The Role of Geospatial Techniques for Renewable Hydrogen Value Chain: A Systematic Review of Current Status, Challenges and Future Developments
Abstract
1. Introduction
- A systematic literature review covering 177 research papers published between 2019 and 2025.
- A bibliometric analysis of geospatial techniques (beyond just GIS) applied across the stages of the renewable HVC, identifying the most relevant methods per HVC stage.
- For each HVC stage, the most commonly used geospatial techniques are outlined, along with their limitations and recommended future research directions.
- A cross-cutting category is included to address applications related to key issues such as safety, leak detection, or training.
2. Materials and Methods
- Geospatial techniques: TITLE-ABS-KEY. (“geospatial” OR “geographic information system” OR “spatial analysis” OR “spatial data” OR “spatial modeling” OR “geospatial data” OR “terrain modeling” OR “LiDAR” OR “InSAR” OR “satellite image” OR “geophysics” OR “Remote Sensing” OR “Earth Observation” OR “GIS” OR “IoT” OR “topographic survey” OR “classical surveying” OR “land surveying” OR “topographic mapping” OR “geodetic survey” OR “photogrammetry” OR “aerial photogrammetry” OR “computer vision” OR “UAV photogrammetry” OR “drone photogrammetry” OR “Object detection” OR “hyperspectral imaging” OR “thermal imaging” OR “digital elevation model” OR “sensor network” OR “geovisualization” OR “3D GIS” OR “real time monitoring” OR “augmented vision” OR “virtual reality” OR “BIM” OR “ground penetrating radar”)
- HVC: TITLE-ABS-KEY. (“production” OR “storage” OR “fuel cell” OR “end-users” OR “transport” OR “cross-cutting” OR “Supply Chain” OR “Value Chain” OR “Infrastructure” OR “mobility” OR “use”).
3. Results
3.1. Bibliometric Analysis
3.1.1. Performance Analysis
3.1.2. Science Mapping
3.2. Current Status, Challenges and Future Developments
3.2.1. Renewable Hydrogen Production
3.2.2. Renewable Hydrogen Storage
3.2.3. Renewable Hydrogen Transport and Distribution
3.2.4. Renewable Hydrogen End-Uses
3.2.5. Renewable Hydrogen Cross-Cutting Issues
4. Discussion
4.1. Use of Geospatial Techniques in HVC
4.2. Challenges and Limitations in the Use of Geospatial Techniques
5. Conclusions
- GIS, IoT, and satellite information-based computational geo-intelligence framework. The development of tools capable of integrating real-time information on renewable energy resources from different sources of information is recommended. One of the key features of this type of tool is that human–machine interaction must be reduced, integrating predictive and machine learning models to automate the decision-making process at the local level. A framework of this kind would be very useful for administrations responsible for energy planning or for those responsible for the sustainability of critical facilities such as airports or ports.
- Participatory co-creation tools in early hydrogen application projects. The aim is to involve the different stakeholders in the development and evaluation of the functioning of a hydrogen-based energy community or hydrogen valley. It is considered that to increase social acceptance, it is necessary to have traceable (geolocated) tools where aspects for improvement and opinions from real users can be integrated. In this case, a combination of GIS and blockchain could be useful to promote end users’ confidence in this technology, as well as being a useful source of information for professionals in the sector.
- Geospatial DT framework with real-time monitoring of facilities. Having DTs of facilities in operation is key to efficient management, improved safety, and the training of new professionals. In the process of creating DT, technologies such as LiDAR or photogrammetry will be useful for creating the 3D model, while techniques such as IoT or IRT will be useful in the operational phase for managing and monitoring the safety of the facility.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AEL | Alkaline Electrolysis |
AHP | Analytic Hierarchy Process |
AI | Artificial Intelligence |
AR | Augmented Reality |
BWM | Best-Worst Method |
CET | Clean Energy Transition |
CNN | Neural Network |
CO | Carbon Monoxide |
CV | Computational vision |
DT | Digital Twin |
EU | European Union |
FC | Fuel Cells |
FCVH | Fuel Cell Vehicles |
GHG | GreenHouse Gas emission |
GIS | Geographic Information Systems |
GPS | Global Position System |
HRS | Hydrogen Refueling Stations |
HVC | Hydrogen Value Chain |
IoT | Internet of Things |
LCOE | Levelized Cost of Energy |
LCOH | Levelized Costs of Hydrogen |
LSGDM | Large-Scale Group Decision-Making Method |
MCDM | Multi-Criteria Analysis Methods |
MDPI | Multidisciplinary Digital Publishing Institute |
MILP | Mix-Integer Linear Programming |
ML | Machine Learning |
OSM | OpenStreetMap |
PEM | Proton Exchange Membrane |
PEMFC | Proton Exchange Membrane Fuel Cell |
PRISMA | Preferer Reporting Items for Systematic Reviews and Meta-Analysis |
PtG | Power to Gas |
REDCAP | REgionalization with Dynamically Constrained Agglomerative Clustering and Partitioning |
ROI | Return of Inversion |
SBAS | Satellite Based Augmentation System |
SOEC | Solid Oxide Electrolysis Cells |
SOFC | Solid Oxide Fuel Cell |
TRL | Technology Readiness Level |
US | United States |
WoS | Web of Science |
References
- IEA. Executive Summary—Electricity 2025—Analysis. Available online: https://www.iea.org/reports/electricity-2025/executive-summary (accessed on 22 May 2025).
- Sampene, A.K.; Li, C.; Wiredu, J. An outlook at the switch to renewable energy in emerging economies: The beneficial effect of technological innovation and green finance. Energy Policy 2024, 187, 114025. [Google Scholar] [CrossRef]
- Takci, M.T.; Qadrdan, M.; Summers, J.; Gustafsson, J. Data centres as a source of flexibility for power systems. Energy Rep. 2025, 13, 3661–3671. [Google Scholar] [CrossRef]
- Goessling, H.F.; Rackow, T.; Jung, T. Recent global temperature surge intensified by record-low planetary albedo. Science 2025, 387, 68–73. [Google Scholar] [CrossRef]
- Jepsen, H.; Lundgren, M.; Monheim, K.; Walker, H. (Eds.) Negotiating the Paris Agreement: The Insider Stories; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Filonchyk, M.; Peterson, M.P.; Zhang, L.; Hurynovich, V.; He, Y. Greenhouse gases emissions and global climate change: Examining the influence of CO2, CH4, and N2O. Sci. Total Environ. 2024, 935, 173359. [Google Scholar] [CrossRef] [PubMed]
- Boa Morte, I.B.; Araújo, O.d.Q.F.; Morgado, C.R.V.; de Medeiros, J.L. Electrification and decarbonization: A critical review of interconnected sectors, policies, and sustainable development goals. Energy Storage Sav. 2023, 2, 615–630. [Google Scholar] [CrossRef]
- Angelico, R.; Giametta, F.; Bianchi, B.; Catalano, P. Green Hydrogen for Energy Transition: A Critical Perspective. Energies 2025, 18, 404. [Google Scholar] [CrossRef]
- Sánchez, A.; Zhang, Q.; Martín, M.; Vega, P. Towards a new renewable power system using energy storage: An economic and social analysis. Energy Convers. Manag. 2022, 252, 115056. [Google Scholar] [CrossRef]
- Schreyer, F.; Ueckerdt, F.; Pietzcker, R.; Rodrigues, R.; Rottoli, M.; Madeddu, S.; Pehl, M.; Hasse, R.; Luderer, G. Distinct roles of direct and indirect electrification in pathways to a renewables-dominated European energy system. One Earth 2024, 7, 226–241. [Google Scholar] [CrossRef]
- Okonkwo, E.C.; Al-Breiki, M.; Bicer, Y.; Al-Ansari, T. Sustainable hydrogen roadmap: A holistic review and decision-making methodology for production, utilisation and exportation using Qatar as a case study. Int. J. Hydrogen Energy 2021, 46, 35525–35549. [Google Scholar] [CrossRef]
- Nnabuife, S.G.; Hamzat, A.K.; Whidborne, J.; Kuang, B.; Jenkins, K.W. Integration of renewable energy sources in tandem with electrolysis: A technology review for green hydrogen production. Int. J. Hydrogen Energy 2025, 107, 218–240. [Google Scholar] [CrossRef]
