Sex-Based Differences at Ventilatory Thresholds in Trained Runners
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Measurements
2.4. Statistical Analysis
3. Results
3.1. Differences at VT1
3.2. Differences at VT2
4. Discussion
4.1. Absolute Speed, Fractional Utilization of MAS, and Running Power
4.2. Ventilatory and Muscle Oxygenation Parameters
4.3. Heart Rate and Rate of Perceived Exertion
4.4. Limitations
4.5. Practical Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
VT1 | First Ventilatory Threshold |
VT2 | Second Ventilatory Threshold |
O2 | Oxygen Consumption/Uptake |
RER | Respiratory Exchange Ratio |
HR | Heart Rate |
SmO2 | Muscle Oxygenation |
RPE | Rate of Perceived Exertion |
MAS | Maximal Aerobic Speed |
LT1 | First Lactate Threshold |
LT2 | Second Lactate Threshold |
CP | Critical Power |
MLSS | Maximal Lactate Steady State |
O2max | Maximal Oxygen Consumption |
HRmax | Maximal Heart Rate |
GXT | Grade Exercise Test |
CO2 | Carbon Dioxide Output |
NIRS | Near Infrared Spectroscopy |
ES | Effect Size |
References
- Skinner, J.S.; McLellan, T.M. The transition from aerobic to anaerobic metabolism. Res. Q. Exerc. Sport 1980, 51, 234–248. [Google Scholar] [CrossRef] [PubMed]
- Hunter, B.; Meyler, S.; Maunder, E.; Cox, T.H.; Muniz-Pumares, D. The Relationship Between the Moderate-Heavy Boundary and Critical Speed in Running. Int. J. Sports Physiol. Perform. 2024, 19, 963–972. [Google Scholar] [CrossRef]
- Sperlich, B.; Matzka, M.; Holmberg, H.C. The proportional distribution of training by elite endurance athletes at different intensities during different phases of the season. Front. Sports Act. Living 2023, 5, 1258585. [Google Scholar] [CrossRef]
- Casado, A.; González-Mohíno, F.; González-Ravé, J.M.; Foster, C. Training Periodization, Methods, Intensity Distribution, and Volume in Highly Trained and Elite Distance Runners: A Systematic Review. Int. J. Sports Physiol. Perform. 2022, 17, 820–833. [Google Scholar] [CrossRef]
- Seiler, S. What is best practice for training intensity and duration distribution in endurance athletes? Int. J. Sports Physiol. Perform. 2010, 5, 276–291. [Google Scholar] [CrossRef]
- Seiler, S. Training Intensity Distribution. In Endurance Training: Science and Practice, 2nd ed.; Mujika, I., Ed.; Iñigo Mujika S.L.U.: Vitoria-Gasteiz, Spain, 2012; pp. 41–54. [Google Scholar]
- Lansley, K.E.; Dimenna, F.J.; Bailey, S.J.; Jones, A.M. A ‘new’ method to normalise exercise intensity. Int. J. Sports Med. 2011, 32, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Skinner, J.S.; Wilmore, K.M.; Krasnoff, J.B.; Jaskólski, A.; Jaskólska, A.; Gagnon, J.; Province, M.A.; Leon, A.S.; Rao, D.C.; Wilmore, J.H.; et al. Adaptation to a standardized training program and changes in fitness in a large, heterogeneous population: The HERITAGE Family Study. Med. Sci. Sports Exerc. 2000, 32, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Meyler, S.; Bottoms, L.; Wellsted, D.; Muniz-Pumares, D. Variability in exercise tolerance and physiological responses to exercise prescribed relative to physiological thresholds and to maximum oxygen uptake. Exp. Physiol. 2023, 108, 581–594. [Google Scholar] [CrossRef]
- Meyler, S.; Bottoms, L.; Muniz-Pumares, D. Biological and methodological factors affecting VO2max response variability to endurance training and the influence of exercise intensity prescription. Exp. Physiol. 2021, 106, 1410–1424. [Google Scholar] [CrossRef]
