Ecotoxicological Assessment of Soils Reclaimed with Waste
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Laboratory Analyses
- Physicochemical properties (pH, V, Corr. heavy metals);
- PHYTOTOXIKIT biological test;
- MARA biological test.
2.2.1. Phytotoxicity Assessment Using the PHYTOTOXIKIT Test
2.2.2. Ecotoxicity Assessment Using the Microbial Assay for Risk Assessment (MARA) Test
2.2.3. Statistical Analysis
3. Results
3.1. Assessment of Selected Physicochemical Properties of Reclaimed Soil
3.2. Phytotoxicity Assessment Using the Phytotoxikit Test
3.3. Assessment of Ecotoxicity Using the MARA Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gonzales-Yanac, T.; Nagadeepa, C.; Mukthar, J.; Castillo-Picón, J.; Manrique-Cáceres, J.; Ramirez-Asis, E.; Huerta-Soto, C. Minimalist Farm-To-Table Practices: Connecting Consumers with Local Agriculture. Technol. Bus. Model Innov. Challenges Oppor. 2024, 1, 109–122. [Google Scholar] [CrossRef]
- Sabaté, J.; Harwatt, H.; Soret, S. Environmental Nutrition: A New Frontier for Public Health. Am. J. Public Health 2016, 106, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Qin, G.; Niu, Z.; Yu, J.; Li, Z.; Ma, J.; Xiang, P. Soil Heavy Metal Pollution and Food Safety in China: Effects, Sources and Removing Technology. Chemosphere 2021, 267, 129205. [Google Scholar] [CrossRef] [PubMed]
- Wong, J.W.Y.; Hitzfeld, B.; Zimmermann, M.; Werner, I.; Ferrari, B.J.D. Current Developments in Soil Ecotoxicology and the Need for Strengthening Soil Ecotoxicology in Europe: Results of a Stakeholder Workshop. Environ. Sci. Eur. 2018, 30, 49. [Google Scholar] [CrossRef]
- Kaur, A.; Vyas, P. Nutrient Recycling by Microbes for Healthy Soil. In Microorganisms for Sustainability; Springer: Singapore, 2024; Volume 50, pp. 173–187. [Google Scholar]
- Khan, B.N. Impact of Biochar on Soil Organisms. In Biochar—Solid Carbon for Sustainable Agriculture; Bentham Science Publishers: Potomac, MD, USA, 2024; pp. 29–63. [Google Scholar]
- Nabi, M. Role of Microorganisms in Plant Nutrition and Soil Health. In Sustainable Plant Nutrition: Molecular Interventions and Advancements for Crop Improvement; Academic Press: Cambridge, MA, USA, 2022; pp. 263–282. [Google Scholar]
- Niva, C.C.; Niemeyer, J.C.; Júnior, F.M.R.D.S.; Nunes, M.E.T.; De Sousa, D.L.; Aragão, C.W.S.; Sautter, K.D.; Espindola, E.G.; Sousa, J.P.; Römbke, J. Soil Ecotoxicology in Brazil Is Taking Its Course. Environ. Sci. Pollut. Res. 2016, 23, 11363–11378. [Google Scholar] [CrossRef]
- Kuperman, R.G.; Checkai, R.T.; Garcia, M.V.B.; Römbke, J.; Stephenson, G.L.; Sousa, J.P. State of the Science and the Way Forward for the Ecotoxicological Assessment of Contaminated Land. Pesqui. Agropecu. Bras. 2009, 44, 811–824. [Google Scholar] [CrossRef]
- Pereira, R.; Cachada, A.; Sousa, J.P.; Niemeyer, J.; Markwiese, J.; Andersen, C.P. Ecotoxicological Effects and Risk Assessment of Pollutants. In Soil Pollution: From Monitoring to Remediation; Academic Press: Cambridge, MA, USA, 2017; pp. 191–216. [Google Scholar]
