Simple and Robust UPLC-MS Method for Serum Arachidonic Acid with Potential Application in Clinical Settings
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of Stock and Working Standard Solutions
2.3. Preparation of Calibration Standards and Quality Control Samples
2.4. Sample Preparation
2.5. UPLC-MS/PDA Instrumentation and Analysis Conditions
2.6. Method Validation
2.6.1. Accuracy and Precision
2.6.2. Limit of Detection (LOD) and Lower Limit of Quantification (LLOQ)
2.6.3. Selectivity
2.6.4. Calibration and Linearity
2.6.5. Extraction Efficiency and Matrix Effect
2.6.6. Stability
Short-Term Stability in Matrix (Pooled Serum)
Long-Term Stability in Matrix (Pooled Serum)
Stability of AA in Processed Samples
2.6.7. Evaluation of Method Applicability on Real Serum Samples
2.7. Ethics Statement
3. Results and Discussion
3.1. LC-MS Method Development
3.1.1. Sample Preparation
3.1.2. Optimising Chromatographic Separation
3.1.3. Optimizing MS Detector Parameters
3.2. Method Validation
3.2.1. Accuracy and Precision
3.2.2. Limit of Detection (LOD) and Lower Limit of Quantification (LLOQ)
3.2.3. Selectivity
3.2.4. Calibration Curve and Linearity
3.2.5. Matrix Effect and Extraction Efficiency
3.2.6. Stability Experiments
Short-Term Stability in Authentic Matrix
Long-Term Stability in Authentic Matrix
Stability of AA in Processed Samples
3.2.7. Evaluation Method Applicability to Real Serum Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sifat, A.E.; Nozohouri, S.; Archie, S.R.; Chowdhury, E.A.; Abbruscato, T.J. Brain Energy Metabolism in Ischemic Stroke: Effects of Smoking and Diabetes. Int. J. Mol. Sci. 2022, 23, 8512. [Google Scholar] [CrossRef]
- Castellanos, D.B.; Martín-Jiménez, C.A.; Rojas-Rodríguez, F.; Barreto, G.E.; González, J. Brain Lipidomics as a Rising Field in Neurodegenerative Contexts: Perspectives with Machine Learning Approaches. Front. Neuroendocrinol. 2021, 61, 100899. [Google Scholar] [CrossRef]
- Kloska, A.; Malinowska, M.; Gabig-Cimińska, M.; Jakóbkiewicz-Banecka, J. Lipids and Lipid Mediators Associated with the Risk and Pathology of Ischemic Stroke. Int. J. Mol. Sci. 2020, 21, 3618. [Google Scholar] [CrossRef]
- Hussain, G.; Anwar, H.; Rasul, A.; Imran, A.; Qasim, M.; Zafar, S.; Imran, M.; Kamran, S.K.S.; Aziz, N.; Razzaq, A.; et al. Lipids as Biomarkers of Brain Disorders. Crit. Rev. Food Sci. Nutr. 2020, 60, 351–374. [Google Scholar] [CrossRef]
- Snowden, S.G.; Ebshiana, A.A.; Hye, A.; An, Y.; Pletnikova, O.; O’Brien, R.; Troncoso, J.; Legido-Quigley, C.; Thambisetty, M. Association between Fatty Acid Metabolism in the Brain and Alzheimer Disease Neuropathology and Cognitive Performance: A Nontargeted Metabolomic Study. PLoS Med. 2017, 14, e1002266. [Google Scholar] [CrossRef] [PubMed]
- Rink, C.; Khanna, S. Significance of Brain Tissue Oxygenation and the Arachidonic Acid Cascade in Stroke. Antioxid. Redox Signal. 2011, 14, 1889–1903. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Y.; Sun, J.; Zhang, W.; Guo, Z.; Ma, Q. Arachidonic Acid Metabolism in Health and Disease. MedComm 2023, 4, e363. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.H.; Seo, Y.; Jo, Y.S.; Lee, S.; Cho, E.; Cazenave-Gassiot, A.; Shin, Y.-S.; Moon, M.H.; An, H.J.; Wenk, M.R.; et al. Brain Lipidomics: From Functional Landscape to Clinical Significance. Sci. Adv. 2022, 8, 9317. [Google Scholar] [CrossRef]
