Heliocentric Orbital Repositioning of a Sun-Facing Diffractive Sail with Controlled Binary Metamaterial Arrayed Grating
Abstract
1. Introduction
2. Thrust Vector Description and Mathematical Model
2.1. Analytical Thrust Vector Model of Sun-Facing Diffractive Sailcraft
2.2. Heliocentric Dynamics of a Sun-Facing Diffractive Sailcraft
2.3. Notes on the Control Law and the Sailcraft’s Trajectory Design
3. Results of Numerical Simulations and Case Studies
3.1. Mercury-Based Scenario
3.2. Earth-Based Scenario
3.3. Case of a Circular Reference Orbit
4. Simplified Form of the Control Law
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Acronyms | |
IKAROS | Interplanetary Kite-craft Accelerated by Radiation Of the Sun |
JPL | Jet Propulsion Laboratory |
NASA | National Aeronautics and Space Administration |
NEA Scout | Near-Earth Asteroid Scout |
PMP | Pontryagin maximum principle |
RSS | reflective solar sail |
sailcraft | sail-propelled spacecraft |
STEREO | Solar TErrestrial RElations Observatory |
Symbols | |
propulsive acceleration vector [mm/s2] | |
sailcraft’s characteristic acceleration [mm/s2] | |
reference elliptical orbit’s semimajor axis [AU] | |
reference elliptical orbit’s eccentricity | |
dimensionless Hamiltonian function | |
J | dimensionless performance index to be maximized |
m | positive integer |
reference elliptical orbit’s semilatus rectum [AU] | |
radial unit vector | |
r | Sun–sailcraft distance [AU] |
reference distance [1 AU] | |
heliocentric polar reference frame | |
transverse unit vector | |
t | time [days] |
spacecraft heliocentric velocity vector [km/s] | |
radial component of [km/s] | |
transverse component of [km/s] | |
dimensionless variable adjoint to i-th sailcraft’s state | |
flight time [days] | |
phasing angle [deg] | |
Sun’s gravitational parameter [km3/s2] | |
angle between the Sun–sailcraft line and the Sun–virtual point line [deg] | |
polar angle [deg] | |
polar angle of the virtual point at the final time [deg] | |
true anomaly along the reference elliptical orbit [deg] | |
dimensionless control term | |
Subscripts | |
0 | initial, reference elliptical orbit |
f | final, end of the phasing maneuver |
Superscripts | |
′ | derivative with respect to dimensionless time |
∼ | dimensionless value |
References
- Swartzlander, G.A., Jr. Flying on a rainbow: A solar-driven diffractive sailcraft. Jbis J. Br. Interplanet. Soc. 2018, 71, 130–132. [Google Scholar]
- Swartzlander, G.A., Jr. Radiation pressure on a diffractive sailcraft. J. Opt. Soc. Am. B Opt. Phys. 2017, 34, C25–C30. [Google Scholar] [CrossRef]
- Vulpetti, G.; Johnson, L.; Matloff, G.L. Solar Sails: A Novel Approach to Interplanetary Travel, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Janhunen, P. Electric sail for spacecraft propulsion. J. Propuls. Power 2004, 20, 763–764. [Google Scholar] [CrossRef]
- Jin, R.; Huo, M.; Yang, L.; Feng, W.; Wang, T.; Fan, Z.; Qi, N. Analytical three-dimensional propulsion process of electric sail with fixed pitch angle. Aerosp. Sci. Technol. 2024, 145, 108845. [Google Scholar] [CrossRef]
- Zubrin, R.M.; Andrews, D.G. Magnetic sails and interplanetary travel. J. Spacecr. Rocket. 1991, 28, 197–203. [Google Scholar] [CrossRef]