- Bécaert, V.; Deschênes, L. Using Soil Health to Assess Ecotoxicological Impacts of Pollutants on Soil Microflora. Rev. Environ. Contam. Toxicol. 2006, 188, 127–148. [Google Scholar] [CrossRef]
- Santos, M.J.G.; Ferreira, V.; Soares, A.M.V.M.; Loureiro, S. Evaluation of the Combined Effects of Dimethoate and Spirodiclofen on Plants and Earthworms in a Designed Microcosm Experiment. Appl. Soil Ecol. 2011, 48, 294–300. [Google Scholar] [CrossRef]
- Amorim, M.J.B.; Römbke, J.; Scheffczyk, A.; Soares, A.M.V.M. Effect of Different Soil Types on the Enchytraeids Enchytraeus Albidus and Enchytraeus Luxuriosus Using the Herbicide Phenmedipham. Chemosphere 2005, 61, 1102–1114. [Google Scholar] [CrossRef]
- Gainer, A.; Bresee, K.; Hogan, N.; Siciliano, S.D. Advancing Soil Ecological Risk Assessments for Petroleum Hydrocarbon Contaminated Soils in Canada: Persistence, Organic Carbon Normalization and Relevance of Species Assemblages. Sci. Total Environ. 2019, 668, 400–410. [Google Scholar] [CrossRef]
- Siuta, J. Rekultywacja Gruntów w Górnictwie Siarkowym, Inżynieria Ekologiczna, Przyrodnicze Użytkowanie Osadów Ściekowych; Ochrona i Rekultywacja Gruntów.P.T.I.E: Bydgoszcz, Poland, 2001; ISBN 8391139050. [Google Scholar]
- Warzybok, W. Rekultywacja Terenów Górniczych Kopalni Siarki „Jeziórko”, Materiały Konferencji Naukowo-Technicznej—Baranów Sandomierski. Inżynieria Ekol. 2000, 1, 121–133. [Google Scholar]
- ISO 11269-1:2012; Soil Quality-Determination of the Effects of Pollutants on Soil Flora. Method for the Measurement of Inhibition of Root Growth BSI Standards Publication: London, UK, 2012.
- Rybczyńska-Tkaczyk, K.; Korniłłowicz-Kowalska, T.; Szychowski, K.A. Possibility to Biotransform Anthracyclines by Peroxidases Produced by Bjerkandera Adusta CCBAS 930 with Reduction of Geno- and Cytotoxicity and Pro-Oxidative Activity. Molecules 2021, 26, 462. [Google Scholar] [CrossRef] [PubMed]
- EU Council. Council Decision of 19 December 2002 Establishing Criteria and Procedures for the Acceptance of Waste at Landfills Pursuant to Article 16 of and Annex II to Directive 1999/31/EC. Off. J. Eur. Communities 2003, L11, 27–49. [Google Scholar]
- Asare, M.O.; Száková, J.; Tlustoš, P.; Kumar, M. Zinc Contamination in Soils and Its Implications on Plant Phytoalexins. Int. J. Environ. Sci. Technol. 2025, 22, 8581–8600. [Google Scholar] [CrossRef]
- Oleszczuk, P.; Malara, A.; Jośko, I.; Lesiuk, A. The Phytotoxicity Changes of Sewage Sludge-Amended Soils. Water. Air. Soil Pollut. 2012, 223, 4937–4948. [Google Scholar] [CrossRef]
- Obidoska, G.; Karaczun, Z.; Żarska, B. Phytotoxicity and Phytogenotoxicity of Municipal Sewage Sludge. Ann. Wars. Univ. Life Sci.-SGGW Hortic. Landsc. Archit. 2020, 29–35. [Google Scholar] [CrossRef]
- Oleszczuk, P. Phytotoxicity of Municipal Sewage Sludge Composts Related to Physico-Chemical Properties, PAHs and Heavy Metals. Ecotoxicol. Environ. Saf. 2008, 69, 496–505. [Google Scholar] [CrossRef]
- Organisation for Economic Co-operation and Development (OECD) Terrestrial Plant Test: Seedling Emergence and Seedling Growth Test. OECD Guidel. 2006, 208, 21.