- Lin, D.; Gold, A.; Kaye, S.; Atkinson, J.R.; Tol, M.; Sas, A.; Segal, B.; Tontonoz, P.; Zhu, J.; Gao, J. Arachidonic Acid Mobilization and Peroxidation Promote Microglial Dysfunction in Aβ Pathology. J. Neurosci. 2024, 44, e0202242024. [Google Scholar] [CrossRef]
- Chung, H.K.; Cho, Y.; Do, H.J.; Oh, K.; Seo, W.K.; Shin, M.J. Plasma Phospholipid Arachidonic Acid and Lignoceric Acid Are Associated with the Risk of Cardioembolic Stroke. Nutr. Res. 2015, 35, 1001–1008. [Google Scholar] [CrossRef]
- Suda, S.; Katsumata, T.; Okubo, S.; Kanamaru, T.; Suzuki, K.; Watanabe, Y.; Katsura, K.I.; Katayama, Y. Low Serum N-3 Polyunsaturated Fatty Acid/n-6 Polyunsaturated Fatty Acid Ratio Predicts Neurological Deterioration in Japanese Patients with Acute Ischemic Stroke. Cerebrovasc. Dis. 2013, 36, 388–393. [Google Scholar] [CrossRef]
- Mori, T.; Yoshioka, K. Features of Serum Fatty Acids in Acute Ischaemic Stroke Patients Aged 50 Years or Older. BMC Cardiovasc. Disord. 2020, 20, 122. [Google Scholar] [CrossRef] [PubMed]
- Adibhatla, R.M.; Hatcher, J.F. Citicoline Decreases Phospholipase A 2 Stimulation and Hydroxyl Radical Generation in Transient Cerebral Ischemia. J. Neurosci. Res. 2003, 73, 308–315. [Google Scholar] [CrossRef]
- Cavalu, S.; Saber, S.; Ramadan, A.; Elmorsy, E.A.; Hamad, R.S.; Abdel-Reheim, M.A.; Youssef, M.E. Unveiling Citicoline’s Mechanisms and Clinical Relevance in the Treatment of Neuroinflammatory Disorders. FASEB J. 2024, 38, e70030. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Li, Y.; Guan, C.; Li, K.; Wang, C.; Feng, R.; Sun, C. Free Fatty Acid Metabolic Profile and Biomarkers of Isolated Post-Challenge Diabetes and Type 2 Diabetes Mellitus Based on GC-MS and Multivariate Statistical Analysis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2010, 878, 2817–2825. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wang, Y.; Ong, C.N.; Subramaniam, T.; Choi, H.W.; Yuan, J.M.; Koh, W.P.; Pan, A. Metabolic Signatures and Risk of Type 2 Diabetes in a Chinese Population: An Untargeted Metabolomics Study Using Both LC-MS and GC-MS. Diabetologia 2016, 59, 2349–2359. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.L.; Meng, L.; Li, L.L.; Ma, L.N.; Mao, X.M. Plasma Free Fatty Acids Metabolic Profile among Uyghurs and Kazaks with or Without Type 2 Diabetes Based on GC-MS. Exp. Clin. Endocrinol. Diabetes 2017, 126, 604–611. [Google Scholar] [CrossRef]
- Abdelmagid, S.A.; Clarke, S.E.; Nielsen, D.E.; Badawi, A.; El-Sohemy, A.; Mutch, D.M.; Ma, D.W.L. Comprehensive Profiling of Plasma Fatty Acid Concentrations in Young Healthy Canadian Adults. PLoS ONE 2015, 10, e0116195. [Google Scholar] [CrossRef]
- U.S. Food and Drug administration (FDA); U.S. Department of Health and Human Services Food and Drug Administration; Center for Drug Evaluation and Research; Center for Biologics Evaluation and Research. M10 Bioanalytical Method Validation and Study Sample Analysi Guidance for Industry. 2022; pp. 1–50. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/m10-bioanalytical-method-validation-and-study-sample-analysis (accessed on 4 April 2024).