- Roque, B.A.C.; Cavalcanti, M.H.C.; Brasileiro, P.P.F.; Gama, P.H.R.P.; dos Santos, V.A.; Converti, A.; Benachour, M.; Sarubbo, L.A. Hydrogen-powered future: Catalyzing energy transition, industry decarbonization and sustainable economic development: A review. Gondwana Res. 2025, 140, 159–180. [Google Scholar] [CrossRef]
- Marouani, I.; Guesmi, T.; Alshammari, B.M.; Alqunun, K.; Alzamil, A.; Alturki, M.; Hadj Abdallah, H. Integration of Renewable-Energy-Based Green Hydrogen into the Energy Future. Processes 2023, 11, 2685. [Google Scholar] [CrossRef]
- Bilan, Y.; Rabe, M.; Widera, K. Distributed Energy Resources: Operational Benefits. Energies 2022, 15, 8864. [Google Scholar] [CrossRef]
- Li, C.; Li, H.; Yue, H.; Lv, J.; Zhang, J. Flexibility Value of Multimodal Hydrogen Energy Utilization in Electric–Hydrogen–Thermal Systems. Sustainability 2024, 16, 4939. [Google Scholar] [CrossRef]
- Bampaou, M.; Panopoulos, K.D. An overview of hydrogen valleys: Current status, challenges and their role in increased renewable energy penetration. Renew. Sustain. Energy Rev. 2025, 207, 114923. [Google Scholar] [CrossRef]
- Mochi, P.; Espegren, K.A.; Korpås, M. Short communication: Local electricity-hydrogen market. Int. J. Hydrogen Energy 2025, 116, 17–22. [Google Scholar] [CrossRef]
- Levikhin, A.A.; Boryaev, A.A. Physical properties and thermodynamic characteristics of hydrogen. Heliyon 2024, 10, e36414. [Google Scholar] [CrossRef]
- Mekonnin, A.S.; Wacławiak, K.; Humayun, M.; Zhang, S.; Ullah, H. Hydrogen Storage Technology, and Its Challenges: A Review. Catalysts 2025, 15, 260. [Google Scholar] [CrossRef]
- Liu, J.; Guo, Y.; Xing, X.; Zhang, X.; Yang, Y.; Cui, G. A comprehensive review on hydrogen permeation barrier in the hydrogen transportation pipeline: Mechanism, application, preparation, and recent advances. Int. J. Hydrogen Energy 2025, 101, 504–528. [Google Scholar] [CrossRef]
- Sobola, D.; Dallaev, R. Exploring Hydrogen Embrittlement: Mechanisms, Consequences, and Advances in Metal Science. Energies 2024, 17, 2972. [Google Scholar] [CrossRef]
- Sadeq, A.M.; Homod, R.Z.; Hussein, A.K.; Togun, H.; Mahmoodi, A.; Isleem, H.F.; Patil, A.R.; Moghaddam, A.H. Hydrogen energy systems: Technologies, trends, and future prospects. Sci. Total Environ. 2024, 939, 173622. [Google Scholar] [CrossRef]
- Shaigan, N.; Yuan, X.-Z.; Girard, F.; Fatih, K.; Robertson, M. Standardized testing framework for quality control of fuel cell bipolar plates. J. Power Sources 2021, 482, 228972. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, J.; Liang, G.; Du, P.; Li, Z.; Li, C. Optimizing large-scale hydrogen storage: A novel hybrid genetic algorithm approach for efficient pipeline network design. Int. J. Hydrogen Energy 2024, 66, 430–444. [Google Scholar] [CrossRef]
- Singh, U.; Sharma, N.; Garg, A. Implementing the hydrogen economy at scale: Costs, potential and barriers. Energy Clim. Change 2025, in press. [Google Scholar] [CrossRef]
- Handique, A.J.; Peer, R.; Haas, J.; Osorio-Aravena, J.C.; Reyes-Chamorro, L. Distributed hydrogen systems: A literature review. Int. J. Hydrogen Energy 2024, 85, 427–439. [Google Scholar] [CrossRef]
- Hossain Bhuiyan, M.M.; Siddique, Z. Hydrogen as an alternative fuel: A comprehensive review of challenges and opportunities in production, storage, and transportation. Int. J. Hydrogen Energy 2025, 102, 1026–1044. [Google Scholar] [CrossRef]
- Calabrese, M.; Portarapillo, M.; Di Nardo, A.; Venezia, V.; Turco, M.; Luciani, G.; Di Benedetto, A. Hydrogen Safety Challenges: A Comprehensive Review on Production, Storage, Transport, Utilization, and CFD-Based Consequence and Risk Assessment. Energies 2024, 17, 1350. [Google Scholar] [CrossRef]
- Brennan, S.; Brauner, C.; Davis, D.; De Backer, N.; Dyck, A.; García-Hernández, C.; Gaathaug, A.V.; Kupka, P.; Grand-Clement, L.; Havret, E.; et al. European hydrogen train the trainer framework for responders: Outcomes of the HyResponder project. Int. J. Hydrogen Energy 2024, 79, 448–455. [Google Scholar] [CrossRef]
- Geoinformatics for Geosciences. 2023. Available online: https://shop.elsevier.com/books/geoinformatics-for-geosciences/stathopoulos/978-0-323-98983-1 (accessed on 9 June 2025).
- Smith, M.J.D.; Smith, M.J.D.; Goodchild, M.F.; Longley, P.A.; Longley, P. Geospatial Analysis: A Comprehensive Guide to Principles, Techniques and Software Tools; Troubador Publishing Limited: Leicester, UK, 2007. [Google Scholar]
- Monforti, F.; Bódis, K.; Scarlat, N.; Dallemand, J.-F. The possible contribution of agricultural crop residues to renewable energy targets in Europe: A spatially explicit study. Renew. Sustain. Energy Rev. 2013, 19, 666–677. [Google Scholar] [CrossRef]
- Adedeji, P.A.; Akinlabi, S.A.; Madushele, N.; Olatunji, O.O. Neuro-fuzzy resource forecast in site suitability assessment for wind and solar energy: A mini review. J. Clean. Prod. 2020, 269, 122104. [Google Scholar] [CrossRef]
- Li, Y.; Feng, H. How geospatial technologies are transforming urban net-zero energy buildings: A comprehensive review of insights, challenges, and future directions. J. Build. Eng. 2025, 104, 112357. [Google Scholar] [CrossRef]
- Isbaex, C.; Costa, F.d.R.F.; Batista, T. Application of GIS in the Maritime-Port Sector: A Systematic Review. Sustainability 2025, 17, 3386. [Google Scholar] [CrossRef]
- Avtar, R.; Sahu, N.; Aggarwal, A.K.; Chakraborty, S.; Kharrazi, A.; Yunus, A.P.; Dou, J.; Kurniawan, T.A. Exploring Renewable Energy Resources Using Remote Sensing and GIS—A Review. Resources 2019, 8, 149. [Google Scholar] [CrossRef]
- Zhang, M.; Li, Y. Chapter 18—The challenges of energy transition and opportunities for geophysicists. In Geophysics and the Energy Transition; Wilson, M., Davis, T., Landrø, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2025; pp. 469–496. [Google Scholar] [CrossRef]
- Steidl, S.; Peer, R.A.M.; Alhamwi, A.; Medjroubi, W.; Figueroa, A.Z.; Haas, J. GIS-based Modelling of Hydrogen Integration in Urban Energy Systems—A Systematic Review. Curr. Sustain. Energy Rep. 2024, 11, 85–94. [Google Scholar] [CrossRef]
- Serna, S.; Gerres, T.; Cossent, R. Multi-Criteria Decision-Making for Renewable Hydrogen Production Site Selection: A Systematic Literature Review. Curr. Sustain. Energy Rep. 2023, 10, 119–129. [Google Scholar] [CrossRef]
- Li, X.; Yue, J.; Wang, S.; Luo, Y.; Su, C.; Zhou, J.; Xu, D.; Lu, H. Development of Geographic Information System Architecture Feature Analysis and Evolution Trend Research. Sustainability 2024, 16, 137. [Google Scholar] [CrossRef]
- Baghdadi, N.; Zribi, M. Introduction. In Optical Remote Sensing of Land Surface; Baghdadi, N., Zribi, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. xxxix–xlii. [Google Scholar] [CrossRef]
- Ahmed, R.; Mahmud, K.H. Potentiality of high-resolution topographic survey using unmanned aerial vehicle in Bangladesh. Remote Sens. Appl. Soc. Environ. 2022, 26, 100729. [Google Scholar] [CrossRef]
- Oats, R.C.; Escobar-Wolf, R.; Oommen, T. Evaluation of Photogrammetry and Inclusion of Control Points: Significance for Infrastructure Monitoring. Data 2019, 4, 42. [Google Scholar] [CrossRef]
- Cernadas, E. Applications of Computer Vision, 2nd Edition. Electronics 2024, 13, 3779. [Google Scholar] [CrossRef]
- da Costa, T.P.; da Costa, D.M.B.; Murphy, F. A systematic review of real-time data monitoring and its potential application to support dynamic life cycle inventories. Environ. Impact Assess. Rev. 2024, 105, 107416. [Google Scholar] [CrossRef]
- Balla, D.; Zichar, M.; Tóth, R.; Kiss, E.; Karancsi, G.; Mester, T. Geovisualization Techniques of Spatial Environmental Data Using Different Visualization Tools. Appl. Sci. 2020, 10, 6701. [Google Scholar] [CrossRef]
- Godio, A. (Ed.) Remote Sensing in Applied Geophysics; MDPI—Multidisciplinary Digital Publishing Institute: Basel, Switzerland, 2020. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Koneczna, R.; Cader, J. Towards effective monitoring of hydrogen economy development: A European perspective. Int. J. Hydrogen Energy 2024, 59, 430–446. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef]
