Nakayama-Ratchford, N.; Dai, H.; Lippard, S.J. Soluble Single-Walled Carbon Nanotubes as Longboat Delivery Systems for Platinum(IV) Anticancer Drug Design. J. Am. Chem. Soc. 2007, 129, 8438–8439. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, W.; He, L.; Wang, K.; Ma, B.; Ge, L.; Wang, Z.; Huang, J.; Wu, J.; Zhang, Q.; Ying, H. Combined Adsorption and Covalent Linking of Paclitaxel on Functionalized Nano-Graphene Oxide for Inhibiting Cancer Cells. ACS Omega 2018, 3, 2396–2405. [Google Scholar] [CrossRef]
- Hussien, N.A.; Işıklan, N.; and Türk, M. Pectin-Conjugated Magnetic Graphene Oxide Nanohybrid as a Novel Drug Carrier for Paclitaxel Delivery. Artif. Cells Nanomed. Biotechnol. 2018, 46, 264–273. [Google Scholar] [CrossRef]
- Liao, K.-H.; Lin, Y.-S.; Macosko, C.W.; Haynes, C.L. Cytotoxicity of Graphene Oxide and Graphene in Human Erythrocytes and Skin Fibroblasts. ACS Appl. Mater. Interfaces 2011, 3, 2607–2615. [Google Scholar] [CrossRef]
- Zhang, X.; Yin, J.; Peng, C.; Hu, W.; Zhu, Z.; Li, W.; Fan, C.; Huang, Q. Distribution and Biocompatibility Studies of Graphene Oxide in Mice after Intravenous Administration. Carbon 2011, 49, 986–995. [Google Scholar] [CrossRef]
- Ageev, S.V.; Semenov, K.N.; Shemchuk, O.S.; Iurev, G.O.; Andoskin, P.A.; Rumiantsev, A.M.; Sambuk, E.V.; Kozhukhov, P.K.; Maistrenko, D.N.; Molchanov, O.E.; et al. Synthesis, Biocompatibility and Biological Activity of a Graphene Oxide-Folic Acid Conjugate for Cytarabine Delivery. Colloids Surf. A Physicochem. Eng. Asp. 2024, 697, 134360. [Google Scholar] [CrossRef]
- Koltai, T. The Ph Paradigm in Cancer. Eur. J. Clin. Nutr. 2020, 74, 14–19. [Google Scholar] [CrossRef]
- Gillies, R.J.; Raghunand, N.; Karczmar, G.S.; Bhujwalla, Z.M. MRI of the Tumor Microenvironment. J. Magn. Reson. Imaging 2002, 16, 430–450. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, G.E.; Scuseria, M.A.; Robb, J.R.; Cheeseman, G.; Scalmani, V.; Barone, G.A.; Petersson, H.; Nakatsuji, X.; et al. Gaussian 16 Revision C.01 2019; Gaussian, Inc.: Wallingford, CT, USA, 2019. [Google Scholar]
- Dennington, R.; Keith, T.A.; Millam, J.M. GaussView 6.0 2016; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Becke, A.D. Density-Functional Exchange-Energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 1988, 38, 3098–3100. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results Obtained with the Correlation Energy Density Functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett. 1989, 157, 200–206. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Kupka, T.; Stachów, M.; Stobiński, L.; Kaminský, J. DFT Study of Zigzag (n, 0) Single-Walled Carbon Nanotubes: 13C NMR Chemical Shifts. J. Mol. Graph. Model. 2016, 67, 14–19. [Google Scholar] [CrossRef]
- Kupka, T.; Stachów, M.; Stobiński, L.; Kaminský, J. Calculation of Raman Parameters of Real-Size Zigzag (n, 0) Single-Walled Carbon Nanotubes Using Finite-Size Models. Phys. Chem. Chem. Phys. 2016, 18, 25058–25069. [Google Scholar] [CrossRef]