- Landen, S.; Voisin, S.; Craig, J.M.; McGee, S.L.; Lamon, S.; Eynon, N. Genetic and epigenetic sex-specific adaptations to endurance exercise. Epigenetics 2019, 14, 523–535. [Google Scholar] [CrossRef] [PubMed]
- Landen, S.; Hiam, D.; Voisin, S.; Jacques, M.; Lamon, S.; Eynon, N. Physiological and molecular sex differences in human skeletal muscle in response to exercise training. J. Physiol. 2023, 601, 419–434. [Google Scholar] [CrossRef]
- McClelland, E.L.; Weyand, P.G. Sex differences in human running performance: Smaller gaps at shorter distances? J. Appl. Physiol. 2022, 133, 876–885. [Google Scholar] [CrossRef]
- Deschenes, M.R.; Hillard, M.N.; Wilson, J.A.; Dubina, M.I.; Eason, M.K. Effects of gender on physiological responses during submaximal exercise and recovery. Med. Sci. Sports Exerc. 2006, 38, 1304–1310. [Google Scholar] [CrossRef] [PubMed]
- Martins, H.A.; Barbosa, J.G.; Seffrin, A.; Vivan, L.; Souza, V.; De Lira, C.A.B.; Weiss, K.; Knechtle, B.; Andrade, M.S. Sex Differences in Maximal Oxygen Uptake Adjusted for Skeletal Muscle Mass in Amateur Endurance Athletes: A Cross Sectional Study. Healthcare 2023, 11, 1502. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo-Carranza, V.; González-Mohíno, F.; Turner, A.P.; Rodriguez-Barbero, S.; González-Ravé, J.M. Using a portable near-infrared spectroscopy device to estimate the second ventilatory threshold. Int. J. Sports Med. 2021, 42, 905–910. [Google Scholar] [CrossRef]
- Feldmann, A.; Ammann, L.; Gächter, F.; Zibung, M.; Erlacher, D. Muscle oxygen saturation breakpoints reflect ventilatory thresholds in both cycling and running. J. Hum. Kinet. 2022, 83, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Stathopoulos, A.; Petridou, A.; Kantouris, N.; Mougios, V. A comparison of leg muscle oxygenation, cardiorespiratory responses, and blood lactate between walking and running at the same speed. Sports 2024, 12, 48. [Google Scholar] [CrossRef]
- Sendra-Pérez, C.; Priego-Quesada, J.I.; Salvador-Palmer, R.; Murias, J.M.; Encarnacion-Martinez, A. Sex-related differences in profiles of muscle oxygen saturation of different muscles in trained cyclists during graded cycling exercise. J. Appl. Physiol. 2023, 135, 1092–1101. [Google Scholar] [CrossRef]
- Parker, B.A.; Smithmyer, S.L.; Pelberg, J.A.; Mishkin, A.D.; Herr, M.D.; Proctor, D.N. Sex differences in leg vasodilation during graded knee extensor exercise in young adults. J. Appl. Physiol. 2007, 103, 1583–1591. [Google Scholar] [CrossRef]
- Iannetta, D.; Inglis, E.C.; Mattu, A.T.; Fontana, F.Y.; Pogliaghi, S.; Keir, D.A.; Murias, J.M. A critical evaluation of current methods for exercise prescription in women and men. Med. Sci. Sports Exerc. 2020, 52, 466–473. [Google Scholar] [CrossRef]
- Rascon, J.; Trujillo, E.; Morales-Acuña, F.; Gurovich, A.N. Differences between males and females in determining exercise intensity. Int. J. Exerc. Sci. 2020, 13, 1305–1316. [Google Scholar] [CrossRef]
- Bayles, M.P. ACSM’s Exercise Testing and Prescription, 12th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2023. [Google Scholar]
- Birk, T.J.; Birk, C.A. Use of ratings of perceived exertion for exercise prescription. Sports Med. 1987, 4, 1–8. [Google Scholar] [CrossRef]
- Mihevic, P.M. Sensory cues for perceived exertion: A review. Med. Sci. Sports Exerc. 1981, 13, 150–163. [Google Scholar] [CrossRef]