- Amrani, S.; Alami Merrouni, A.; Touili, S.; Ait Lahoussine Ouali, H.; Dekhissi, H. An AHP-GIS combination for site suitability analysis of hydrogen production units from CSP&PV solar power plants in Morocco. Int. J. Hydrogen Energy 2024, 56, 369–382. [Google Scholar] [CrossRef]
- Kakavand, A.; Sayadi, S.; Tsatsaronis, G.; Behbahaninia, A. Techno-economic assessment of green hydrogen and ammonia production from wind and solar energy in Iran. Int. J. Hydrogen Energy 2023, 48, 14170–14191. [Google Scholar] [CrossRef]
- Yavari, A.; Harrison, C.J.; Gorji, S.A.; Shafiei, M. Hydrogen 4.0: A Cyber–Physical System for Renewable Hydrogen Energy Plants. Sensors 2024, 24, 3239. [Google Scholar] [CrossRef]
- Maaloum, V.; Bououbeid, E.M.; Ali, M.M.; Yetilmezsoy, K.; Rehman, S.; Ménézo, C.; Mahmoud, A.K.; Makoui, S.; Samb, M.L.; Yahya, A.M. Techno-Economic Analysis of Combined Production of Wind Energy and Green Hydrogen on the Northern Coast of Mauritania. Sustainability 2024, 16, 8063. [Google Scholar] [CrossRef]
- Tahir, M.M.; Abbas, A.; Dickson, R. Green hydrogen and chemical production from solar energy in Pakistan: A geospatial, techno-economic, and environmental assessment. Int. J. Hydrogen Energy 2025, 116, 613–626. [Google Scholar] [CrossRef]
- Fotsing Metegam, I.F. “Monte Carlo and Fuzzy AHP with GIS for ranking hybrid solar-wind sites for electricity and hydrogen production in Cameroon”. Int. J. Hydrogen Energy 2025, 106, 741–766. [Google Scholar] [CrossRef]
- Velaz-Acera, N.; Casado-Lorenzo, V.; Hernández-Herráez, G.; Sáez Blázquez, C.; Lagüela, S. Advancing renewable hydrogen deployment: A web geographic information system and Artificial Intelligent approach to site optimization. Energy Convers. Manag. 2025, 326, 119520. [Google Scholar] [CrossRef]
- Paulino de Azevedo, J.H.; Pradelle, F.; Botelho, V.; Torres Serra, E.; Nohra Chaar Pradelle, R.; Leal Braga, S. An integrated geospatial model for evaluating offshore wind-to-hydrogen technical and economic production potential in Brazil. Int. J. Hydrogen Energy 2025, 100, 800–815. [Google Scholar] [CrossRef]
- Ouchani, F.; Ghennioui, A. An integrated geospatial techno-economic multi-scenario mapping assessment of PV-based green hydrogen development opportunities: A vision to support its deployment in Morocco. Energy Convers. Manag. 2025, 324, 119296. [Google Scholar] [CrossRef]
- Flora, F.M.I. An MCDM-GIS based site suitability analysis for solar power plant integration in Cameroon: Solar hybridization to optimize green electricity and hydrogen production. Int. J. Hydrogen Energy 2025, 106, 23–51. [Google Scholar] [CrossRef]
- Paula, K.F.; Pumalloclla Castilla, H.A.; Pourakbari-Kasmaei, M.; Heymann, F.; Falcão, D.M.; Melo, J.D. GIS-Based Fuzzy-AHP Framework for Identifying Suitable Hubs for Offshore Wind and Clean Hydrogen Production. IEEE Access 2025, 13, 65526–65539. [Google Scholar] [CrossRef]
- Pinto, M.C.; Gaeta, M.; Arco, E.; Boccardo, P.; Corgnati, S.P. Mapping the suitability of North Africa for green hydrogen production: An application of a multi-criteria spatial decision support system combining GIS and AHP for Tunisia. Energy Sustain. Soc. 2025, 15, 20. [Google Scholar] [CrossRef]
- Yılmaz, T.; Uyan, M. Optimal site selection for green hydrogen production plants based on solar energy in Konya/Türkiye. Int. J. Hydrogen Energy 2025, 115, 252–264. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, W. Optimal site selection for wind-solar-hydrogen storage power plants based on geographic information system and multi-criteria decision-making model: A case study from China. J. Energy Storage 2025, 112, 115470. [Google Scholar] [CrossRef]
- Boubé, B.D.; Bhandari, R.; Saley, M.M.; Adamou, R. Topic: Geospatial evaluation of solar potential for hydrogen production site suitability: GIS-MCDA approach for off-grid and utility or large-scale systems over Niger. Energy Rep. 2025, 13, 2393–2416. [Google Scholar] [CrossRef]
- Rekik, S.; El Alimi, S. A spatial ranking of optimal sites for solar-driven green hydrogen production using GIS and multi-criteria decision-making approach: A case of Tunisia. Energy Explor. Exploit. 2024, 42, 2150–2190. [Google Scholar] [CrossRef]
- Liu, J.; Ma, X.; Lu, C. A three-stage framework for optimal site selection of hybrid offshore wind-photovoltaic-wave-hydrogen energy system: A case study of China. Energy 2024, 313, 133723. [Google Scholar] [CrossRef]
- Jahangiri, M.; Mostafaeipour, A.; Ghalishooyan, M.; Bakhtdehkordi, M. Evaluation of residential scale wind-solar electricity and hydrogen in Pakistan: Production capacity assessment. Sustain. Energy Technol. Assess. 2024, 71, 103971. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, D.; Sha, R.; Sun, J.; Wang, Y.; Wu, Y. Geospatial simulation and decision optimization towards identifying the layout suitability and priority for wind-photovoltaic-hydrogen-ammonia project: An empirical study in China. Energy 2024, 286, 129489. [Google Scholar] [CrossRef]
- Thekkethil, R.; Ananthakumar, M.R.; Kumar, D.; Srinivasan, V.; Kalshetty, M. Green hydrogen hubs in India: A first order analytical hierarchy process for site selection across states. Int. J. Hydrogen Energy 2024, 63, 767–774. [Google Scholar] [CrossRef]
- Amjad, F.; Agyekum, E.B.; Wassan, N. Identification of appropriate sites for solar-based green hydrogen production using a combination of density-based clustering, Best-Worst Method, and Spatial GIS. Int. J. Hydrogen Energy 2024, 68, 1281–1296. [Google Scholar] [CrossRef]
- Tiar, B.; Fadlallah, S.O.; Benhadji Serradj, D.E.; Graham, P.; Aagela, H. Navigating Algeria towards a sustainable green hydrogen future to empower North Africa and Europe’s clean hydrogen transition. Int. J. Hydrogen Energy 2024, 61, 783–802. [Google Scholar] [CrossRef]
- Vidas, L.; Castro, R.; Bosisio, A.; Pires, A. Optimal sizing of renewables-to-hydrogen systems in a suitable-site-selection geospatial framework: The case study of Italy and Portugal. Renew. Sustain. Energy Rev. 2024, 202, 114620. [Google Scholar] [CrossRef]
- Yum, S.-G.; Das Adhikari, M. Suitable site selection for the development of solar based smart hydrogen energy plant in the Gangwon-do region, South Korea using big data: A geospatial approach. Int. J. Hydrogen Energy 2023, 48, 36295–36313. [Google Scholar] [CrossRef]
- Amrani, S.-E.; Alami Merrouni, A.; Touili, S.; Dekhissi, H. A multi-scenario site suitability analysis to assess the installation of large scale photovoltaic-hydrogen production units. Case study: Eastern Morocco. Energy Convers. Manag. 2023, 295, 117615. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Yuan, H.; He, K.; Chen, H.; Xie, J.; Wang, B.; Wang, X. Scaling solar photocatalytic hydrogen production in China: Integrated geospatial-meteorological analysis. Appl. Energy 2025, 381, 125179. [Google Scholar] [CrossRef]
- Kim, S.W.; Park, M.; Kim, D.; Lee, J. Online monitoring of hydrogen quality at the hydrogen production plant. Int. J. Hydrogen Energy 2025, 126, 210–215. [Google Scholar] [CrossRef]
- Rozycki, A.; Lu, Y.; Klimenko, A.Y. Performance driven energy costing: A novel analysis of solar photovoltaic cost performance and generation dynamics feeding hydrogen production. Energy Rep. 2025, 13, 5704–5730. [Google Scholar] [CrossRef]
- Shemyakina, A.A.; Levina, A.I.; Korablev, V.V.; Lepekhin, A.A. Architecture of the management system for hydrogen production at hydropplications. Int. J. Hydrogen Energy 2024, 69, 1227–1235. [Google Scholar] [CrossRef]
- Naanani, H.; Nachtane, M.; Faik, A. Advancing hydrogen safety and reliability through digital twins: Applications, models, and future prospects. Int. J. Hydrogen Energy 2025, 115, 344–360. [Google Scholar] [CrossRef]
- Martínez-Gordón, R.; Gusatu, L.; Morales-España, G.; Sijm, J.; Faaij, A. Benefits of an integrated power and hydrogen offshore grid in a net-zero North Sea energy system. Adv. Appl. Energy 2022, 7, 100097. [Google Scholar] [CrossRef]
- Li, J.; Yan, Z.; Chen, X.; Gong, Y.; Fang, C. Optimising wind-powered hydrogen production: Techno-economic feasibility and GIS-based distribution strategies. J. Power Sources 2025, 642, 236888. [Google Scholar] [CrossRef]