- Kupka, T.; Stachów, M.; Chełmecka, E.; Pasterny, K.; Stobińska, M.; Stobiński, L.; Kaminský, J. Efficient Modeling of NMR Parameters in Carbon Nanosystems. J. Chem. Theory Comput. 2013, 9, 4275–4286. [Google Scholar] [CrossRef]
- Chełmecka, E.; Pasterny, K.; Kupka, T.; Stobiński, L. DFT Studies of COOH Tip-Functionalized Zigzag and Armchair Single Wall Carbon Nanotubes. J. Mol. Model. 2012, 18, 2241–2246. [Google Scholar] [CrossRef] [PubMed]
- Chełmecka, E.; Pasterny, K.; Kupka, T.; Stobiński, L. Density Functional Theory Studies of OH-Modified Open-Ended Single-Wall Zigzag Carbon Nanotubes (SWCNTs). J. Mol. Struct. THEOCHEM 2010, 948, 93–98. [Google Scholar] [CrossRef]
- Kupka, T.; Stachów, M.; Nieradka, M.; Stobiński, L. DFT Calculation of Structures and NMR Chemical Shifts of Simple Models of Small Diameter Zigzag Single Wall Carbon Nanotubes (SWCNTs). Magn. Reson. Chem. 2011, 49, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Makieieva, N.; Kupka, T.; Stobiński, L.; Małolepszy, A. Modeling Hydration of Graphene Oxide (GO)—Does Size Matter? J. Mol. Struct. 2024, 1318, 139317. [Google Scholar] [CrossRef]
- Buczek, A.; Staś, M.; Hebenstreit, C.; Maller, C.; Broda, M.A.; Kupka, T.; Kelterer, A.-M. Interaction of 5-Fluorouracil with β-Cyclodextrin: A Density Functional Theory Study with Dispersion Correction. Int. J. Quantum Chem. 2021, 121, e26487. [Google Scholar] [CrossRef]
- Francl, M.M.; Pietro, W.J.; Hehre, W.J.; Binkley, J.S.; Gordon, M.S.; DeFrees, D.J.; Pople, J.A. Self-consistent Molecular Orbital Methods. XXIII. A Polarization-type Basis Set for Second-row Elements. J. Chem. Phys. 1982, 77, 3654–3665. [Google Scholar] [CrossRef]
- Barone, V.; Cossi, M.; Tomasi, J. Geometry Optimization of Molecular Structures in Solution by the Polarizable Continuum Model. J. Comput. Chem. 1998, 19, 404–417. [Google Scholar] [CrossRef]
- Boys, S.F.; Bernardi, F. The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors. Mol. Phys. 1970, 19, 553–566. [Google Scholar] [CrossRef]
- Nowak, P.M.; Olesek, K.; Woźniakiewicz, M.; Mitoraj, M.; Sagan, F.; Kościelniak, P. Cyclodextrin-Induced Acidity Modification of Substituted Cathinones Studied by Capillary Electrophoresis Supported by Density Functional Theory Calculations. J. Chromatogr. A 2018, 1580, 142–151. [Google Scholar] [CrossRef]
- Smith, S.W. Chiral Toxicology: It’s the Same Thing…Only Different. Toxicol. Sci. 2009, 110, 4–30. [Google Scholar] [CrossRef]
- Silva, B.; Rodrigues, J.S.; Almeida, A.S.; Lima, A.R.; Fernandes, C.; Guedes de Pinho, P.; Miranda, J.P.; Remião, F. Enantioselectivity of Pentedrone and Methylone on Metabolic Profiling in 2D and 3D Human Hepatocyte-like Cells. Pharmaceuticals 2022, 15, 368. [Google Scholar] [CrossRef] [PubMed]
- Jóźwiak, K.; Jezierska, A.; Panek, J.J.; Łydżba-Kopczyńska, B.; Filarowski, A. Renewed Spectroscopic and Theoretical Research of Hydrogen Bonding in Ascorbic Acid. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 320, 124585. [Google Scholar] [CrossRef] [PubMed]