- Provan, D. (Ed.) Oxford Handbook of Clinical and Laboratory Investigation; Oxford University Press: Oxford, UK, 2010; ISBN 0199233713. [Google Scholar]
- Yi, L.; He, J.; Liang, Y.; Yuan, D.; Gao, H.; Zhou, H. Simultaneously Quantitative Measurement of Comprehensive Profiles of Esterified and Non-Esterified Fatty Acid in Plasma of Type 2 Diabetic Patients. Chem. Phys. Lipids 2007, 150, 204–216. [Google Scholar] [CrossRef]
- Clore, J.N.; Harris, P.A.; Li, J.; Azzam, A.; Gill, R.; Zuelzer, W.; Rizzo, W.B.; Blackardl, W.G. Changes in Phosphatidylcholine Fatty Acid Composition Are Associated With Altered Skeletal Muscle Insulin Responsiveness in Normal Man. Metabolism 2000, 49, 232–238. [Google Scholar] [CrossRef]
- Clore, J.N.; Allred, J.; White, D.; Li, J.; Stillman, J. The Role of Plasma Fatty Acid Composition in Endogenous Glucose Production in Patients with Type 2 Diabetes Mellitus. Metabolism 2002, 51, 1471–1477. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, S.; Wang, P.G. Matrix Effects and Application of Matrix Effect Factor. Bioanalysis 2017, 9, 1839–1844. [Google Scholar] [CrossRef]
- Mineva, E.M.; Zhang, M.; Rabinowitz, D.J.; Phinney, K.W.; Pfeiffer, C.M. An LC-MS/MS Method for Serum Methylmalonic Acid Suitable for Monitoring Vitamin B12 Status in Population Surveys. Anal. Bioanal. Chem. 2015, 407, 2955–2964. [Google Scholar] [CrossRef]
- Tallima, H.; El Ridi, R. Arachidonic Acid: Physiological Roles and Potential Health Benefits—A Review. J. Adv. Res. 2018, 11, 33–41. [Google Scholar] [CrossRef]
- Van Leyen, K. Eicosanoids in Cerebrovascular Diseases. In Primer on Cerebrovascular Diseases, 2nd ed.; Caplan, L.R., Biller, J., Leary, M.C., Lo, E.H., Thomas, A.J., Yenari, M., Zhang, J.H., Eds.; Academic Press Inc.: Cambridge, MA, USA, 2017; pp. 86–89. ISBN 9780128030585. [Google Scholar]
- Buchanan, C.D.C.; Lust, C.A.C.; Burns, J.L.; Hillyer, L.M.; Martin, S.A.; Wittert, G.A.; Ma, D.W.L. Analysis of Major Fatty Acids from Matched Plasma and Serum Samples Reveals Highly Comparable Absolute and Relative Levels. Prostaglandins Leukot. Essent. Fat. Acids 2021, 168, 102268. [Google Scholar] [CrossRef]
- Spector, A.A. Plasma Free Fatty Acid and Lipoproteins as Sources of Polyunsaturated Fatty Acid for the Brain. J. Mol. Neurosci. 2001, 16, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Lowe, G.D.O.; Rumley, A.; Mackie, I.J. Plasma Fibrinogen. Ann. Clin. Biochem. 2004, 41, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Püttmann, M.; Krug, H.; Von Ochsenstein, E.; Kattermann, R. Fast HPLC Determination of Serum Free Fatty Acids in the Picomole Range. Clin. Chem. 1993, 39, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Li, R.; Wu, H. Recent Progress in the Analysis of Unsaturated Fatty Acids in Biological Samples by Chemical Derivatization-Based Chromatography-Mass Spectrometry Methods. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2023, 1215, 123572. [Google Scholar] [CrossRef]
- Yue, H.; Jansen, S.A.; Strauss, K.I.; Borenstein, M.R.; Barbe, M.F.; Rossi, L.J.; Murphy, E. A Liquid Chromatography/Mass Spectrometric Method for Simultaneous Analysis of Arachidonic Acid and Its Endogenous Eicosanoid Metabolites Prostaglandins, Dihydroxyeicosatrienoic Acids, Hydroxyeicosatetraenoic Acids, and Epoxyeicosatrienoic Acids in Rat Br. J. Pharm. Biomed. Anal. 2007, 43, 1122–1134. [Google Scholar] [CrossRef]
