A Novel Amphibious Terrestrial–Aerial UAV Based on Separation Cage Structure for Search and Rescue Missions
Abstract
Featured Application
Abstract
1. Introduction
2. Structural Design
2.1. General Functional Requirements
- The ground–aerial amphibious UAV must possess a certain payload capacity, with a specified payload of M = 1 kg.
- To adapt to narrow and confined spaces, the UAV should feature a compact design, with overall operational dimensions limited to Length × Width × Height = 150 × 70 × 70 cm or smaller. To ensure the UAV maintains stable flight with a 1 kg payload capacity, the propeller dimensions must exceed constrained minimum size thresholds. Consequently, the final airframe configuration measures Length × Width × Height = 77 × 50 × 50 cm.
- The UAV must be capable of operating in dark, enclosed environments, enabling an immediate takeoff and stable flight. It should also exhibit resilience to collisions with obstacles, allowing for a quick recovery to steady-state operation.
2.2. Main Structural Design
- Separation cage structure;
- Bearing connectors;
- Power-driven components;
- Flight control carrier board;
- H-shaped quadrotor frame;
- LED lighting system.
2.2.1. Design of the Separation Cage Structure
2.2.2. H-Shaped Frame Design for Quadrotor
3. Overall Algorithm Design
3.1. Controller Design
- e: [−3, 3];
- ec: [−3, 3].
- : [−2.5, 2.5];
- : [−0.5, 0.5];
- : [−5, 5].
- predominantly governs the system’s response speed;
- directly influences the steady-state error;
- critically affects the dynamic performance.
3.2. Control Scheme
3.3. Ground Control Station System
3.4. Visual Recognition Algorithm
- Intersection over Union (IoU) quantifies the overlap ratio between predicted and ground-truth bounding boxes;
- D1: Diagonal distance of the minimum enclosing rectangle of the two boxes;
- D2: Euclidean distance between their centroids;
- : Aspect ratio consistency parameter calculated by the following.
4. Results and Discussion
4.1. Comparative Evaluation with Relevant UAVs
4.2. YOLOv5s-Ghost Network Training and Experimental Results
4.3. Vision-Based Detection Experiment
4.4. Drop Tests
4.5. Prototype Flight Experiment
5. Conclusions
6. Limitations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
UVA | Unmanned Aerial Vehicles |
RTK | Real Time Kinematic |
LiDAR | Light Detection and Ranging |
GCS | Ground Control Station |
MAVLink | Micro Air Vehicle Link |
YOLO | You Only Look Once |
FLOPs | Floating Point Operations Per Second |
BN | Batch Normalization |
CIoU | Complete Intersection Over Union |
IoU | Intersection Over Union |
NMS | Non-Maximum Suppression |
MTOW | Maximum Take-Off Weight |
mAP | Mean Average Precision |
References
- Boiteau, S.; Vanegas, F.; Galvez-Serna, J.; Gonzalez, F. Model-Based RL Decision-Making for UAVs Operating in GNSS-Denied, Degraded Visibility Conditions with Limited Sensor Capabilities. Drones 2025, 9, 410. [Google Scholar] [CrossRef]
- Liu, Y.; Xie, S.; Zhang, Y. Cooperative Offloading and Resource Management for UAV-Enabled Mobile Edge Computing in Power IoT System. IEEE Trans. Veh. Technol. 2020, 69, 12229–12239. [Google Scholar] [CrossRef]