- Jóźwiak, K.; Jezierska, A.; Panek, J.J.; Kochel, A.; Łydżba-Kopczyńska, B.; Filarowski, A. Very Strong Hydrogen Bond in Nitrophthalic Cocrystals. Molecules 2024, 29, 3565. [Google Scholar] [CrossRef]
- Jóźwiak, K.; Jezierska, A.; Panek, J.J.; Kochel, A.; Filarowski, A. Inter- vs. Intra-Molecular Hydrogen Bond in Complexes of Nitrophthalic Acids with Pyridine. Int. J. Mol. Sci. 2023, 24, 5248. [Google Scholar] [CrossRef] [PubMed]
- Jóźwiak, K.; Jezierska, A.; Panek, J.J.; Goremychkin, E.A.; Tolstoy, P.M.; Shenderovich, I.G.; Filarowski, A. Inter- vs. Intramolecular Hydrogen Bond Patterns and Proton Dynamics in Nitrophthalic Acid Associates. Molecules 2020, 25, 4720. [Google Scholar] [CrossRef]
- Stobinski, L.; Lesiak, B.; Kövér, L.; Tóth, J.; Biniak, S.; Trykowski, G.; Judek, J. Multiwall Carbon Nanotubes Purification and Oxidation by Nitric Acid Studied by the FTIR and Electron Spectroscopy Methods. J. Alloys Compd. 2010, 501, 77–84. [Google Scholar] [CrossRef]
- Stobinski, L.; Lesiak, B.; Zemek, J.; Jiricek, P. Time Dependent Thermal Treatment of Oxidized MWCNTs Studied by the Electron and Mass Spectroscopy Methods. Appl. Surf. Sci. 2012, 258, 7912–7917. [Google Scholar] [CrossRef]
- Addicoat, M.A.; Stefanovic, R.; Webber, G.B.; Atkin, R.; Page, A.J. Assessment of the Density Functional Tight Binding Method for Protic Ionic Liquids. J. Chem. Theory Comput. 2014, 10, 4633–4643. [Google Scholar] [CrossRef]
- Bodo, E.; Mangialardo, S.; Ramondo, F.; Ceccacci, F.; Postorino, P. Unravelling the Structure of Protic Ionic Liquids with Theoretical and Experimental Methods: Ethyl-, Propyl- and Butylammonium Nitrate Explored by Raman Spectroscopy and DFT Calculations. J. Phys. Chem. B 2012, 116, 13878–13888. [Google Scholar] [CrossRef]
- Gong, L.; Guo, W.; Xiong, J.; Li, R.; Wu, X.; Li, W. Structures and Stability of Ionic Liquid Model with Imidazole and Hydrogen Fluorides Chains: Density Functional Theory Study. Chem. Phys. Lett. 2006, 425, 167–178. [Google Scholar] [CrossRef]
- Doskocz, M.; Roszak, S.; Majumdar, D.; Doskocz, J.; Gancarz, R.; Leszczynski, J. Theoretical Studies on the Mechanism of C−P Bond Cleavage of a Model α-Aminophosphonate in Acidic Condition. J. Phys. Chem. A 2008, 112, 2077–2081. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Acosta, M.A.; Martínez-Gutiérrez, H.; Martínez-González, C.L.; Torres-SanMiguel, C.R.; Trejo-Valdez, M.; Torres-Torres, C. Fractional and Chaotic Electrical Signatures Exhibited by Random Carbon Nanotube Networks. Phys. Scr. 2018, 93, 125801. [Google Scholar] [CrossRef]
- Graton, J.; Le Questel, J.-Y.; Legouin, B.; Uriac, P.; van de Weghe, P.; Jacquemin, D. A DFT-D Evaluation of the Complexation of a Molecular Tweezer with Small Aromatic Molecules. Chem. Phys. Lett. 2012, 522, 11–16. [Google Scholar] [CrossRef]
- Allott, C.; Adams, H.; Hunter, C.A.; Thomas, J.A.; Bernad , P.L., Jr.; Rotger, C. Hydrogen-Bond Recognition of Cyclic Dipeptides in Water. Chem. Commun. 1998, 22, 2449–2450. [Google Scholar] [CrossRef]