- Sobolewska, M.; Siemiginowska, A.; Guainazzi, M.; Hardcastle, M.; Migliori, G.; Ostorero, L.; Stawarz, Ł. The Impact of the Environment on the Early Stages of Radio Source Evolution. Astrophys. J. 2019, 871, 71. [Google Scholar] [CrossRef]
- Kwiatkowska-Malina, J. Functions of Organic Matter in Polluted Soils: The Effect of Organic Amendments on Phytoavailability of Heavy Metals. Appl. Soil Ecol. 2018, 123, 542–545. [Google Scholar] [CrossRef]
- Rusan, M.; Hinnawi, S.; Rousan, L. Long Term Effect of Wastewater Irrigation of Forage Crops on Soil and Plant Quality Parameters. Desalination 2007, 215, 143–152. [Google Scholar] [CrossRef]
- Lemanowicz, J.; Brzezińska, M.; Siwik-Ziomek, A.; Koper, J. Activity of Selected Enzymes and Phosphorus Content in Soils of Former Sulphur Mines. Sci. Total Environ. 2020, 708, 134545. [Google Scholar] [CrossRef] [PubMed]
- Głąb, T.; Żabiński, A.; Sadowska, U.; Gondek, K.; Kopeć, M.; Mierzwa-Hersztek, M.; Tabor, S.; Stanek-Tarkowska, J. Fertilization Effects of Compost Produced from Maize, Sewage Sludge and Biochar on Soil Water Retention and Chemical Properties. Soil Tillage Res. 2020, 197, 104493. [Google Scholar] [CrossRef]
- Twardowska, I.; Allen, H.E.; Kettrup, A.F.; Lacy, W.J. Solid Waste: Assessment, Monitoring and Remediation. Gulf Prof. Publ. 2004, 1992, 3–1121. [Google Scholar] [CrossRef]
- Fjałkowski, K.; Kacprzak, M. Wpływ Dodatku Osadów Ściekowych Na Wybrane Fizyczno-Chemiczne i Mikrobiologiczne Parametry Gleb Zdegradowanych. Inżynieria i Ochr. Środowiska 2009, 12, 133–141. [Google Scholar]
- Frąc, M.; Jezierska-Tys, S. Zmiany Aktywności Mikrobiologicznej Gleby Brunatnej Pod Uprawą Pszenicy Ozimej w Różnych Latach Oddziaływania Osadu z Oczyszczalni Ścieków Mleczarskich. Agron. Sci. 2008, 63, 118–132. [Google Scholar] [CrossRef]
- Bik-Małodzińska, M. The Impact of Waste Application on the Reclamation and Biological Life of Degraded Soils. Sustainability 2024, 16, 8126. [Google Scholar] [CrossRef]
- Oleszczuk, P.; Jośko, I.; Futa, B.; Pasieczna-Patkowska, S.; Pałys, E.; Kraska, P. Effect of Pesticides on Microorganisms, Enzymatic Activity and Plant in Biochar-Amended Soil. Geoderma 2014, 214–215, 10–18. [Google Scholar] [CrossRef]
- Arienzo, M.; Albanese, S.; Lima, A.; Cannatelli, C.; Aliberti, F.; Cicotti, F.; Qi, S.; De Vivo, B. Assessment of the Concentrations of Polycyclic Aromatic Hydrocarbons and Organochlorine Pesticides in Soils from the Sarno River Basin, Italy, and Ecotoxicological Survey by Daphnia Magna. Environ. Monit. Assess. 2015, 187, 52. [Google Scholar] [CrossRef]
- Pivato, A.; Raga, R.; Vanin, S.; Rossi, M. Assessment of Compost Quality for Its Environmentally Safe Use by Means of an Ecotoxicological Test on a Soil Organism. J. Mater. Cycles Waste Manag. 2014, 16, 763–774. [Google Scholar] [CrossRef]
- Bik-Małodzińska, M.; Żukowska, G.; Paśmionka, I.; Rybczyńska-Tkaczyk, K.; Jakubczyk, A. Assessment of the Effectiveness of Soil Reclamation Techniques Degraded by the Sulfur Industry. Adv. Sci. Technol. Res. J. 2022, 16, 324–334. [Google Scholar] [CrossRef]