- Panigrahi, S.S.; Singh, K.D.; Balasubramanian, P.; Wang, H.; Natarajan, M.; Ravichandran, P. UAV-Based LiDAR and Multispectral Imaging for Estimating Dry Bean Plant Height, Lodging and Seed Yield. Sensors 2025, 25, 3535. [Google Scholar] [CrossRef]
- Xu, J.; Panagopoulos, D.; Perrusquía, A.; Guo, W.; Tsourdos, A. Generalising Rescue Operations in Disaster Scenarios Using Drones: A Lifelong Reinforcement Learning Approach. Drones 2025, 9, 409. [Google Scholar] [CrossRef]
- Tsachouridis, S.; Pavloudakis, F.; Sachpazis, C.; Tsioukas, V. Monitoring Slope Stability: A Comprehensive Review of UAV Applications in Open-Pit Mining. Land 2025, 14, 1193. [Google Scholar] [CrossRef]
- Feng, C.; Fan, J.; Liu, Z.; Jin, G.; Chen, S. Unmanned Aerial Vehicle Anomaly Detection Based on Causality-Enhanced Graph Neural Networks. Drones 2025, 9, 408. [Google Scholar] [CrossRef]
- Hong, M.; Wang, J.; Zhu, M.; Cao, S.; Nie, H.; Xu, X. Detection-Driven Gaussian Mixture Probability Hypothesis Density Multi-Target Tracker for Airborne Infrared Platforms. Sensors 2025, 25, 3491. [Google Scholar] [CrossRef]
- Cagnazzo, C.; Angelini, S. Vertical Temperature Profile Test by Means of Using UAV: An Experimental Methodology in a Karst Sinkhole of the Apulia Region (Italy). Meteorology 2025, 4, 15. [Google Scholar] [CrossRef]
- Al-Nabhan, N.; Alturkestani, R.; Belghith, A.; AlAloula, N. A Conflict Resolution Approach for Multiple Unmanned Aerial Vehicles. Electronics 2025, 14, 2247. [Google Scholar] [CrossRef]
- Alotaibi, T.; Jambi, K.; Khemakhem, M.; Eassa, F.; Bourennani, F. Outdoor Dataset for Flying a UAV an Appropriate Altitude. Drones 2025, 9, 406. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Z.; Gao, R.; Zhang, J.; Feng, W. Unmanned Aerial Vehicle (UAV) Imagery for Plant Communities: Optimizing Visible Light Vegetation Index to Extract Multi-Species Coverage. Plants 2025, 14, 1677. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, L.; Zhou, Y.; Kou, W.; Fauzi, S.S.M. Integrating UAV-RGB Spectral Indices by Deep Learning Model Enables High-Precision Olive Tree Segmentation Under Small Sample. Forests 2025, 16, 924. [Google Scholar] [CrossRef]
- Do-Duy, T.; Nguyen, L.D.; Duong, T.Q.; Khosravirad, S.R.; Claussen, H. Joint Optimisation of Real-Time Deployment and Resource Allocation for UAV-Aided Disaster Emergency Communications. IEEE J. Sel. Areas Commun. 2021, 39, 3411–3424. [Google Scholar] [CrossRef]
- Zhao, J.; Fan, S.; Zhang, B.; Wang, A.; Zhang, L.; Zhu, Q. Research Status and Development Trends of Deep Reinforcement Learning in the Intelligent Transformation of Agricultural Machinery. Agriculture 2025, 15, 1223. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, K.; Wang, Y.; Zhu, Z.; Liang, X. Embrace the Era of Drones: A New Practical Design Approach to Emergency Rescue Drones. Appl. Sci. 2025, 15, 135. [Google Scholar] [CrossRef]
- Yang, W.; Han, Y.; Xu, Z.; Dai, Y.; Yu, W. Structural design and test of small land-air amphibious UAV. Dev. Innov. Mach. Electr. Prod. 2019, 32, 57–60. [Google Scholar] [CrossRef]