- Chen, L.; Xie, B.; Li, L.; Jiang, W.; Zhang, Y.; Fu, J.; Guan, G.; Qiu, Y. Rapid and Sensitive LC-MS/MS Analysis of Fatty Acids in Clinical Samples. Chromatographia 2014, 77, 1241–1247. [Google Scholar] [CrossRef]
- Takahashi, H.; Suzuki, H.; Suda, K.; Yamazaki, Y.; Takino, A.; Kim, Y.I.; Goto, T.; Iijima, Y.; Aoki, K.; Shibata, D.; et al. Long-Chain Free Fatty Acid Profiling Analysis by Liquid Chromatography-Mass Spectrometry in Mouse Treated with Peroxisome Proliferator-Activated Receptor α Agonist. Biosci. Biotechnol. Biochem. 2013, 77, 2288–2293. [Google Scholar] [CrossRef]
- Munjoma, N.; Isaac, G.; Gethings, L. [APPLICATION NOTE] LipidQuan: HILIC-Based LC-MS/MS High-Throughput Targeted Free Fatty Acid Screen [APPLICATION NOTE]; Waters Corporation: Milford, MA, USA, 2019; pp. 1–5. [Google Scholar]
- Zhao, Z.; Xu, Y. An Extremely Simple Method for Extraction of Lysophospholipids and Phospholipids from Blood Samples. J. Lipid Res. 2010, 51, 652–659. [Google Scholar] [CrossRef]
- Zhao, Z.; Yu, M.; Crabb, D.; Xu, Y.; Liangpunsakul, S. Ethanol-Induced Alterations in Fatty Acid-Related Lipids in Serum and Tissues in Mice. Alcohol. Clin. Exp. Res. 2011, 35, 229–234. [Google Scholar] [CrossRef]
- Kokotou, M.G.; Mantzourani, C.; Batsika, C.S.; Mountanea, O.G.; Eleftheriadou, I.; Kosta, O.; Tentolouris, N.; Kokotos, G. Lipidomics Analysis of Free Fatty Acids in Human Plasma of Healthy and Diabetic Subjects by Liquid Chromatography-High Resolution Mass Spectrometry (LC-HRMS). Biomedicines 2022, 10, 1189. [Google Scholar] [CrossRef]
- Gachet, M.S.; Rhyn, P.; Bosch, O.G.; Quednow, B.B.; Gertsch, J. A Quantitiative LC-MS/MS Method for the Measurement of Arachidonic Acid, Prostanoids, Endocannabinoids, N-Acylethanolamines and Steroids in Human Plasma. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2015, 976–977, 6–18. [Google Scholar] [CrossRef] [PubMed]
- Shinde, D.D.; Kim, K.B.; Oh, K.S.; Abdalla, N.; Liu, K.H.; Bae, S.K.; Shon, J.H.; Kim, H.S.; Kim, D.H.; Shin, J.G. LC-MS/MS for the Simultaneous Analysis of Arachidonic Acid and 32 Related Metabolites in Human Plasma: Basal Plasma Concentrations and Aspirin-Induced Changes of Eicosanoids. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2012, 911, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Mok, H.J.; Lee, J.W.; Bandu, R.; Kang, H.S.; Kim, K.H.; Kim, K.P. A Rapid and Sensitive Profiling of Free Fatty Acids Using Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry (LC/ESI-MS/MS) after Chemical Derivatization. RSC Adv. 2016, 6, 32130–32139. [Google Scholar] [CrossRef]
- Qian, X.; Liu, W.; Chen, Y.; Zhang, J.; Jiang, Y.; Pan, L.; Hu, C. A UPLC-MS/MS Method for Simultaneous Determination of Arachidonic Acid, Stearic Acid, and Related Endocannabinoids in Human Plasma. Heliyon 2024, 10, e28467. [Google Scholar] [CrossRef]
- Sterz, K.; Scherer, G.; Ecker, J. A Simple and Robust UPLC-SRM/MS Method to Quantify Urinary Eicosanoids. J. Lipid Res. 2012, 53, 1026–1036. [Google Scholar] [CrossRef]