- Domene, X.; Colón, J.; Uras, M.V.; Izquierdo, R.; Àvila, A.; Alcañiz, J.M. Role of Soil Properties in Sewage Sludge Toxicity to Soil Collembolans. Soil Biol. Biochem. 2010, 42, 1982–1990. [Google Scholar] [CrossRef]
- Oleszczuk, P.; Hollert, H. Comparison of Sewage Sludge Toxicity to Plants and Invertebrates in Three Different Soils. Chemosphere 2011, 83, 502–509. [Google Scholar] [CrossRef]
- Buta, M.; Hubeny, J.; Zieliński, W.; Harnisz, M.; Korzeniewska, E. Sewage Sludge in Agriculture—The Effects of Selected Chemical Pollutants and Emerging Genetic Resistance Determinants on the Quality of Soil and Crops—A Review. Ecotoxicol. Environ. Saf. 2021, 214, 112070. [Google Scholar] [CrossRef] [PubMed]
- Zoomi, I.; Zuby, S.; Kehri, H.K.; Akhtar, O.; Pandey, D.; Narayan, R.P. Sewage Sludge and Soil Microbes. In Development in Waste Water Treatment Research and Processes: Treatment and Reuse of Sewage Sludge: An Innovative Approach for Wastewater Treatment; Elsevier: Amsterdam, The Netherlands, 2022; pp. 53–62. [Google Scholar] [CrossRef]
- Dhanker, R.; Chaudhary, S.; Goyal, S.; Garg, V.K. Influence of Urban Sewage Sludge Amendment on Agricultural Soil Parameters. Environ. Technol. Innov. 2021, 23, 101642. [Google Scholar] [CrossRef]
- Souza, A.C.Z.; Santos, J.E.; Marin-Morales, M.A.; Mazzeo, D.E.C. Ecotoxicological Aspects and Environmental Implications of the Use of Water and Sewage Treatment Sludges. Int. J. Environ. Sci. Technol. 2024, 21, 3527–3552. [Google Scholar] [CrossRef]
- Hernández, A.J.; Gutiérrez-Ginés, M.J.; Pastor, J. Benefits of the Use of Sewage Sludge over EDTA to Remediate Soils Polluted with Heavy Metals. J. Environ. Qual. 2015, 44, 1579–1588. [Google Scholar] [CrossRef]
- Aghanaghad, M.; Asgari, E.; Sheikhmohammadi, A.; Tajfar, H. Health Risk Assessment of Heavy Metals/Metalloid Caused by Using Sewage Sludge in Agriculture. Desalin. Water Treat. 2025, 321, 100977. [Google Scholar] [CrossRef]
- Garbellini, L.R.; Chrispim, M.C.; Silveira, J.E.; Pacca, S.A. (Eco)Toxicological Impact Potential from Inorganic Substances in Biosolids: Real Data-Based Suggestions for Regulatory Improvements. Environ. Nanotechnol. Monit. Manag. 2023, 20, 100846. [Google Scholar] [CrossRef]
- Suhadolc, M.; Schroll, R.; Hagn, A.; Dörfler, U.; Schloter, M.; Lobnik, F. Single Application of Sewage Sludge—Impact on the Quality of an Alluvial Agricultural Soil. Chemosphere 2010, 81, 1536–1543. [Google Scholar] [CrossRef]
- Corrêa Martins, M.N.; de Souza, V.V.; Souza, T. da S. Genotoxic and Mutagenic Effects of Sewage Sludge on Higher Plants. Ecotoxicol. Environ. Saf. 2016, 124, 489–496. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, X.; Zhao, Y.; Zheng, Y.; Liu, W.; Wu, C. Effect of Dewatered Municipal Sewage Sludge on the Growth and Reproduction of Eisenia Fetida. Huanjing Kexue Xuebao/Acta Sci. Circumstantiae 2017, 37, 4026–4032. [Google Scholar] [CrossRef]