- Qi, J.; Song, D.; Shang, H.; Wang, N.; Hua, C.; Wu, Q.; Qi, X.; Han, J. Search and Rescue Rotary-Wing UAV and Its Application to the Lushan Ms 7.0 Earthquake. J. Field Robot. 2016, 33, 290–321. [Google Scholar] [CrossRef]
- Borik, A.; Kallangodan, A.; Farhat, W.; Abougharib, A.; Jaradat, M.A.; Mukhopadhyay, S. Caged Quadrotor Drone for Inspection of Central HVAC Ducts. In Proceedings of the 2019 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 26 March–10 April 2019. [Google Scholar] [CrossRef]
- Khalil, A.; Jaradat, M.A.; Mukhopadhyay, S.; Abdel-Hafez, M.F. Autonomous Control of a Hybrid Rolling and Flying Caged Drone for Leak Detection in HVAC Ducts. IEEE/ASME Trans. Mechatron. 2024, 29, 366–378. [Google Scholar] [CrossRef]
- Guo, L.G.; Vishwesh, D.; Rahul, K.; Zhen, K.P.; Wei, Y.L.; Guo, D.G.; Wai, Y.Y. Fabrication of design-optimized multifunctional safety cage with conformal circuits for drone using hybrid 3D printing technology. Int. J. Adv. Manuf. Technol. 2022, 120, 2573–2586. [Google Scholar] [CrossRef]
- Eichhorn, C.; Jadid, A.; Plecher, D.A.; Weber, S.; Klinker, G.; Itoh, Y. Catching the Drone—A Tangible Augmented Reality Game in Superhuman Sports. In Proceedings of the 2020 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Recife, Brazil, 9–13 November 2020. [Google Scholar] [CrossRef]
- Kakuya, I.; Hiroyuki, A.; Kohei, O.; Akiya, K. Risk-benefit optimization of drone cages responsible for the safety and quality of drone services. In Proceedings of the 13th Conference on Transdisciplinary Science and Technology, Tokyo, Japan, 18 December 2022. [Google Scholar] [CrossRef]
- Triviño, I.V.; Skrivervik, A.K. Small antennas with broad beamwidth integrated on a drone enclosed in a protective structure. In Proceedings of the 2023 17th European Conference on Antennas and Propagation (EuCAP), Florence, Italy, 26–31 March 2023. [Google Scholar] [CrossRef]
- Xu, J. Application of Multispectral and Thermal Imaging Technologies in Drone Search and Rescue Missions. Trait. Signal 2024, 41, 2317–2326. [Google Scholar] [CrossRef]
- Semenyuk, V.; Kurmashev, I.; Lupidi, A.; Alyoshin, D.; Kurmasheva, L.; Cantelli-Forti, A. Advances in UAV detection: Integrating multi-sensor systems and AI for enhanced accuracy and efficiency. Int. J. Crit. Infrastruct. Prot. 2025, 49, 100744. [Google Scholar] [CrossRef]
- Dong, Y.; Zuo, K.; Han, S.; Zhang, Z. Structure design of fullerene-like wheel hub two wheeled throwing robot. Mach. Electron. 2020, 38, 66–71. [Google Scholar]
- Sun, J.; Zhang, S.; Kong, F. Design and Analysis for Umbrella-type Deployable Mechanisms Based on Spider Web Structures. China Mech. Eng. 2019, 30, 1613–1620. [Google Scholar] [CrossRef]
- Wang, J.; Li, A. Adaptive fault-tolerant control of multi-quadcopter UAV formation. J. Lanzhou Univ. Technol. 2024, 50, 69–76. [Google Scholar]
- Shi, P.C.; Xu, Z.W.; Wang, S.; Xiao, P. Study on adaptive fuzzy PID active suspension control in variable theory domain. Mech. Sci. Technol. Aerosp. Eng. 2019, 38, 713–720. [Google Scholar] [CrossRef]