- Arita, S.; Yamagiwa, Y. Three-Dimensional Magnetohydrodynamic Analysis of a Magnetic Sail Using a Deployable Modular Structure. J. Spacecr. Rocket. 2023, 60, 68–78. [Google Scholar] [CrossRef]
- Berthet, M.; Schalkwyk, J.; Çelik, O.; Sengupta, D.; Fujino, K.; Hein, A.M.; Tenorio, L.; Cardoso dos Santos, J.; Worden, S.P.; Mauskopf, P.D.; et al. Space sails for achieving major space exploration goals: Historical review and future outlook. Prog. Aerosp. Sci. 2024, 150, 101047. [Google Scholar] [CrossRef]
- Fu, B.; Sperber, E.; Eke, F. Solar sail technology—A state of the art review. Prog. Aerosp. Sci. 2016, 86, 1–19. [Google Scholar] [CrossRef]
- Gong, S.; Macdonald, M. Review on solar sail technology. Astrodynamics 2019, 3, 93–125. [Google Scholar] [CrossRef]
- Urbanczyk, M. Solar Sails—A Realistic Propulsion for Spacecraft. In Technical Memorandum (TM) NASA-TM-X-60560; NASA, NASA Marshall Space Flight Center Huntsville: Huntsville, AL, USA, 1967; Also in Astronautyka 1965, 8, no. 3. 20–23, Translated from the Polish. [Google Scholar]
- Tsander, F.A. From a Scientific Heritage. In Technical Translation (TT) NASA-TT-F-541; NASA: Springfield, VI, USA, 1969; Translation of “Iz Nauchnogo Naslediya”, “Nauka” Press, Moscow, 1967. [Google Scholar]
- Tsuda, Y.; Mori, O.; Funase, R.; Sawada, H.; Yamamoto, T.; Saiki, T.; Endo, T.; Yonekura, K.; Hoshino, H.; Kawaguchi, J. Achievement of IKAROS -Japanese deep space solar sail demonstration mission. Acta Astronaut. 2013, 82, 183–188. [Google Scholar] [CrossRef]
- Lockett, T.R.; Castillo-Rogez, J.; Johnson, L.; Matus, J.; Lightholder, J.; Marinan, A.; Few, A. Near-Earth Asteroid Scout Flight Mission. IEEE Aerosp. Electron. Syst. Mag. 2020, 35, 20–29. [Google Scholar] [CrossRef]
- Wright, J.L. Space Sailing; Gordon and Breach Science Publishers: Philadephia, PA, USA, 1992; pp. 223–233. ISBN 978-2881248429. [Google Scholar]
- Zhao, P.; Wu, C.; Li, Y. Design and application of solar sailing: A review on key technologies. Chin. J. Aeronaut. 2023, 36, 125–144. [Google Scholar] [CrossRef]
- Thompson, S.M.; Pushparaj, N.; Cappelletti, C. Reflective and transmissive solar sails: Dynamics, flight regimes and applications. Acta Astronaut. 2024, 220, 478–494. [Google Scholar] [CrossRef]
- Swartzlander, G.A. Theory of radiation pressure on a diffractive solar sail. J. Opt. Soc. Am. B 2022, 39, 2556. [Google Scholar] [CrossRef]
- Srivastava, P.R.; Lucy Chu, Y.J.; Swartzlander, G.A., Jr. Stable diffractive beam rider. Opt. Lett. 2019, 44, 3082–3085. [Google Scholar] [CrossRef]
- Song, Y.; Wu, W.; Hu, H.; Lin, M.; Wang, H.; Zhang, J. Gravity assist space pruning and global optimization of spacecraft trajectories for solar system boundary exploration. Complex Intell. Syst. 2023, 10, 323–341. [Google Scholar] [CrossRef]
- Ellery, A. The state of hybrid artificial intelligence for interstellar missions. Prog. Aerosp. Sci. 2025, 156, 101100. [Google Scholar] [CrossRef]
- Srivastava, P.R.; Majumdar, A.; Menon, R.; Swartzlander, G.G.A. High forward thrust metasurface beam-riding sail. Opt. Express 2024, 32, 1756. [Google Scholar] [CrossRef]
- Chu, Y.J.L.; Meem, M.; Srivastava, P.R.; Menon, R.; Swartzlander, G.G.A. Parametric control of a diffractive axicon beam rider. Opt. Lett. 2021, 46, 5141. [Google Scholar] [CrossRef]