- Hampson, D.B.; St Clair Gibson, A.; Lambert, M.I.; Noakes, T.D. The influence of sensory cues on the perception of exertion during exercise and central regulation of exercise performance. Sports Med. 2001, 31, 935–952. [Google Scholar] [CrossRef]
- Skinner, J.S.; Hutsler, R.; Bergsteinová, V.; Buskirk, E.R. Perception of effort during different types of exercise and under different environmental conditions. Med. Sci. Sports 1973, 5, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Garcin, M.; Fleury, A.; Mille-Hamard, L.; Billat, V. Sex-related differences in ratings of perceived exertion and estimated time limit. Int. J. Sports Med. 2005, 26, 675–681. [Google Scholar] [CrossRef]
- Robertson, R.J.; Moyna, N.M.; Sward, K.L.; Millich, N.B.; Goss, F.L.; Thompson, P.D. Gender comparison of RPE at absolute and relative physiological criteria. Med. Sci. Sports Exerc. 2000, 32, 2120–2129. [Google Scholar] [CrossRef] [PubMed]
- Frederick, E.C. Let’s just call it advanced footwear technology (AFT). Footwear Sci. 2022, 14, 131. [Google Scholar] [CrossRef]
- Jones, A.M.; Doust, J.H. A 1% treadmill grade most accurately reflects the energetic cost of outdoor running. J. Sports Sci. 1996, 14, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Feldmann, A.; Schmitz, R.; Erlacher, D. Near-infrared spectroscopy-derived muscle oxygen saturation on a 0% to 100% scale: Reliability and validity of the Moxy Monitor. J. Biomed. Opt. 2019, 24, 115001. [Google Scholar] [CrossRef]
- McManus, C.J.; Collison, J.; Cooper, C.E. Performance comparison of the MOXY and PortaMon near-infrared spectroscopy muscle oximeters at rest and during exercise. J. Biomed. Opt. 2018, 23, 015007. [Google Scholar] [CrossRef] [PubMed]
- Keir, D.A.; Mattioni Maturana, F.; Iannetta, D.; Murias, J.M. Comment on: “Relative Proximity of Critical Power and Metabolic/Ventilatory Thresholds: Systematic Review and Meta-Analysis”. Sports Med. 2021, 51, 367–368. [Google Scholar] [CrossRef]
- Grassi, B.; Poole, D.C.; Richardson, R.S.; Knight, D.R.; Erickson, B.K.; Wagner, P.D. Muscle O2 uptake kinetics in humans: Implications for metabolic control. J. Appl. Physiol. (1985) 1996, 80, 988–998. [Google Scholar] [CrossRef]
- Howley, E.T.; Bassett, D.R., Jr.; Welch, H.G. Criteria for maximal oxygen uptake: Review and commentary. Med. Sci. Sports Exerc. 1995, 27, 1292–1301. [Google Scholar] [CrossRef]
- Billat, V.; Beillot, J.; Jan, J.; Rochcongar, P.; Carre, F. Gender effect on the relationship of time limit at 100% VO2max with other bioenergetic characteristics. Med. Sci. Sports Exerc. 1996, 28, 1049–1055. [Google Scholar] [CrossRef]
- Sangan, H.F.; Hopker, J.G.; Davison, G.; McLaren, S.J. The Self-Paced Submaximal Run Test: Associations With the Graded Exercise Test and Reliability. Int. J. Sports Physiol. Perform. 2021, 16, 1865–1873. [Google Scholar] [CrossRef]
- Hopkins, W.G. A Scale of Magnitudes for Effect Statistics. Available online: http://www.sportsci.org/resource/stats/ (accessed on 15 April 2025).
- Mendonca, G.V.; Matos, P.; Correia, J.M. Running economy in recreational male and female runners with similar levels of cardiovascular fitness. J. Appl. Physiol. 2020, 129, 508–515. [Google Scholar] [CrossRef]
- Benítez-Muñoz, J.A.; Rojo-Tirado, M.Á.; Benito Peinado, P.J.; Murias, J.M.; González-Lamuño, D.; Cupeiro, R. Greater relative first and second lactate thresholds in females compared with males: Consideration for exercise prescription. Int. J. Sports Physiol. Perform. 2025, 20, 30–36. [Google Scholar] [CrossRef] [PubMed]