- Fernando, T.; Chandiramani, J.; Lee, T.; Gutierrez, H. Robust adaptive geometric tracking controls on SO(3) with an application to the attitude dynamics of a quadrotor UAV. In Proceedings of the 2011 50th IEEE Conference on Decision and Control and European Control Conference, Orlando, FL, USA, 12–15 December 2011. [Google Scholar] [CrossRef]
- Chen, S.; Wang, C.W.; Zhang, Z.Y.; Ji, X.H.; Zhao, Z.K. Improved fuzzy PID method and its application in electro-hydraulic servo control. J. Mech. Electr. Eng. 2021, 38, 559–565. [Google Scholar] [CrossRef]
- Jia, Y.; Cao, T.; Bai, Y. Improved YOLOv5 lightweight binocular vision UAV obstacle avoidance algorithm based on Ghost module. Chin. J. Liq. Cryst. Disp. 2024, 39, 111–119. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar] [CrossRef]
- Yu, Z.; Lei, Y.; Shen, F.; Zhou, S. Application of Improved YOLOv5 Algorithm in Lightweight Transmission Line Small Target Defect Detection. Electronics 2024, 13, 305. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, Y.; Xin, M.; Liao, J.; Xie, Q. A Light-Weight Network for Small Insulator and Defect Detection Using UAV Imaging Based on Improved YOLOv5. Sensors 2023, 23, 5249. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Wang, Y.; Tian, Q.; Guo, J.; Xu, C.; Xu, C. GhostNet: More Features from Cheap Operations. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; Ren, D. Distance-IoU loss: Faster and better learning for bounding box regression. AAAI Conf. Artif. Intell. 2020, 34, 12993–13000. [Google Scholar] [CrossRef]
- Liu, B.; Ma, X.; Wang, H.; Zhou, K. Design analysis methodology for electric-powered mini-UAV. J. Northwestern Polytech. Univ. 2005, 3, 396–400. [Google Scholar]
- Grasmeyer, J.; Keennon, M. Development of the Black Widow Micro Air Vehicle. In Proceedings of the 39th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 8–11 January 2001. [Google Scholar] [CrossRef]
- Longo, G.; Cantelli-Forti, A.; Russo, E.; Lupia, F.; Strohmeier, M.; Pugliese, A. Collective victim counting in post-disaster response: A distributed, power-efficient algorithm via BLE spontaneous networks. Pervasive Mob. Comput. 2025, 106, 101997. [Google Scholar] [CrossRef]
- Pervez, F.; Qadir, J.; Khalil, M.; Yaqoob, T.; Ashraf, U.; Younis, S. Wireless Technologies for Emergency Response: A Comprehensive Review and Some Guidelines. IEEE Access 2018, 6, 71814–71838. [Google Scholar] [CrossRef]
- Muñoz-Castañer, J.; Counago Soto, P.; Gil-Castineira, F.; González-Castaño, F.J.; Ballesteros, I.; di Giovanni, A. Your Phone as a Personal Emergency Beacon: A Portable GSM Base Station to Locate Lost Persons. IEEE Ind. Electron. Mag. 2015, 9, 49–57. [Google Scholar] [CrossRef]
E | ||||||||
---|---|---|---|---|---|---|---|---|
EC | NB | NM | NS | ZO | PS | PM | PB | |
NB | PB/NB/PS | PB/NB/PS | PM/NB/ZO | PM/NM/ZO | PS/NM/ZO | PM/ZO/PB | PB/ZO/PB | |
NM | PB/NB/PS | PB/NB/NS | PM/NM/NS | PM/NM/NS | PS/NS/ZO | PM/ZO/PS | PB/ZO/PM | |
NS | PB/NB/ZO | PM/NM/NB | PM/NS/NM | PS/NS/NS | ZO/ZO/ZO | PS/PS/PS | PB/PS/PM | |
ZO | PM/NM/NB | PM/NS/NM | PS/NS/NM | ZO/ZO/NS | PS/PS/ZO | PS/PS/PS | PM/PM/PM | |
PS | PB/NS/NB | PM/NS/NM | PS/ZO/NS | PS/PS/NS | PS/PS/ZO | PM/PM/PS | PM/PM/PM | |
PM | PB/ZO/NM | PM/ZO/NS | PS/PS/NS | PM/PM/NS | PM/PM/ZO | PM/PB/PS | PB/PB/PS | |