- Boubé, B.D.; Bhandari, R.; Saley, M.M.; Bonkaney, A.L.; Adamou, R. Techno-Economic Analysis of Geospatial Green Hydrogen Potential Using Solar Photovoltaic in Niger: Application of PEM and Alkaline Water Electrolyzers. Energies 2025, 18, 1872. [Google Scholar] [CrossRef]
- Dabar, O.A.; Awaleh, M.O.; Waberi, M.M.; Ghiasirad, H.; Adan, A.-B.I.; Ahmed, M.M.; Nasser, M.; Juangsa, F.B.; Guirreh, I.A.; Abdillahi, M.O.; et al. Techno-economic and environmental assessment of green hydrogen and ammonia production from solar and wind energy in the republic of Djibouti: A geospatial modeling approach. Energy Rep. 2024, 12, 3671–3689. [Google Scholar] [CrossRef]
- Povacz, L.; Bhandari, R. Analysis of the Levelized Cost of Renewable Hydrogen in Austria. Sustainability 2023, 15, 4575. [Google Scholar] [CrossRef]
- Pfennig, M.; Böttger, D.; Häckner, B.; Geiger, D.; Zink, C.; Bisevic, A.; Jansen, L. Global GIS-based potential analysis and cost assessment of Power-to-X fuels in 2050. Appl. Energy 2023, 347, 121289. [Google Scholar] [CrossRef]
- Müller, L.A.; Leonard, A.; Trotter, P.A.; Hirmer, S. Green hydrogen production and use in low- and middle-income countries: A least-cost geospatial modelling approach applied to Kenya. Appl. Energy 2023, 343, 121219. [Google Scholar] [CrossRef]
- Rogeau, A.; Vieubled, J.; de Coatpont, M.; Affonso Nobrega, P.; Erbs, G.; Girard, R. Techno-economic evaluation and resource assessment of hydrogen production through offshore wind farms: A European perspective. Renew. Sustain. Energy Rev. 2023, 187, 113699. [Google Scholar] [CrossRef]
- Dinh, Q.V.; Dinh, V.N.; Mosadeghi, H.; Todesco Pereira, P.H.; Leahy, P.G. A geospatial method for estimating the levelised cost of hydrogen production from offshore wind. Int. J. Hydrogen Energy 2023, 48, 15000–15013. [Google Scholar] [CrossRef]
- Hosseini Dehshiri, S.J.; Zanjirchi, S.M. Comparative analysis of multicriteria decision-making approaches for evaluation hydrogen projects development from wind energy. Int. J. Energy Res. 2022, 46, 13356–13376. [Google Scholar] [CrossRef]
- Almutairi, K. Determining the appropriate location for renewable hydrogen development using multi-criteria decision-making approaches. Int. J. Energy Res. 2022, 46, 5876–5895. [Google Scholar] [CrossRef]
- de Almeida, J.O.; Shadman, M.; dos Santos Ramos, J.; Bastos, I.T.C.; Silva, C.; Chujutalli, J.A.H.; Amiri, M.M.; Bergman-Fonte, C.; Ferreira, G.R.L.; da Silva Carreira, E.; et al. Techno-economic analysis of hydrogen production from offshore wind: The case of Brazil. Energy Convers. Manag. 2024, 322, 119109. [Google Scholar] [CrossRef]
- Samsatli, S.; Samsatli, N.J. The role of renewable hydrogen and inter-seasonal storage in decarbonising heat—Comprehensive optimisation of future renewable energy value chains. Appl. Energy 2019, 233–234, 854–893. [Google Scholar] [CrossRef]
- Tarkowski, R. Underground hydrogen storage: Characteristics and prospects. Renew. Sustain. Energy Rev. 2019, 105, 86–94. [Google Scholar] [CrossRef]
- Lankof, L.; Nagy, S.; Polański, K.; Uliasz-Misiak, B. Potential of underground hybrid hydrogen storage. Int. J. Hydrogen Energy 2025, 128, 174–185. [Google Scholar] [CrossRef]
- Hosseini Dehshiri, S.S.; Firoozabadi, B. A novel four-stage integrated GIS based fuzzy SWARA approach for solar site suitability with hydrogen storage system. Energy 2023, 278, 127927. [Google Scholar] [CrossRef]
- Derakhshani, R.; Lankof, L.; GhasemiNejad, A.; Zarasvandi, A.; Amani Zarin, M.M.; Zaresefat, M. A Novel Sustainable Approach for Site Selection of Underground Hydrogen Storage in Poland Using Deep Learning. Energies 2024, 17, 3677. [Google Scholar] [CrossRef]
- Gao, J.; Wang, Y.; Guo, F.; Chen, J. A two-stage decision framework for GIS-based site selection of wind-photovoltaic-hybrid energy storage project using LSGDM method. Renew. Energy 2024, 222, 119912. [Google Scholar] [CrossRef]
- Lankof, L.; Tarkowski, R. GIS-based analysis of rock salt deposits’ suitability for underground hydrogen storage. Int. J. Hydrogen Energy 2023, 48, 27748–27765. [Google Scholar] [CrossRef]
- Önden, İ.; Deveci, M.; Önden, A. Green energy source storage location analysis based on GIS and fuzzy Einstein based ordinal priority approach. Sustain. Energy Technol. Assess. 2023, 57, 103205. [Google Scholar] [CrossRef]
- Carneiro, J.F.; Matos, C.R.; Van Gessel, S. Opportunities for large-scale energy storage in geological formations in mainland Portugal. Renew. Sustain. Energy Rev. 2019, 99, 201–211. [Google Scholar] [CrossRef]
- Zhang, G.; Shi, Y.; Maleki, A.; Rosen, M.A. Optimal location and size of a grid-independent solar/hydrogen system for rural areas using an efficient heuristic approach. Renew. Energy 2020, 156, 1203–1214. [Google Scholar] [CrossRef]
- Wu, Y.; He, F.; Zhou, J.; Wu, C.; Liu, F.; Tao, Y.; Xu, C. Optimal site selection for distributed wind power coupled hydrogen storage project using a geographical information system based multi-criteria decision-making approach: A case in China. J. Clean. Prod. 2021, 299, 126905. [Google Scholar] [CrossRef]
- Lefeuvre, N.; Truche, L.; Donzé, F.; Ducoux, M.; Barré, G.; Fakoury, R.; Calassou, S.; Gaucher, E.C. Native H2 Exploration in the Western Pyrenean Foothills. Geochem. Geophys. Geosystems 2021, 22, e2021GC009917. [Google Scholar] [CrossRef]
- Aimar, L.; Frery, E.; Strand, J.; Heath, C.; Khan, S.; Moretti, I.; Ong, C. Natural hydrogen seeps or salt lakes: How to make a difference? Grass Patch example, Western Australia. Front. Earth Sci. 2023, 11, 1236673. [Google Scholar] [CrossRef]
- Pajang, S.; Mouthereau, F.; Robert, A.; Kumar, A.; Callot, J. A Petro-Physical Model for Serpentinized Mantle and Origin of Natural Hydrogen in the Pyrenees. Geochem. Geophys. Geosystems 2025, 26, e2024GC011804. [Google Scholar] [CrossRef]
- Lefeuvre, N.; Thomas, E.; Truche, L.; Donzé, F.; Cros, T.; Dupuy, J.; Pinzon-Rincon, L.; Rigollet, C. Characterizing Natural Hydrogen Occurrences in the Paris Basin From Historical Drilling Records. Geochem. Geophys. Geosystems 2024, 25, e2024GC011501. [Google Scholar] [CrossRef]
- Al-Yaseri, A.; Esteban, L.; Yekeen, N.; Giwelli, A.; Sarout, J.; Sarmadivaleh, M. The effect of clay on initial and residual saturation of hydrogen in clay-rich sandstone formation: Implications for underground hydrogen storage. Int. J. Hydrogen Energy 2023, 48, 5175–5185. [Google Scholar] [CrossRef]
- Omojola, J.; Persaud, P. Monitoring Salt Domes Used for Energy Storage With Microseismicity: Insights for a Carbon-Neutral Future. Geochem. Geophys. Geosystems 2024, 25, e2024GC011573. [Google Scholar] [CrossRef]
- Al-Yaseri, A.; Esteban, L.; Giwelli, A.; Abdel-Azeim, S.; Sarout, J.; Sarmadivaleh, M. Impact of wettability on storage and recovery of hydrogen gas in the lesueur sandstone formation (Southwest hub project, Western Australia). Int. J. Hydrogen Energy 2023, 48, 23581–23593. [Google Scholar] [CrossRef]
- Zou, X.; Jiang, S.; Luo, Z.; Wang, T.; Chen, F.; Ju, J.; Lin, S.; Jin, W.; Yin, J.; Yang, C. A safe and high-precision detection method for hydrogen leakage analysis of underground gas storage based on stimulated Raman spectroscopy of micro-nanofiber. Fuel 2025, 400, 135743. [Google Scholar] [CrossRef]
- Yang, B.; Xiang, Y.; Xuan, F.-Z.; Hu, C.; Xiao, B.; Zhou, S.; Luo, C. Damage localization in hydrogen storage vessel by guided waves based on a real-time monitoring system. Int. J. Hydrogen Energy 2019, 44, 22740–22751. [Google Scholar] [CrossRef]
- Yu, F.; Zhang, H.; Class, A.; Xiao, J.; Travis, J.R.; Jordan, T. Winding number based automatic mesh generation algorithm for hydrogen analysis code GASFLOW-MPI. Int. J. Hydrogen Energy 2019, 44, 14070–14084. [Google Scholar] [CrossRef]
- Battaglia, V.; Rehman, A.U.; Vanoli, L. Optimizing storage capacity in 100% renewable electricity supply: A GIS-based approach for Italy. Smart Energy 2025, 18, 100177. [Google Scholar] [CrossRef]
- Hilali, I.; Akbas, A.; Balak, V.; Akaslan, D.; Guner, K. An experimental study to validate optimum distance between metal hydride tanks with staggered arrangement for effective thermal management. Int. J. Hydrogen Energy 2022, 47, 19732–19740. [Google Scholar] [CrossRef]