- van Rassel, C.R.; Ajayi, O.O.; Sales, K.M.; Griffiths, J.K.; Fletcher, J.R.; Edwards, W.B.; MacInnis, M.J. Is running power a useful metric? Quantifying training intensity and aerobic fitness using stryd running power near the maximal lactate steady state. Sensors 2023, 23, 8729. [Google Scholar] [CrossRef] [PubMed]
- Devries, M.C. Sex-based differences in endurance exercise muscle metabolism: Impact on exercise and nutritional strategies to optimize health and performance in women. Exp. Physiol. 2016, 101, 243–249. [Google Scholar] [CrossRef]
- Tarnopolsky, M.A.; Atkinson, S.A.; Phillips, S.M.; MacDougall, J.D. Carbohydrate loading and metabolism during exercise in men and women. J. Appl. Physiol. 1995, 78, 1360–1368. [Google Scholar] [CrossRef] [PubMed]
- Haizlip, K.M.; Harrison, B.C.; Leinwand, L.A. Sex-based differences in skeletal muscle kinetics and fiber-type composition. Physiology 2015, 30, 30–39. [Google Scholar] [CrossRef]
- Westerblad, H.; Bruton, J.D.; Katz, A. Skeletal muscle: Energy metabolism, fiber types, fatigue and adaptability. Exp. Cell Res. 2010, 316, 3093–3099. [Google Scholar] [CrossRef]
- Ruby, B.C.; Coggan, A.R.; Zderic, T.W. Gender differences in glucose kinetics and substrate oxidation during exercise near the lactate threshold. J. Appl. Physiol. (1985) 2002, 92, 1125–1132. [Google Scholar] [CrossRef]
- Ansdell, P.; Škarabot, J.; Atkinson, E.; Corden, S.; Tygart, A.; Hicks, K.M.; Thomas, K.; Hunter, S.K.; Howatson, G.; Goodall, S. Sex differences in fatigability following exercise normalised to the power-duration relationship. J. Physiol. 2020, 598, 5717–5737. [Google Scholar] [CrossRef]
- Hafen, P.S.; Vehrs, P.R. Sex-Related Differences in the Maximal Lactate Steady State. Sports 2018, 6, 154. [Google Scholar] [CrossRef] [PubMed]
- Pacitti, L.J. Examining Sex Differences in Substrate Utilization During Threshold-Based Exercise Prescription. Master’s Thesis, Queen’s University, Kingston, ON, Canada, 2024. [Google Scholar]
- Espinosa-Ramírez, M.; Moya-Gallardo, E.; Araya-Román, F.; Riquelme-Sánchez, S.; Rodriguez-García, G.; Reid, W.D.; Viscor, G.; Araneda, O.F.; Gabrielli, L.; Contreras-Briceño, F. Sex-differences in the oxygenation levels of intercostal and vastus lateralis muscles during incremental exercise. Front. Physiol. 2021, 12, 738063. [Google Scholar] [CrossRef] [PubMed]
- Häkkinen, K. Neuromuscular fatigue and recovery in male and female athletes during heavy resistance exercise. Int. J. Sports Med. 1993, 14, 53–59. [Google Scholar] [CrossRef]
- Schorderet, F.; Mottet, J.; Lathion, A.; Raberin, A.; Bourdillon, N.; Millet, G.P. Sex differences in elite ski mountaineering aerobic performance. Front. Sports Act. Living 2025, 7, 1534315. [Google Scholar] [CrossRef] [PubMed]
- Coe, L.N.; Astorino, T.A. No sex differences in perceptual responses to high-intensity interval training or sprint interval training. J. Strength. Cond. Res. 2024, 38, 1025–1032. [Google Scholar] [CrossRef]
- Nuuttila, O.-P.; Kaikkonen, P.; Sievänen, H.; Vasankari, T.; Kyröläinen, H. The accuracy of fixed intensity anchors to estimate lactate thresholds in recreational runners. Eur. J. Appl. Physiol. 2025. [Google Scholar] [CrossRef] [PubMed]