- Matuszewski, B.K.; Constanzer, M.L.; Chavez-Eng, C.M. Strategies for the Assessment of Matrix Effect in Quantitative Bioanalytical Methods Based on HPLC-MS/MS. Anal. Chem. 2003, 75, 3019–3030. [Google Scholar] [CrossRef] [PubMed]
- Lima, E.S.; Abdalla, D.S.P. High-Performance Liquid Chromatography of Fatty Acids in Biological Samples. Anal. Chim. Acta 2002, 465, 81–91. [Google Scholar] [CrossRef]
- Mantzourani, C.; Kokotou, M.G. Liquid Chromatography-Mass Spectrometry (LC-MS) Derivatization-Based Methods for the Determination of Fatty Acids in Biological Samples. Molecules 2022, 25, 5717. [Google Scholar] [CrossRef]
- Schött, H.F.; Konings, M.C.J.M.; Schrauwen-Hinderling, V.B.; Mensink, R.P.; Plat, J. A Validated Method for Quantification of Fatty Acids Incorporated in Human Plasma Phospholipids by Gas Chromatography-Triple Quadrupole Mass Spectrometry. ACS Omega 2021, 6, 1129–1137. [Google Scholar] [CrossRef]
- Ecker, J.; Scherer, M.; Schmitz, G.; Liebisch, G. A Rapid GC–MS Method for Quantification of Positional and Geometric Isomers of Fatty Acid Methyl Esters. J. Chromatogr. B 2012, 897, 98–104. [Google Scholar] [CrossRef]
- Farczádi, L.; Dobreanu, M.; Huțanu, A.; Imre, S. Development and Validation of an LC-MS/MS Method for the Determination of Plasma and Red Blood Cell Omega Fatty Acids: A Useful Diagnostic Tool. Separations 2024, 11, 140. [Google Scholar] [CrossRef]
Analyte | Target Concentration (μg/mL) | Mean Measured Concentration ± SD (μg/mL) | n | Mean Accuracy ± SD (% Recovery) | RSD (%) |
---|---|---|---|---|---|
AA spike | 0.50 | 0.46 ± 0.04 | 13 | 91.95 ± 7.51 | 8.51 |
1.00 | 0.91 ± 0.13 | 13 | 92.75 ± 12.11 | 14.44 | |
5.00 | 4.97 ± 0.3 | 15 | 99.19 ± 6.07 | 5.94 |
Intra-Day Precision | Inter-Day Precision | ||||
---|---|---|---|---|---|
Target AA Concentration (µg/mL) | Calculated AA Concentration (µg/mL) Mean ± SD | Precision (%RSD) | Target AA Concentration (µg/mL) | Calculated AA Concentration (µg/mL) Mean ± SD | Precision (%RSD) |
0.5 AA (n = 5) | 0.51 ± 0.07 | 13.29 | endogenous AA (n = 13) | 0.46 ± 0.04 | 8.51 |
spike level 1 µg/mL (n = 4) | 1.03 ± 0.09 | 9.17 | spike level 1 µg/mL (n = 13) | 0.88 ± 0.12 | 13.19 |
spike level 5 µg/mL (n = 5) | 6.37 ± 0.52 | 8.20 | spike level 5 µg/mL; (n = 15) | 4.97 ± 0.29 | 5.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vankova, D.; Nikolova, M.; Nashar, M.; Galunska, B. Simple and Robust UPLC-MS Method for Serum Arachidonic Acid with Potential Application in Clinical Settings. Appl. Sci. 2025, 15, 8789. https://doi.org/10.3390/app15168789
Vankova D, Nikolova M, Nashar M, Galunska B. Simple and Robust UPLC-MS Method for Serum Arachidonic Acid with Potential Application in Clinical Settings. Applied Sciences. 2025; 15(16):8789. https://doi.org/10.3390/app15168789
Chicago/Turabian StyleVankova, Daniela, Miglena Nikolova, Milka Nashar, and Bistra Galunska. 2025. "Simple and Robust UPLC-MS Method for Serum Arachidonic Acid with Potential Application in Clinical Settings" Applied Sciences 15, no. 16: 8789. https://doi.org/10.3390/app15168789
APA StyleVankova, D., Nikolova, M., Nashar, M., & Galunska, B. (2025). Simple and Robust UPLC-MS Method for Serum Arachidonic Acid with Potential Application in Clinical Settings. Applied Sciences, 15(16), 8789. https://doi.org/10.3390/app15168789