PB | PB/ZO/PS | PS/ZO/ZO | PS/PS/ZO | PM/PM/ZO | PM/PB/ZO | PB/PB/PS | PB/PB/PB |
UAV Model | Novel Amphibious Inspection UAV | Small Electric UAV [38] | Black Widow Micro Air Vehicle [39] |
---|---|---|---|
Max Payload (g) | 1000 | 800 | 80 |
Endurance Speed(m/s) | 10 | 15 | 5 |
Endurance at MTOW (min) | 40 | 10 | 30 |
Maximum Demonstrated Speed (m/s) | 18 | 20 | 8 |
Caged UAV | Locomotion | Task | Autonomous | Main Sensor for Identification | Whether Cage Obstructs Sensors |
---|---|---|---|---|---|
Caged Drone for Central HVAC Ducts Inspection [18] | Slide and Fly | Inspection | Autonomous | Thermal camera | Yes |
Hybrid Rolling and Flying Caged Drone [19] | Roll and Fly | Inspection | Autonomous | Thermal camera | Yes |
Drone with Hybrid 3D-Printed Multifunctional Safety Cage Featuring Conformal Circuits [20] | Fly | - | Manual | 2D camera | Yes |
Drone With Safety Cage Ensuring Service Reliability [22] | Fly | Inspection | Manual | 2D camera | Yes |
Drone With Broad-Beamwidth Small Antennas and Protective Enclosure [23] | Fly | Evaluate the reliability of antennas | Manual | Printed antennas | Yes |
Proposed Caged Drone | Roll and Fly | Search and rescue | Autonomous | Depth camera | No |
Model | mAP/% | Average Inference Time/ms | Parameters/M | FLOPs/G |
---|---|---|---|---|
YOLOv5s-Ghost | 77.8 | 0.7 | 5.4 | 11.5 |
YOLOv5s | 78.7 | 0.9 | 7.2 | 16.5 |
YOLOv5n | 74.4 | 1.3 | 1.9 | 4.5 |
YOLOv5m | 80.8 | 6.7 | 20.8 | 48.2 |
YOLOv5l | 81.4 | 11.1 | 46.1 | 107.9 |
YOLOv7-tiny | 80.0 | 4.0 | 6.0 | 13.1 |
α/m | β/m | e/% |
---|---|---|
0.78 | 0.78 | 0 |
0.85 | 0.86 | 1.16 |
1.31 | 1.36 | 3.67 |
2.14 | 2.08 | 2.88 |
2.58 | 2.73 | 5.49 |
3.22 | 3.58 | 7.26 |
4.22 | 4.13 | 2.18 |
4.91 | 4.99 | 1.60 |
5.39 | 5.61 | 3.92 |
6.32 | 6.47 | 2.32 |
7.05 | 6.97 | 1.15 |
8.11 | 8.44 | 3.91 |
9.52 | 9.83 | 3.15 |
11.15 | 10.48 | 6.39 |
12.52 | 12.91 | 3.02 |
14.61 | 13.71 | 6.56 |
15.32 | 14.68 | 4.36 |
16.45 | 15.47 | 6.33 |
17.27 | 16.26 | 6.21 |
17.72 | 16.89 | 4.91 |
18.40 | 17.85 | 3.08 |
19.83 | 18.78 | 5.59 |
21.03 | 19.29 | 9.02 |
23.45 | 21.15 | 10.87 |
24.58 | 22.53 | 9.10 |
25.92 | 23.52 | 10.20 |
26.01 | 23.01 | 13.04 |
28.83 | 25.02 | 15.23 |
28.37 | 25.13 | 12.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, C.; Xing, Y.; Li, Z.; Ge, X. A Novel Amphibious Terrestrial–Aerial UAV Based on Separation Cage Structure for Search and Rescue Missions. Appl. Sci. 2025, 15, 8792. https://doi.org/10.3390/app15168792
Jia C, Xing Y, Li Z, Ge X. A Novel Amphibious Terrestrial–Aerial UAV Based on Separation Cage Structure for Search and Rescue Missions. Applied Sciences. 2025; 15(16):8792. https://doi.org/10.3390/app15168792
Chicago/Turabian StyleJia, Changhao, Yiyuan Xing, Zhijie Li, and Xiankun Ge. 2025. "A Novel Amphibious Terrestrial–Aerial UAV Based on Separation Cage Structure for Search and Rescue Missions" Applied Sciences 15, no. 16: 8792. https://doi.org/10.3390/app15168792
APA StyleJia, C., Xing, Y., Li, Z., & Ge, X. (2025). A Novel Amphibious Terrestrial–Aerial UAV Based on Separation Cage Structure for Search and Rescue Missions. Applied Sciences, 15(16), 8792. https://doi.org/10.3390/app15168792