- Haffaf, A.; Lakdja, F. Mega-scale solar-wind complementarity assessment for large-scale hydrogen production and storage (H2PS) in Algeria: A techno-economic analysis. Int. J. Hydrogen Energy 2024, 86, 985–1009. [Google Scholar] [CrossRef]
- Gao, K.; Creasy, N.M.; Huang, L.; Gross, M.R. Underground hydrogen storage leakage detection and characterization based on machine learning of sparse seismic data. Int. J. Hydrogen Energy 2024, 61, 137–161. [Google Scholar] [CrossRef]
- Hammond, J.; Rosenberg, M.; Brown, S. Understanding costs in hydrogen infrastructure networks: A multi-stage approach for spatially-aware pipeline design. Int. J. Hydrogen Energy 2025, 102, 430–443. [Google Scholar] [CrossRef]
- Hanto, J.; Herpich, P.; Löffler, K.; Hainsch, K.; Moskalenko, N.; Schmidt, S. Assessing the implications of hydrogen blending on the European energy system towards 2050. Adv. Appl. Energy 2024, 13, 100161. [Google Scholar] [CrossRef]
- Gunawan, T.A.; Singlitico, A.; Blount, P.; Burchill, J.; Carton, J.G.; Monaghan, R.F.D. At What Cost Can Renewable Hydrogen Offset Fossil Fuel Use in Ireland’s Gas Network? Energies 2020, 13, 1798. [Google Scholar] [CrossRef]
- Noguchi, H.; Omachi, T.; Seya, H.; Fuse, M. A GIS-based risk assessment of hydrogen transport: Case study in Yokohama City. Int. J. Hydrogen Energy 2021, 46, 12420–12428. [Google Scholar] [CrossRef]
- Linsel, O.; Bertsch, V. A flexible approach to GIS based modelling of a global hydrogen transport system. Int. J. Hydrogen Energy 2024, 52, 334–349. [Google Scholar] [CrossRef]
- Li, Y.; Yao, X.; Guo, Z.; Yu, X.; Wang, X.; Tu, S.-T. Powering hydrogen refueling stations with local renewable curtailment—A Lanzhou case study. J. Clean. Prod. 2024, 473, 143492. [Google Scholar] [CrossRef]
- Shahzad, S.; Alsenani, T.R.; Kilic, H.; Wheeler, P. Techno-economic analysis of green hydrogen integration in smart grids: Pathways to sustainable energy systems. Int. J. Hydrogen Energy 2024, 143, 989–999. [Google Scholar] [CrossRef]
- Gunawan, T.A.; Williamson, I.; Raine, D.; Monaghan, R.F.D. Decarbonising city bus networks in Ireland with renewable hydrogen. Int. J. Hydrogen Energy 2021, 46, 28870–28886. [Google Scholar] [CrossRef]
- Nielsen, S.; Skov, I.R. Investment screening model for spatial deployment of power-to-gas plants on a national scale—A Danish case. Int. J. Hydrogen Energy 2019, 44, 9544–9557. [Google Scholar] [CrossRef]
- Herwartz, S.; Pagenkopf, J.; Streuling, C. Sector coupling potential of wind-based hydrogen production and fuel cell train operation in regional rail transport in Berlin and Brandenburg. Int. J. Hydrogen Energy 2021, 46, 29597–29615. [Google Scholar] [CrossRef]
- Zhao, Z.; Kumar, D.; Zhang, C.; Li, H.; Timalsina, S. Techno-economic analysis of green hydrogen integration into existing pipeline infrastructure: A case study of Wyoming. Int. J. Hydrogen Energy 2024, 93, 574–584. [Google Scholar] [CrossRef]
- Hampp, J.; Düren, M.; Brown, T. Import options for chemical energy carriers from renewable sources to Germany. PLoS ONE 2023, 18, e0262340. [Google Scholar] [CrossRef] [PubMed]
- Cerniauskas, S.; Jose Chavez Junco, A.; Grube, T.; Robinius, M.; Stolten, D. Options of natural gas pipeline reassignment for hydrogen: Cost assessment for a Germany case study. Int. J. Hydrogen Energy 2020, 45, 12095–12107. [Google Scholar] [CrossRef]
- IEA. Global Hydrogen Review 2024—Analysis. Available online: https://www.iea.org/reports/global-hydrogen-review-2024 (accessed on 16 June 2025).
- Caraveo Mena, C.; Suastegui Macias, J.A.; Cervantes Huerta, L.; Ruiz Ochoa, J.A.; Jiménez Calleros, S.; Sánchez-Pérez, A. Design and Implementation of a Distributed IoT System for Monitoring of Gases Emitted by Vehicles That Use Biofuels. Sustainability 2025, 17, 1153. [Google Scholar] [CrossRef]
- Löfving, J.; Brynolf, S.; Grahn, M. Geospatial distribution of hydrogen demand and refueling infrastructure for long-haul trucks in Europe. Int. J. Hydrogen Energy 2025, 128, 544–558. [Google Scholar] [CrossRef]
- Stein, A.; Nolte, B.; Kizgin, U.V.; Grünewald, O.; Yurtseven, G.; Vietor, T. Relationship Between Area and Capacity of Hydrogen Refueling Stations and Derivation of Design Recommendations. Hydrogen 2025, 6, 16. [Google Scholar] [CrossRef]
- Zulfhazli; Keeley, A.R.; Coulibaly, T.Y.; Managi, S. Analysis of prospective demand for hydrogen in the road transportation sector: Evidence from 14 countries. Int. J. Hydrogen Energy 2024, 56, 853–863. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, Z.; Wang, S.; Chen, A.; Zhuge, C. Fuel and infrastructure options for electrifying public transit: A data-driven micro-simulation approach. Appl. Energy 2024, 369, 123577. [Google Scholar] [CrossRef]
- Oksuztepe, E.; Yildirim, M. PEM fuel cell and supercapacitor hybrid power system for four in-wheel switched reluctance motors drive EV using geographic information system. Int. J. Hydrogen Energy 2024, 75, 74–87. [Google Scholar] [CrossRef]
- Kelley, S.; Gulati, S.; Hiatt, J.; Kuby, M. Do early adopters pass on convenience? Access to and intention to use geographically convenient hydrogen stations in California. Int. J. Hydrogen Energy 2022, 47, 2708–2722. [Google Scholar] [CrossRef]
- Lane, B.; Shaffer, B.; Samuelsen, S. A comparison of alternative vehicle fueling infrastructure scenarios. Appl. Energy 2020, 259, 114128. [Google Scholar] [CrossRef]
- Chrysochoidis-Antsos, N.; Escudé, M.R.; van Wijk, A.J.M. Technical potential of on-site wind powered hydrogen producing refuelling stations in the Netherlands. Int. J. Hydrogen Energy 2020, 45, 25096–25108. [Google Scholar] [CrossRef]
- Zhu, L.; Xiong, K.; Lei, G.; Luo, Y.; Liu, W. A study on the macro-micro two-stage site selection of electric-hydrogen hybrid refueling stations based on GIS and Fuzzy-TODIM. Int. J. Hydrogen Energy 2025, 141, 444–459. [Google Scholar] [CrossRef]
- Elomiya, A.; Křupka, J.; Simic, V.; Švadlenka, L.; Průša, P.; Jovčić, S. An advanced spatial decision model for strategic placement of off-site hydrogen refueling stations in urban areas. eTransportation 2024, 22, 100375. [Google Scholar] [CrossRef]
- Zhou, Y.; Qin, X.; Mei, W.; Yang, W.; Ni, M. Multi-period urban hydrogen refueling stations site selection and capacity planning with many-objective optimization for hydrogen supply chain. Int. J. Hydrogen Energy 2024, 79, 1427–1441. [Google Scholar] [CrossRef]
- De Padova, A.; Schiera, D.S.; Minuto, F.D.; Lanzini, A. Spatial MILP optimization framework for siting Hydrogen Refueling Stations in heavy-duty freight transport. Int. J. Hydrogen Energy 2024, 94, 669–686. [Google Scholar] [CrossRef]
- Grube, T.; Kraus, S.; Cerniauskas, S.; Linßen, J.; Stolten, D. The market introduction of hydrogen focusing on bus refueling. Int. J. Hydrogen Energy 2024, 56, 175–187. [Google Scholar] [CrossRef]
- Xu, M.; Wu, Y.; Liao, Y.; Tao, Y.; Liu, F. Optimal sites selection of oil-hydrogen combined stations considering the diversity of hydrogen sources. Int. J. Hydrogen Energy 2023, 48, 1043–1059. [Google Scholar] [CrossRef]
- Karipoğlu, F.; Serdar Genç, M.; Akarsu, B. GIS-based optimal site selection for the solar-powered hydrogen fuel charge stations. Fuel 2022, 324, 124626. [Google Scholar] [CrossRef]
- Zhou, J.; Wu, Y.; Tao, Y.; Gao, J.; Zhong, Z.; Xu, C. Geographic information big data-driven two-stage optimization model for location decision of hydrogen refueling stations: An empirical study in China. Energy 2021, 225, 120330. [Google Scholar] [CrossRef]
- Lopez Jaramillo, O.; Rinebold, J.; Kuby, M.; Kelley, S.; Ruddell, D.; Stotts, R.; Krafft, A.; Wentz, E. Hydrogen Station Location Planning via Geodesign in Connecticut: Comparing Optimization Models and Structured Stakeholder Collaboration. Energies 2021, 14, 7747. [Google Scholar] [CrossRef]
- Mathematical Model for the Placement of Hydrogen Refueling Stations to Support Future Fuel Cell Trucks. Available online: https://ieeexplore.ieee.org/document/9591563 (accessed on 26 June 2025).