- Steiner, T.; Koellner, G. Hydrogen Bonds with π-Acceptors in Proteins: Frequencies and Role in Stabilizing Local 3D Structures1. J. Mol. Biol. 2001, 305, 535–557. [Google Scholar] [CrossRef]
- Fernández-Recio, J.; Romero, A.; Sancho, J. Energetics of a Hydrogen Bond (Charged and Neutral) and of a Cation-π Interaction in Apoflavodoxin1. J. Mol. Biol. 1999, 290, 319–330. [Google Scholar] [CrossRef]
- Alagona, G.; Ghio, C.; Monti, S. 5-Fluorouracil Dimers in Aqueous Solution: Molecular Dynamics in Water and Continuum Solvation. Int. J. Quantum Chem. 2002, 88, 133–146. [Google Scholar] [CrossRef]
- Gorgulho, H.F.; Mesquita, J.P.; Gonçalves, F.; Pereira, M.F.R.; Figueiredo, J.L. Characterization of the Surface Chemistry of Carbon Materials by Potentiometric Titrations and Temperature-Programmed Desorption. Carbon 2008, 46, 1544–1555. [Google Scholar] [CrossRef]
Without Water | With Water | ||
---|---|---|---|
Complex | EBSSE | Complex | EBSSE |
1 unit | −10.9464 | 1 unit | −10.8627 |
2 units | −11.0556 | 2 units | −11.3299 |
3 units | −11.4193 | 3 units | −11.4700 |
Complex | EBSSE | Kind of Interaction | H··A or π··π Length |
---|---|---|---|
SWCNT-OH | |||
OH_A_CO | −11.0556 | CNT-O-H··O=C | 1.7279 |
CNT-C(π)··H-N | 2.2097 | ||
CNT-C(π)··H-C | 2.8326 | ||
OH_A_NH | −5.6333 | CNT-O··H-N | 2.4271 |
CNT-C(π)··H-N | 2.1972 | ||
CNT-C(π)··H-C | 2.6250 | ||
CNT-C(π)··H-C | 2.9627 | ||
OH_A_NH_π | −9.9913 | CNT-O··H-N | 1.9932 |
CNT-C-H··O=C | 3.1801 | ||
CNT-C(π)··C(π) | 3.2626 | ||
OH_B_CO | −11.0684 | CNT-O-H··O=C | 1.7519 |
CNT-O··H-C | 2.8541 | ||
CNT-C(π)··H-C | 3.3073 | ||
CNT-C(π)··C(π) | 3.2787 | ||
OH_C_CO | −10.5607 | CNT-O-H··O=C | 1.7193 |
CNT-C(π)··H-N | 2.1034 | ||
CNT-C(π)··H-C | 3.4077 | ||
OH_C_F | −3.2792 | CNT-O-H··F | 1.8392 |
OH_C_NH | −5.6249 | CNT-O··H-N | 1.9322 |
CNT-C(π)··H-C | 2.8021 | ||
OH_C_NH_π | −6.0032 | CNT-O··H-N | 2.0279 |
CNT-C-H··O=C | 2.4568 | ||
CNT-C-H··C(π) | 2.6999 | ||
OH_C_NH_π2 | −10.0124 | CNT-O··H-C | 3.2526 |
CNT-C(π)··H-N | 2.1870 | ||
CNT-C(π)··H-C | 2.9081 | ||
CNT-C(π)··H-C | 2.5219 | ||
CNT-C(π)··H-C | 2.8047 | ||
OH_C_π | −9.0711 | CNT-C(π)··H-C | 2.6274 |
CNT-C(π)··H-C | 2.7309 | ||
CNT-C(π)··C(π) | 3.2898 | ||
SWCNT-COO− | |||
COO_A_CO-CH | −7.4879 | CNT-C-H··O=C | 2.6517 |
CNT-C-H··C(π) | 2.6270 | ||
CNT-C-H··C(π) | 2.7392 | ||
CNT-C=O··H-C | 2.3810 | ||
CNT-C=O··H-C | 2.5079 | ||
COO_A_NH_π_W | −22.8341 | CNT-C=O··H-N | 1.3952 |
CNT-C-H··C(π) | 2.4972 | ||
COO_A_NH_W | −23.2044 | CNT-C=O··H-N | 1.5029 |
CNT-C(π)··H-N | 2.9131 | ||
COO_B_CO-CH | −6.2739 | CNT-C=O··H-C | 2.7538 |
CNT-C=O··H-C | 2.1771 | ||
CNT-C-H··O=C | 2.3519 | ||
CNT-C-H··O=C | 2.4012 | ||
COO_B_NH_W | −18.6932 | CNT-C=O··H-N | 1.4511 |
COO_B_π | −8.8260 | CNT-C-H··CI | 3.1526 |
CNT-C-H··CI | 2.8095 | ||
CNT-C=O··H-C | 2.3634 | ||
CNT-C=O··H-C | 2.5071 | ||
CNT-C-H··C(π) | 2.8230 | ||
COO_C_NH_W | −20.2424 | CNT-C=O··H-N | 1.4768 |
COO_C_π | −7.4756 | CNT-C=O··H-C | 2.4253 |