- Filipi, Á.C.K.; dos Santos Gonçalves Nascimento, G.C.; Bressani, P.A.; Oliveira, A.K.G.; Santo, D.E.; Duarte, C.C.S.; Gomes, E.M.V.; Ferreira, P.M.P.; Pokrywiecki, J.C.; da Silva Gonzalez, R.; et al. Biological Effects of Sewage Sludge—Does Its Incorporation into Agricultural Soils in the State of Paraná, Brazil, Represent an Environmental Risk? Water. Air. Soil Pollut. 2023, 234, 296. [Google Scholar] [CrossRef]
- Kończak, M.; Oleszczuk, P. Application of Biochar to Sewage Sludge Reduces Toxicity and Improve Organisms Growth in Sewage Sludge-Amended Soil in Long Term Field Experiment. Sci. Total Environ. 2018, 625, 8–15. [Google Scholar] [CrossRef]
- Chu, L.; He, W.; Xu, F.; Tong, Y.; Xu, F. Ecological Risk Assessment of Toxic Metal(Loid)s for Land Application of Sewage Sludge in China. Sci. Total Environ. 2022, 836, 155549. [Google Scholar] [CrossRef]
- Zhao, Q.; Chu, S.; He, D.; Wu, D.; Mo, Q.; Zeng, S. Sewage Sludge Application Alters the Composition and Co-Occurrence Pattern of the Soil Bacterial Community in Southern China Forestlands. Appl. Soil Ecol. 2021, 157, 103744. [Google Scholar] [CrossRef]
- Bai, Y.; Mei, L.; Zuo, W.; Zhang, Y.; Gu, C.; Shan, Y.; Hu, J.; Dai, Q. Response of Bacterial Communities in Coastal Mudflat Saline Soil to Sewage Sludge Amendment. Appl. Soil Ecol. 2019, 144, 107–111. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Shen, C.; Xu, L.; Yi, S.; Zhao, Y.; Zuo, W.; Gu, C.; Shan, Y.; Bai, Y. Structural and Predicted Functional Diversities of Bacterial Microbiome in Response to Sewage Sludge Amendment in Coastal Mudflat Soil. Biology 2021, 10, 1302. [Google Scholar] [CrossRef]
No. | Reclamation Variants |
---|---|
1 | Degraded soil |
2 | Degraded soil + lime + NPK |
3 | Degraded soil + lime + sewage sludge 100 Mg·ha−1 |
4 | Degraded soil + sewage sludge 100 Mg·ha−1 |
5 | Degraded soil + wool 5 cm/40 cm + lime + NPK |
6 | Degraded soil + wool 5 cm/40 cm + lime + sewage sludge 100 Mg·ha−1 |
7 | Degraded soil + lime + NPK + wool 400 m3·ha−1 |
8 | Degraded soil + lime + wool 400 m3·ha-1 + sewage sludge 100 Mg·ha−1 |
Reclamation Variants | Physicochemical Properties | ||||
---|---|---|---|---|---|
pH in 1 mol KCl | Sorption Capacity V (%) | Organic Carbon Content Corg. (g·kg−1) | Lead Content Pb (mg∙kg−1) | Zinc Content Zn (mg∙kg−1) | |
Degraded soil | 4.7 | 27.46 | 1.80 | 4.51 | 5.56 |
Degraded soil + lime + NPK | 6.4 | 91.70 | 2.10 | 3.54 | 2.97 |
Degraded soil + lime + sewage sludge 100 Mg·ha−1 | 6.3 | 85.49 | 4.60 | 32.03 | 41.87 |
Degraded soil + sewage sludge 100 Mg·ha−1 | 6.1 | 62.01 | 4.00 | 24.23 | 36.33 |
Degraded soil + wool 5 cm/40 cm + lime + NPK | 6.7 | 87.60 | 3.05 | 23.10 | 10.20 |
Degraded soil + wool 5 cm/40 cm + lime + sewage sludge 100 Mg·ha−1 | 6.6 | 86.51 | 3.95 | 21.50 | 30.90 |
Degraded soil + lime + NPK + wool 400 m3·ha−1 | 6.7 | 92.83 | 3.05 | 19.53 | 10.63 |
Degraded soil + lime + wool 400 m3·ha−1 + sewage sludge 100 Mg·ha−1 | 6.6 | 88.24 | 4.80 | 23.77 | 22.70 |
No. | Reclamation Variant | A | B1 | B2 | B3 | Mean B | GI1 | GI2 | GI3 | Mean GI |
---|---|---|---|---|---|---|---|---|---|---|
1. | Degraded soil | 2.00 | 0.50 | 0.50 | 0.40 | 0.47 | 75.00 | 75.00 | 80.00 | 76.67 |
2. | Degraded soil + lime + NPK | 2.00 | 1.00 | 0.90 | 1.00 | 0.97 | 50.00 | 55.00 | 50.00 | 51.67 |