- Thiel, D. A pricing-based location model for deploying a hydrogen fueling station network. Int. J. Hydrogen Energy 2020, 45, 24174–24189. [Google Scholar] [CrossRef]
- Tlili, O.; Mansilla, C.; Linβen, J.; Reuß, M.; Grube, T.; Robinius, M.; André, J.; Perez, Y.; Le Duigou, A.; Stolten, D. Geospatial modelling of the hydrogen infrastructure in France in order to identify the most suited supply chains. Int. J. Hydrogen Energy 2020, 45, 3053–3072. [Google Scholar] [CrossRef]
- Lin, R.; Ye, Z.; Guo, Z.; Wu, B. Hydrogen station location optimization based on multiple data sources. Int. J. Hydrogen Energy 2020, 45, 10270–10279. [Google Scholar] [CrossRef]
- Coleman, D.; Kopp, M.; Wagner, T.; Scheppat, B. The value chain of green hydrogen for fuel cell buses—A case study for the Rhine-Main area in Germany. Int. J. Hydrogen Energy 2020, 45, 5122–5133. [Google Scholar] [CrossRef]
- Cerniauskas, S.; Grube, T.; Praktiknjo, A.; Stolten, D.; Robinius, M. Future Hydrogen Markets for Transportation and Industry: The Impact of CO2 Taxes. Energies 2019, 12, 4707. [Google Scholar] [CrossRef]
- Jin, L.; Rossi, M.; Monforti Ferrario, A.; Mennilli, F.; Comodi, G. Designing hybrid energy storage systems for steady green hydrogen production in residential areas: A GIS-based framework. Appl. Energy 2025, 389, 125765. [Google Scholar] [CrossRef]
- Maestre, V.M.; Ortiz, A.; Ortiz, I. Transition to a low-carbon building stock. Techno-economic and spatial optimization of renewables-hydrogen strategies in Spain. J. Energy Storage 2022, 56, 105889. [Google Scholar] [CrossRef]
- Mansouri, S.A.; Rezaee Jordehi, A.; Marzband, M.; Tostado-Véliz, M.; Jurado, F.; Aguado, J.A. An IoT-enabled hierarchical decentralized framework for multi-energy microgrids market management in the presence of smart prosumers using a deep learning-based forecaster. Appl. Energy 2023, 333, 120560. [Google Scholar] [CrossRef]
- Zuo, G.; Ren, Y.; Wang, J.; Dou, Y. A Precision Monitoring Method and Control Strategy for a Proton Exchange Membrane Fuel Cell in the Power Generation System of the Antarctic Space Physics Observatory. Energies 2025, 18, 1693. [Google Scholar] [CrossRef]
- Elshurafa, A.M.; Muhsen, A.R.; Felder, F.A. Cost, footprint, and reliability implications of deploying hydrogen in off-grid electric vehicle charging stations: A GIS-assisted study for Riyadh, Saudi Arabia. Int. J. Hydrogen Energy 2022, 47, 32641–32654. [Google Scholar] [CrossRef]
- Yan, A.; Rupnowski, P.; Guba, N.; Nag, A. Towards deep computer vision for in-line defect detection in polymer electrolyte membrane fuel cell materials. Int. J. Hydrogen Energy 2023, 48, 18978–18995. [Google Scholar] [CrossRef]
- Phillips, A.; Ulsh, M.; Mackay, J.; Harris, T.; Shrivastava, N.; Chatterjee, A.; Porter, J.; Bender, G. The Effect of Membrane Casting Irregularities on Initial Fuel Cell Performance. Fuel Cells 2020, 20, 60–69. [Google Scholar] [CrossRef]
- Luo, L.; Jian, Q.; Huang, B.; Huang, Z.; Zhao, J.; Cao, S. Experimental study on temperature characteristics of an air-cooled proton exchange membrane fuel cell stack. Renew. Energy 2019, 143, 1067–1078. [Google Scholar] [CrossRef]
- Günaydın, Ö.F.; Topçu, S.; Aksoy, A. Hydrogen fuel cell vehicles: Overview and current status of hydrogen mobility. Int. J. Hydrogen Energy 2025, 142, 918–936. [Google Scholar] [CrossRef]
- Mendler, F.; Voglstätter, C.; Müller, N.; Smolinka, T.; Holst, M.; Hebling, C.; Koch, B. A newly developed spatially resolved modelling framework for hydrogen valleys: Methodology and functionality. Adv. Appl. Energy 2025, 17, 100207. [Google Scholar] [CrossRef]
- Rodriguez Calzado, E.; Razm, S.; Lin, N. Assessing spatial feasibility for hydrogen hub development in South-Central U.S.: Challenges, infrastructure synergy, and strategic planning. Int. J. Hydrogen Energy 2025, 111, 171–182. [Google Scholar] [CrossRef]
- Mendler, F.; Koch, B.; Meißner, B.; Voglstätter, C.; Smolinka, T. Evaluation of spatial clustering methods for regionalisation of hydrogen ecosystems. Energy Strategy Rev. 2025, 57, 101627. [Google Scholar] [CrossRef]
- Ma, Y.; Huang, M.; Zhou, Y.; Xu, F.; Xu, C. Modeling of the multi-period two-stage green hydrogen supply chain with consideration of supply and demand uncertainties. Int. J. Hydrogen Energy 2025, 129, 297–314. [Google Scholar] [CrossRef]
- Mendler, F.; Müller, N.; Voglstätter, C.; Smolinka, T.; Hebling, C.; Koch, B. Optimisation of possible transformation pathways for hydrogen valleys: Case study southern Upper Rhine Region. Int. J. Hydrogen Energy 2025, 138, 985–1003. [Google Scholar] [CrossRef]
- Moustapha Mai, T.; Azzaro-Pantel, C.; Cristofari, C.; Chin Choi, M. A prospective approach to the optimal deployment of a hydrogen supply chain for sustainable mobility in island territories: Application to Corsica. Int. J. Hydrogen Energy 2024, 93, 975–991. [Google Scholar] [CrossRef]
- Fang, H.; Tan, N.; Chen, D.; Ma, T. Spatial optimization strategies for China’s hydrogen infrastructure industry chain. Energy Rep. 2024, 12, 4523–4538. [Google Scholar] [CrossRef]
- Guzzini, A.; Brunaccini, G.; Aloisio, D.; Pellegrini, M.; Saccani, C.; Sergi, F. A New Geographic Information System (GIS) Tool for Hydrogen Value Chain Planning Optimization: Application to Italian Highways. Sustainability 2023, 15, 2080. [Google Scholar] [CrossRef]
- Joubi, A.; Akimoto, Y.; Okajima, K. A Production and Delivery Model of Hydrogen from Solar Thermal Energy in the United Arab Emirates. Energies 2022, 15, 4000. [Google Scholar] [CrossRef]
- Parolin, F.; Colbertaldo, P.; Campanari, S. Development of a multi-modality hydrogen delivery infrastructure: An optimization model for design and operation. Energy Convers. Manag. 2022, 266, 115650. [Google Scholar] [CrossRef]
- Dong, H.; Wu, Y.; Zhou, J.; Chen, W. Optimal selection for wind power coupled hydrogen energy storage from a risk perspective, considering the participation of multi-stakeholder. J. Clean. Prod. 2022, 356, 131853. [Google Scholar] [CrossRef]
- Kuang, W.; Nickerson, E.K.; Li, D.; Clelland, D.T.; Seffens, R.J.; Ramos, J.L.; Simmons, K.L. An in-situ view cell system for investigating swelling behavior of elastomers upon high-pressure hydrogen exposure. Int. J. Hydrogen Energy 2024, 71, 1317–1325. [Google Scholar] [CrossRef]
- Cao, W.; Li, W.; Yu, S.; Zhang, Y.; Shu, C.-M.; Liu, Y.; Luo, J.; Bu, L.; Tan, Y. Explosion venting hazards of temperature effects and pressure characteristics for premixed hydrogen-air mixtures in a spherical container. Fuel 2021, 290, 120034. [Google Scholar] [CrossRef]
- Chizubem, B.; Subbiah, A.; Izuchukwu, O.C.; Musa, K.S. Real-time monitoring using digital platforms for enhanced safety in hydrogen facilities—Current perspectives and future directions. Int. J. Hydrogen Energy 2025, 98, 487–499. [Google Scholar] [CrossRef]
- Kondratyev, S.I.; Baskanbayeva, D.; Yelemessov, K.; Khekert, E.V.; Privalov, V.E.; Sarsenbayev, Y.; Turkin, V.A. Control of hydrogen leaks from storage tanks and fuel supply systems to mining transport infrastructure facilities. Int. J. Hydrogen Energy 2024, 95, 212–216. [Google Scholar] [CrossRef]
- Yang, D.; Oh, J.; Lee, G.; Lee, S.; Choi, S. Detection of hydrogen gas leak using distributed temperature sensor in green hydrogen system. Int. J. Hydrogen Energy 2024, 82, 910–922. [Google Scholar] [CrossRef]
- Kumar, A.; Pandey, G.; Kumar, R.; Yadav, J.; Mondal, S.; Molokitina, N.S. Fast switching hydrogen gas leakage identification using FPGA. Int. J. Hydrogen Energy 2024, 69, 1157–1165. [Google Scholar] [CrossRef]
- Pandey, V.; Kumar, A.; Razeen, A.S.; Gupta, A.; Tripathy, S.; Kumar, M. Pd/AlGaN/GaN HEMT-Based Room Temperature Hydrogen Gas Sensor. IEEE Sens. J. 2024, 24, 40409–40416. [Google Scholar] [CrossRef]