CNT-C=O··H-C | 2.4082 | ||
CNT-C-H··C(π) | 2.7564 | ||
COO_C_π2_W2 | −11.8132 | CNT-C=O··H-C | 2.2884 |
CNT-C=O··H-C | 2.0081 | ||
CNT-C=O··H-C | 2.4404 | ||
CNT-C-H··O=C | 2.5782 | ||
CNT-C-H··C(π) | 2.6376 | ||
COO_D_COC_W | −8.8299 | CNT-C=O··H-C | 2.3822 |
CNT-C-H··O-C | 2.6209 | ||
CNT-C-H··O=C | 2.3299 | ||
COO_D_NH_W2 | −16.5568 | CNT-C=O··H-N | 1.6187 |
CNT-C=O··H-C | 2.4678 | ||
CNT-C=O··H-C | 2.3770 | ||
SWCNT-COOH | |||
COOH_A_Dimer_W | −15.3782 | CNT-O-H··O=C | 1.8247 |
CNT-C=O··H-N | 1.5116 | ||
COOH_A_NH_W | −16.4735 | CNT-C=O··H-N | 1.6398 |
CNT-C(π)··H-C | 3.0042 | ||
COOH_A_π_W | −7.1474 | CNT-C=O··H-C | 2.4025 |
CNT-C-H··C(π) | 2.7412 | ||
COOH_B_CI | −7.6597 | CNT-O-H··CI | 3.4914 |
CNT-C(π)··H-C | 2.3745 | ||
CNT-C(π)··H-C | 2.7376 | ||
CNT-C(π)··H-N | 2.6783 | ||
COOH_B_Dimer_W | −14.5553 | CNT-O-H··O=C | 1.8315 |
CNT-C=O··H-N | 1.5659 | ||
COOH_B_NH_W | −16.2372 | CNT-C=O··H-N | 1.5541 |
CNT-C(π)··H-N | 2.4967 | ||
CNT-C(π)··H-C | 3.0067 | ||
COOH_C_Dimer_W | −16.9588 | CNT-O-H··O=C | 1.8993 |
CNT-C=O··H-N | 1.6445 | ||
COOH_C_F_CO | −5.5671 | CNT-O-H··F | 2.0677 |
CNT-C-H··O=C | 2.3553 | ||
COOH_C_NH_W | −13.1462 | CNT-C=O··H-N | 1.5767 |
CNT-C(π)··H-C | 3.0016 | ||
CNT-C(π)··H-C | 3.0241 | ||
COOH_C_π2 | −9.4891 | CNT-C(π)··H-C | 2.8867 |
CNT-C(π)··H-C | 2.8332 | ||
CNT-C(π)··H-C | 2.8735 | ||
CNT-C(π)··H-C | 2.7112 | ||
CNT-C-H··C(π) | 3.3450 | ||
COOH_D_COC_W | −11.5632 | CNT-O-H··O-C | 2.1689 |
CNT-C(π)··H-C | 2.8143 | ||
CNT-C(π)··H-C | 2.8537 | ||
CNT-C(π)··H-C | 2.5988 | ||
CNT-C(π)··H-C | 3.4458 | ||
CNT-C-H··C(π) | 2.6291 | ||
COOH-D_Dimer_W | −16.2812 | CNT-O-H··O=C | 1.8966 |
CNT-C=O··H-N | 1.6131 | ||
CNT-C(π)··H-C | 2.9518 | ||
CNT-C(π)··H-C | 2.9298 | ||
COOH_D_π | −10.2033 | CNT-O··H-C | 2.2241 |
CNT-O··H-C | 2.5506 | ||
CNT-C(π)··H-C | 2.5417 | ||
CNT-C(π)··H-C | 2.7299 | ||
CNT-C-H··C(π) | 2.5632 |
Complex | EBSSE (SWCNT-COO−) | EBSSE (SWCNT-COOH) |
---|---|---|
A_NH_W | −23.2044 | −16.4735 |
B_NH_W | −18.6932 | −16.2372 |
C_NH_W | −20.2424 | −13.1462 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makieieva, N.; Kupka, T.; Rahmonov, O. Modelling of Cathinone–Carbon Nanotube Complexes’ Stability: Theory with a Cancer Treatment Perspective. Appl. Sci. 2025, 15, 8892. https://doi.org/10.3390/app15168892
Makieieva N, Kupka T, Rahmonov O. Modelling of Cathinone–Carbon Nanotube Complexes’ Stability: Theory with a Cancer Treatment Perspective. Applied Sciences. 2025; 15(16):8892. https://doi.org/10.3390/app15168892
Chicago/Turabian StyleMakieieva, Natalina, Teobald Kupka, and Oimahmad Rahmonov. 2025. "Modelling of Cathinone–Carbon Nanotube Complexes’ Stability: Theory with a Cancer Treatment Perspective" Applied Sciences 15, no. 16: 8892. https://doi.org/10.3390/app15168892
APA StyleMakieieva, N., Kupka, T., & Rahmonov, O. (2025). Modelling of Cathinone–Carbon Nanotube Complexes’ Stability: Theory with a Cancer Treatment Perspective. Applied Sciences, 15(16), 8892. https://doi.org/10.3390/app15168892