3. | Degraded soil + lime + sewage sludge 100 Mg·ha−1 | 2.00 | 1.30 | 1.20 | 1.30 | 1.27 | 35.00 | 40.00 | 35.00 | 36.67 |
4. | Degraded soil + sewage sludge 100 Mg·ha−1 | 2.00 | 1.80 | 1.50 | 1.60 | 1.63 | 10.00 | 25.00 | 20.00 | 18.33 |
5. | Degraded soil + wool 5 cm/40 cm + lime + NPK | 2.00 | 1.70 | 1.60 | 1.50 | 1.60 | 15.00 | 20.00 | 25.00 | 20.00 |
6. | Degraded soil + wool 5 cm/40 cm + lime + sewage sludge 100 Mg·ha−1 | 2.00 | 1.90 | 1.80 | 1.80 | 1.83 | 5.00 | 10.00 | 10.00 | 8.33 |
7. | Degraded soil + lime + NPK + wool 400 m3·ha−1 | 2.00 | 1.80 | 1.80 | 1.90 | 1.83 | 10.00 | 10.00 | 5.00 | 8.33 |
8. | Degraded soil + lime + wool 400 m3·ha−1 + sewage sludge 100 Mg·ha−1 | 2.00 | 1.90 | 1.80 | 1.70 | 1.80 | 5.00 | 10.00 | 15.00 | 10.00 |
Average between reclamation variants | 1.49 | 1.39 | 1.40 | 1.43 | 25.63 | 30.63 | 30.00 | 28.75 | ||
Standard deviation | 0.48 | 0.45 | 0.46 | 0.46 | 23.91 | 22.56 | 23.18 | 23.06 |
No. | Reclamation Variant | A | B1 | B2 | B3 | Mean B | Mean M | |||
---|---|---|---|---|---|---|---|---|---|---|
1. | Degraded soil | 10.00 | 5.00 | 6.00 | 4.00 | 200.00 | 166.67 | 250.00 | 5.00 | 205.56 |
2. | Degraded soil + lime + NPK | 10.00 | 4.00 | 3.00 | 2.00 | 250.00 | 333.33 | 500.00 | 3.00 | 361.11 |
3. | Degraded soil + lime + sewage sludge 100 Mg·ha−1 | 10.00 | 3.00 | 3.00 | 4.00 | 333.33 | 333.33 | 250.00 | 3.33 | 305.56 |
4. | Degraded soil + sewage sludge 100 Mg·ha−1 | 10.00 | 2.00 | 1.00 | 3.00 | 500.00 | 1000.00 | 333.33 | 2.00 | 611.11 |
5. | Degraded soil + wool 5 cm/40 cm + lime + NPK | 10.00 | 2.00 | 2.00 | 1.00 | 500.00 | 500.00 | 1000.00 | 1.67 | 666.67 |
6. | Degraded soil + wool 5 cm/40 cm + lime + sewage sludge 100 Mg·ha−1 | 10.00 | 3.00 | 2.00 | 3.00 | 333.33 | 500.00 | 333.33 | 2.67 | 388.89 |
7. | Degraded soil + lime + NPK + wool 400 m3·ha−1 | 10.00 | 2.00 | 1.00 | 1.00 | 500.00 | 1000.00 | 1000.00 | 1.33 | 833.33 |
8. | Degraded soil + lime + wool 400 m3·ha−1 + sewage sludge 100 Mg·ha−1 | 10.00 | 1.00 | 1.00 | 1.00 | 1000.00 | 1000.00 | 1000.00 | 1.00 | 1000.00 |
Average between reclamation variants | 2.75 | 2.38 | 2.38 | 452.08 | 604.17 | 583.33 | 2.50 | 546.53 | ||
Standard deviation | 1.20 | 1.58 | 1.22 | 234.44 | 322.08 | 330.72 | 1.21 | 259.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bik-Małodzińska, M.; Rybczyńska-Tkaczyk, K.; Jakubczyk, A. Ecotoxicological Assessment of Soils Reclaimed with Waste. Appl. Sci. 2025, 15, 8770. https://doi.org/10.3390/app15168770
Bik-Małodzińska M, Rybczyńska-Tkaczyk K, Jakubczyk A. Ecotoxicological Assessment of Soils Reclaimed with Waste. Applied Sciences. 2025; 15(16):8770. https://doi.org/10.3390/app15168770
Chicago/Turabian StyleBik-Małodzińska, Marta, Kamila Rybczyńska-Tkaczyk, and Anna Jakubczyk. 2025. "Ecotoxicological Assessment of Soils Reclaimed with Waste" Applied Sciences 15, no. 16: 8770. https://doi.org/10.3390/app15168770
APA StyleBik-Małodzińska, M., Rybczyńska-Tkaczyk, K., & Jakubczyk, A. (2025). Ecotoxicological Assessment of Soils Reclaimed with Waste. Applied Sciences, 15(16), 8770. https://doi.org/10.3390/app15168770