- Yogev, A.; Arnold, J.; Nelson, H.; Clarke, D.C.; Guenette, J.A.; Sporer, B.C.; Koehle, M.S. Comparing the reliability of muscle oxygen saturation with common performance and physiological markers across cycling exercise intensity. Front. Sports Act. Living 2023, 5, 1143393. [Google Scholar] [CrossRef] [PubMed]
Variables | Males (n = 24) | Females (n = 19) |
---|---|---|
Age (y) | 27.92 ± 6.43 | 24.37 ± 4.41 |
Body mass (kg) | 61.75 ± 4.32 | 52.64 ± 4.11 |
Height (cm) | 174.57 ± 5.80 | 165.00 ± 5.00 |
WAs in 10 km (points) | 835.67 ± 128.36 | 816.68 ± 202.70 |
Maximal aerobic speed (km·h−1) | 20.83 ± 0.87 | 17.42 ± 1.31 |
Maximal heart rate (bpm) | 186.63 ± 8.20 | 189.05 ± 11.49 |
First Ventilatory Threshold | Second Ventilatory Threshold | |||||||
---|---|---|---|---|---|---|---|---|
Males | Females | p-Value | ES | Males | Females | p-Value | ES | |
Absolute power (W) | 267.50 ± 23.19 | 194.63 ± 18.86 | <0.001 | 3.41 | 333.96 ± 28.66 | 248.63 ± 24.03 | <0.001 | 3.20 |
Relative power (W) | 4.34 ± 0.35 | 3.71 ± 0.36 | <0.001 | 1.77 | 5.42 ± 0.41 | 4.72 ± 0.37 | <0.001 | 1.77 |
Running power (%MAS) | 72.22 ± 4.20 | 73.63 ± 4.78 | 0.156 | −0.31 | 90.44 ± 4.53 | 93.93 ± 3.91 | 0.006 | −0.82 |
Speed (km·h−1) | 15.00 ± 1.06 | 12.42 ± 1.22 | <0.001 | 2.27 | 19.04 ± 1.06 | 16.32 ± 1.29 | <0.001 | 2.32 |
Fractional utilization (%) | 72.04 ± 4.91 | 71.36 ± 5.34 | 0.334 | 0.13 | 91.43 ± 3.21 | 93.64 ± 6.44 | 0.004 | −0.83 |
Absolute HR (bpm) | 160.38 ± 9.97 | 166.61 ± 13.84 | 0.049 | −0.53 | 181.52 ± 8.10 | 184.61 ± 10.80 | 0.151 | −0.33 |
%HRmax (bpm) | 85.95 ± 4.10 | 88.28 ± 3.48 | 0.030 | −0.61 | 97.33 ± 1.44 | 97.93 ± 1.13 | 0.078 | −0.46 |
RER | 0.87 ± 0.04 | 0.83 ± 0.03 | 0.001 | 0.97 | 1.03 ± 0.06 | 1.01 ± 0.06 | 0.032 | 0.59 |
VO2 (mL·kg−1·min−1) | 51.15 ± 4.67 | 44.23 ± 5.64 | <0.001 | 1.35 | 62.83 ± 5.80 | 53.60 ± 6.17 | <0.001 | 1.55 |
VO2 (mL·kg−0·75·min−1) | 67.80 ± 5.94 | 58.80 ± 7.47 | <0.001 | 1.35 | 83.29 ± 7.35 | 71.26 ± 8.19 | <0.001 | 1.55 |
SmO2 gastrocnemius (%) | 41.21 ± 18.36 | 55.11 ± 17.77 | 0.008 | −0.77 | 29.03 ± 17.73 | 37.31 ± 17.41 | 0.066 | −0.47 |
SmO2 vastus lateralis (%) | 44.99 ± 10.45 | 77.56 ± 12.16 | <0.001 | −2.89 | 26.38 ± 10.21 | 60.44 ± 21.21 | <0.001 | −2.11 |
Δ SmO2 gastrocnemius (%) | 31.38 ± 20.65 | 20.64 ± 15.81 | 0.035 | 0.57 | 51.98 ± 23.05 | 47.32 ± 18.10 | 0.238 | 0.22 |
Δ SmO2 vastus lateralis (%) | 20.03 ± 11.92 | 5.22 ± 8.65 | <0.001 | 1.40 | 53.27 ± 17.23 | 26.57 ± 22.11 | <0.001 | 1.36 |
RPE (1–10 scale) | 3.65 ± 1.46 | 3.21 ± 1.47 | 0.169 | 0.30 | 8.00 ± 1.45 | 7.84 ± 1.30 | 0.359 | 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodríguez-Barbero, S.; Alda-Blanco, A.; Salinero, J.J.; González-Mohíno, F. Sex-Based Differences at Ventilatory Thresholds in Trained Runners. Appl. Sci. 2025, 15, 8843. https://doi.org/10.3390/app15168843
Rodríguez-Barbero S, Alda-Blanco A, Salinero JJ, González-Mohíno F. Sex-Based Differences at Ventilatory Thresholds in Trained Runners. Applied Sciences. 2025; 15(16):8843. https://doi.org/10.3390/app15168843
Chicago/Turabian StyleRodríguez-Barbero, Sergio, Alejandro Alda-Blanco, Juan José Salinero, and Fernando González-Mohíno. 2025. "Sex-Based Differences at Ventilatory Thresholds in Trained Runners" Applied Sciences 15, no. 16: 8843. https://doi.org/10.3390/app15168843
APA StyleRodríguez-Barbero, S., Alda-Blanco, A., Salinero, J. J., & González-Mohíno, F. (2025). Sex-Based Differences at Ventilatory Thresholds in Trained Runners. Applied Sciences, 15(16), 8843. https://doi.org/10.3390/app15168843