- Jeon, K.S.; Sim, J.; Cho, W.B.; Park, B. Research on long-range hydrogen gas measurement for development of Raman lidar sensors. Int. J. Hydrogen Energy 2024, 67, 119–126. [Google Scholar] [CrossRef]
- Whitlock, M.; Szafir, D.A.; Gruchalla, K. HydrogenAR: Interactive Data-Driven Presentation of Dispenser Reliability. In Proceedings of the 2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Porto de Galinhas, Brazil, 9–13 November 2020; pp. 704–712. [Google Scholar]
- Sendari, S.; Jiono, M.; Diantoro, M.; Puspitasari, P.; Surjanto, H.; Nur, H. Augmented Reality for Introducing Fuel Cell as Electrochemical Energy Conversion on Vocational School. Int. J. Interact. Mob. Technol. IJIM 2020, 14, 16–28. [Google Scholar] [CrossRef]
- Guo, D. Regionalization with dynamically constrained agglomerative clustering and partitioning (REDCAP). Int. J. Geogr. Inf. Sci. 2008, 22, 801–823. [Google Scholar] [CrossRef]
Geospatial technique | Description | Maturity Level | Ref. |
---|---|---|---|
GIS | GIS is a computer system that collects, stores, manages, analyzes, displays, and applies geographic information, as well as a general technique for analyzing and managing mass spatial data. | Mature | [41] |
Remote sensing | Remote sensing refers to the acquisition of information on a given target without making contact with the target. It uses the entire electromagnetic spectrum, ranging from short wavelengths (for example, ultraviolet) to long wavelengths (microwaves). | Mature | [42] |
Topographic survey | Topographic surveys are generally used for the representation of the Earth’s undulating topography, commonly known as relief features of the Earth’s surface. | Mature | [43] |
Photogrammetry | Photogrammetry provides the ability to build three-dimensional (3D) models from two-dimensional (2D) images. | Mature | [44] |
Computational vision (CV) | CV is a broad term mainly used to refer to processing image and video data. CV aims to enable machines to perceive, observe, and understand the physical world as if they have human eyes. | Emerging | [45] |
Real-time monitoring or Internet of Things (IoT) (Absolute or relative coordinates) | Real-time monitoring and IoT allow real-time data collection, contributing to more proactive planning and early detection of issues before they cause unplanned downtime and revenue loss. Whenever georeferenced data is considered either by absolute coordinates (latitude/longitude by Global Position System (GPS)) or relative coordinates (distance to a reference point). | Emerging | [46] |
Geo-visualization | Geo-visualization techniques developed are able to provide information about the different spatial data for users in a visual way and also help to understand better the spatial information using a cognitive approach. | Experimental | [47] |
Geophysics | Geophysics analyzes the distribution of physical properties in the subsurface for a wide range of geological, engineering, and environmental applications at different scales. Seismic, electrical, magnetic, and electromagnetic methods are among the most applied and well-established geophysical techniques. | Mature | [48] |
2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 | ||
---|---|---|---|---|---|---|---|---|
Cross-cutting issues | 0 | 0 | 1 | 3 | 1 | 9 | 7 | |
End-uses | 2 | 7 | 3 | 4 | 2 | 9 | 5 | |
Transportation | 1 | 1 | 1 | 0 | 1 | 5 | 1 | |
Storage | 3 | 0 | 2 | 1 | 7 | 5 | 4 | |
Production/Transportation | 0 | 1 | 2 | 0 | 0 | 0 | 1 | |
Production/Storage | 1 | 1 | 0 | 0 | 0 | 1 | 0 | |
Production | 4 | 2 | 9 | 15 | 10 | 25 | 20 | |
Number of citations | 716 | 728 | 1900 | 859 | 923 | 1525 | 698 |
Publisher/Journal | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | 2025 |
---|---|---|---|---|---|---|---|
ACS Publications | 1 | ||||||
Environmental Science and Technology | 1 | ||||||
Elsevier | 10 | 10 | 14 | 18 | 16 | 45 | 30 |
Advances in Applied Energy | 1 | 1 | 1 | ||||
Applied Energy | 1 | 1 | 1 | 1 | 2 | 1 | 3 |
Energy | 1 | 1 | 1 | 2 | |||
Energy Conversion and Management | 1 | 1 | 1 | 1 | 3 | 2 | |
Energy For Sustainable Development | 1 | ||||||
Energy Reports | 2 | 2 | |||||
Energy Strategy Reviews | 1 | 1 | 1 | ||||
eTransportation | 1 | ||||||
Fuel | 1 | 2 | 1 | ||||
International Journal of Hydrogen Energy | 4 | 8 | 5 | 8 | 8 | 28 | 17 |
Journal of Cleaner Production | 3 | 1 | 1 | ||||
Journal of Energy Storage | 1 | 1 | |||||
Journal of Power Sources | 1 | 1 | |||||
Renewable And Sustainable Energy Reviews | 1 | 1 | 1 | 2 | |||
Renewable Energy | 2 | 1 | 1 | 1 | |||
Renewable Energy Focus | 1 | 1 | |||||
Science of the Total Environment | 1 | ||||||
Smart Energy | 1 | ||||||
Sustainable Energy Technologies and Assessments | 1 | 1 | |||||
Frontiers | 1 | ||||||
Frontiers In Earth Science | 1 | ||||||
IEEE | 1 | 1 | 1 | ||||
IEEE Access | 1 | 1 | |||||
IEEE Sensors Journal | 1 | ||||||
MDPI | 1 | 1 | 2 | 2 | 2 | 4 | 5 |
Energies | 1 | 1 | 1 | 1 | 2 | 2 | |
Hydrogen | 1 | ||||||
Sensors | 1 | ||||||
Sustainability | 1 | 1 | 2 | 1 | 2 | ||
PLOS | 1 | ||||||
Plos ONE | 1 | ||||||
SAGE | 1 | ||||||
Energy Exploration and Exploitation | 1 | ||||||
Springer | 1 | ||||||
Energy Sustainability and Society | 1 | ||||||
WILEY | 1 | 1 | 3 | 1 | 2 | 1 | |
Energy Technology | 1 | 1 | |||||
Fuel Cells | 1 | ||||||
Geochemistry Geophysics Geosystems | 1 | 2 | 1 | ||||
International Journal of Energy Research | 2 | ||||||
Total Articles Published per Year | 11 | 12 | 18 | 23 | 21 | 54 | 38 |
Cluster | Cluster Research Hotspot | Keywords in the Cluster |
---|---|---|
1 (Red color) | Production | hydrogen production; electrolysis; water electrolysis; generation; renewable energy; renewable energies; renewable energy source; solar energy; solar power generation; photovoltaic system; wind power; wind energy; green hydrogen; alternative energy; fossil fuels; energy; wind |
2 (Green color) | Storage | energy storage; storage; hydrogen storage; digital storage; underground hydrogen; |
3 (Blue color) | Transport and distribution | supply chains; optimization; performance; model |
4 (Yellow color) | End-uses | fuel cells; electricity; power; hydrogen energy; hydrogen fuels; hydrogen economy; hydrogen; hydrogen refueling stations; hydrogen energy; hydrogen supply; chains |
5 (Purple color) | Geospatial techniques | cost benefit analysis; costs; techno-economics; techno-economic; analysis; energy policy; levelized costs; cost effectiveness; decision-making; sensitivity analysis; information systems; information use; system; internet of things; GIS; spatial analysis; site selection; location; selection; multicriteria decision-making; multicriteria system; geographic information; geographic information system; geo-spatial |
Application | Ref. | Main Geospatial Techniques | Primary Uses of the Geospatial Techniques | Challenges |
---|---|---|---|---|
Site selection | [53,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77] | GIS + MCDM | Identification of suitable locations based on renewables, land use, water, grid access | Fragmented datasets; varying resolution; regulatory constraints |
Resource mapping | [54,56,78] | GIS + Remote Sensing | Spatial assessment of solar irradiance, wind potential, terrain suitability | Cloud cover in imagery; inconsistent data granularity |
IoT monitoring | [55,79,80,81,82] | GIS + IoT Sensors | Real-time performance tracking, system automation, predictive maintenance | Sensor calibration and failure; infrastructure cost in remote areas |
Clustering | [55,73,83] | GIS + Clustering Algorithms | Aggregation and mapping of high-potential production zones using big data | Need for harmonized cross-sectoral datasets |
Techno-economic modeling | [84,85,86,87,88,89,90,91,92,93] | GIS + Economic Simulation Models | Spatialized cost analysis of hydrogen supply configurations | Lack of integration between spatial and financial models |
Application | Ref. | Main Geospatial Techniques | Primary Uses of the Geospatial Techniques | Challenges |
---|---|---|---|---|
Determination of potential locations | [97,98,99,100,101,102,103,104,105] | GIS | Multi-criteria decision-making, advanced decision methods, artificial intelligence | Validation of AI techniques. Further testing to achieve increased accuracy. |
Understanding natural H2 | [106,107,108,109] | GIS, IoT and geophysics | Simulations, multi-sensor and historical data for low-concentration H2 detection | Integration of multi-source data for a deeper understanding |
Characterization of underground cavities | [110,111,112] | IoT and geophysics | Non-destructive data acquisition to feed physical and AI models | Simulations and machine learning for accurate predictions |
Detection of natural H2 through leakages | [96,113,114,115] | CV, IoT and geophysics | Application of machine learning, multi-sensor (IoT, imagery) data for low-concentration H2 detection | Technology refinement and multi-source data integration for the detection of very low-concentration H2 detection |
Calculation of storage capacity and needs | [116] | GIS | Integration of storage in the hydrogen value chain and national energy mix | Examination of grid-related factors to improve geographic feasibility analyses |
Storage design | [95,117,118] | GIS and IRT | Determination of optimum distance between storage containers, and their charge/discharge cycles | Robust optimization to ensure that solutions are resilient to uncertainties |
Application | Ref. | Main Geospatial Techniques | Primary Uses of the Geospatial Technique | Challenges |
---|---|---|---|---|
Economic analysis | [61,120,121,122] | GIS | Production and transportation cost analysis using different existing tube | Difficult obstacles to model; Lack of underground data; Lack of climatic data; Limited GIS detail |
Safety | [123] | GIS | Hydrogen via risk assessment | Complex modeling; Few documented accidents |
Production/Transport | [124,125,126,127,128,129] | GIS | Optimization of the transport and/or storage system for supply | Non-harmonized data between countries; complex multisectoral modeling; Public data scarcity |
Adaptation of existing Pipelines | [130,131,132] | GIS | Use of existing pipes to optimize transportation | Access to limited data; Different resolution by regions; Heterogeneity of pipes |
Application | Ref. | Main Geospatial Techniques | Primary Uses of the Geospatial Technique | Challenges |
---|---|---|---|---|
Mobility | [134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157] | GIS and IoT | Multi-source database integration Visualization results Real-time data acquisition Environmental analysis | Data reliability; lack of geolocalized data |
Industry and Buildings | [158,159,160] | GIS | Multi-source database integration Visualization results Optimization and cluster algorithm | Lack of open database; Computational time |
Power generation | [55,161,162] | GIS and DT (IoT) | Monitorization and precise control PEMFC Techno-economic analysis | Low resolution |
Component | [163,164,165] | CV and IRT | Detection of membrane manufacturing defects Thermal analysis PEMFC | Integration in the manufacturing process Automatic detection deep learning algorithms |
Application | Ref. | Main Geospatial Techniques | Primary Uses of the Geospatial Technique | Challenges |
---|---|---|---|---|
Hydrogen Valleys | [167,168,169,170,171,172,173,174,175,176,177] | GIS | Optimize the location of valleys and supply chains, group regions, analyze distribution | Complexity of finding clusters, heterogeneous data, balancing computational load resolution |
Safety | [82,178,179] | DT, CV, IRT | Improve security | Heterogeneous data sources and formats, variability in environmental conditions |
Leak Detection | [180,181,182,183,184,185] | DT, VR, IoT, LIDAR | Leak detection | Data quality, variability in environmental conditions, reception signal |
Training | [30,186,187] | VR, Augmented Reality (AR) | Educational materials | Adaptation to national contexts |
Limitation/Challenge | Impact on Results | Implication for Future Research | Stages of the HVC |
---|---|---|---|
Lack of high-resolution or standardized spatial data | Reduces accuracy in site selection and comparability across regions | Development of global, standardized geospatial datasets | Production; Storage; Transport and Distribution; End-uses |
Fragmented and inconsistent datasets | Causes unreliable or incomplete analyses | Improvement of data harmonization and interoperability | Production; Transport and Distribution; Cross-cutting |
Cloud cover in satellite images Lack of climatic data | Limits solar resource assessment | Use of alternative sensors or correction methods | Production; Transport and Distribution |
High computational complexity Long computation times for complex models | Restricts large-scale or real-time modeling Delays simulations and scenario analysis | Optimization of algorithm, use high-performance computing parallel computing, or cloud solutions | Production; Transport and Distribution; End-uses; Cross-cutting |
Limited deployment of sensors in remote areas Sensor calibration and failure | Inhibits real-time monitoring in key locations | Development of low-cost, resilient IoT technologies | Production; Storage; End-uses |
Poor integration of spatial and economic models | Incomplete cost analyses of hydrogen systems | Combination of GIS with techno-economic frameworks | Production; Transport and Distribution |
Inaccurate or sparse underground/geological data | Affects storage site suitability and safety | Enhancement of geophysical mapping and data collection | Storage; Transport and Distribution |
Non-harmonized data across countries | Blocks cross-border infrastructure planning | Promotion of international standards and open data | Transport and Distribution; Cross-cutting |
Unreliable or non-geolocated mobility data | Affects planning of hydrogen refueling stations and demand analysis | Standardization of data collection and ensuring spatial tagging | End-uses |
Lack of training datasets for AI/image-based defect detection | Limits automation in component manufacturing | Creation of labeled image databases for machine learning | End-uses; Cross-cutting |
Complex integration of multi-source geospatial data | Hinders holistic system analysis | Building unified platforms for GIS, IoT, and remote sensing | All |
Lack of open-access or updated databases | Limits reproducibility and collaboration | Promotion of public repositories and government-supported open data | All |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Herráez, G.; Velaz-Acera, N.; Del Pozo, S.; Lagüela, S. The Role of Geospatial Techniques for Renewable Hydrogen Value Chain: A Systematic Review of Current Status, Challenges and Future Developments. Appl. Sci. 2025, 15, 8777. https://doi.org/10.3390/app15168777
Hernández-Herráez G, Velaz-Acera N, Del Pozo S, Lagüela S. The Role of Geospatial Techniques for Renewable Hydrogen Value Chain: A Systematic Review of Current Status, Challenges and Future Developments. Applied Sciences. 2025; 15(16):8777. https://doi.org/10.3390/app15168777
Chicago/Turabian StyleHernández-Herráez, Gustavo, Néstor Velaz-Acera, Susana Del Pozo, and Susana Lagüela. 2025. "The Role of Geospatial Techniques for Renewable Hydrogen Value Chain: A Systematic Review of Current Status, Challenges and Future Developments" Applied Sciences 15, no. 16: 8777. https://doi.org/10.3390/app15168777
APA StyleHernández-Herráez, G., Velaz-Acera, N., Del Pozo, S., & Lagüela, S. (2025). The Role of Geospatial Techniques for Renewable Hydrogen Value Chain: A Systematic Review of Current Status, Challenges and Future Developments. Applied Sciences, 15(16), 8777. https://doi.org/10.3390/app15168777