- Davoyan, A.R.; Munday, J.N.; Tabiryan, N.; Swartzlander, G.A.; Johnson, L. Photonic materials for interstellar solar sailing. Optica 2021, 8, 722. [Google Scholar] [CrossRef]
- McInnes, C.R. Orbits in a Generalized Two-Body Problem. J. Guid. Control. Dyn. 2003, 26, 743–749. [Google Scholar] [CrossRef]
- McInnes, C.R. Solar Sailing: Technology, Dynamics and Mission Applications; Springer-Praxis Series in Space Science and Technology; Springer-Verlag: Berlin, Germany, 1999; Chapter 2; pp. 46–54. [Google Scholar] [CrossRef]
- Herasimenka, A.; Dell’Elce, L.; Caillau, J.; Pomet, J. Optimal control of a solar sail. Optim. Control Appl. Methods 2024, 45, 2837–2855. [Google Scholar] [CrossRef]
- Dubill, A.L.; Swartzlander, G.A., Jr. Circumnavigating the Sun with diffractive solar sails. Acta Astronaut. 2021, 187, 190–195. [Google Scholar] [CrossRef]
- Quarta, A.A.; Mengali, G.; Bassetto, M.; Niccolai, L. Optimal interplanetary trajectories for Sun-facing ideal diffractive sails. Astrodynamics 2023, 7, 285–299. [Google Scholar] [CrossRef]
- Mori, O.; Shirasawa, Y.; Miyazaki, Y.; Sakamoto, H.; Hasome, M.; Okuizumi, N.; Sawada, H.; Furuya, H.; Matunaga, S.; Natori, M.; et al. Deployment and steering dynamics of spinning solar sail “IKAROS”. J. Aerosp. Eng. Sci. Appl. 2012, 4, 79–96. [Google Scholar] [CrossRef]
- Chu, Y.; Firuzi, S.; Gong, S. Controllable liquid crystal diffractive sail and its potential applications. Acta Astronaut. 2021, 182, 37–45. [Google Scholar] [CrossRef]
- Quarta, A.A.; Mengali, G. Solar sail orbit raising with electro-optically controlled diffractive film. Appl. Sci. 2023, 13, 1–18. [Google Scholar] [CrossRef]
- Curtis, H.D. Orbital Mechanics for Engineering Students; Butterworth-Heinemann: Oxford, UK, 2020; Chapter 6; pp. 289–295. ISBN 978-0-08-102133-0. [Google Scholar] [CrossRef]
- Kaiser, M.L.; Kucera, T.A.; Davila, J.M.; St. Cyr, O.C.; Guhathakurta, M.; Christian, E. The STEREO Mission: An Introduction. Space Sci. Rev. 2007, 136, 5–16. [Google Scholar] [CrossRef]
- Eyles, C.J.; Harrison, R.A.; Davis, C.J.; Waltham, N.R.; Shaughnessy, B.M.; Mapson-Menard, H.C.A.; Bewsher, D.; Crothers, S.R.; Davies, J.A.; Simnett, G.M.; et al. The Heliospheric Imagers Onboard the STEREO Mission. Sol. Phys. 2008, 254, 387–445. [Google Scholar] [CrossRef]
- Lee, J.; Scheeres, D.J.; Lee, S.H.; Ahn, J. Multiple Mars gravity-assist trajectory to inclined Sun–Earth L4. Acta Astronaut. 2025, 234, 721–733. [Google Scholar] [CrossRef]
- Quarta, A.A.; Mengali, G. Optimal Solar Sail Phasing Trajectories for Circular Orbit. J. Guid. Control. Dyn. 2013, 36, 1821–1824. [Google Scholar] [CrossRef]
- Mengali, G.; Quarta, A.A.; Aliasi, G. Heliocentric Phasing Performance of Electric Sail Spacecraft. Acta Astronaut. 2016, 127, 474–481. [Google Scholar] [CrossRef]
- Quarta, A.A. Continuous-Thrust Circular Orbit Phasing Optimization of Deep Space CubeSats. Appl. Sci. 2024, 14, 1–19. [Google Scholar] [CrossRef]
- Spencer, D.A.; Johnson, L.; Long, A.C. Solar sailing technology challenges. Aerosp. Sci. Technol. 2019, 93, 105276. [Google Scholar] [CrossRef]
- Starinova, O.L.; Chernyakina, I.V. The mission’s design of solar sail spacecraft based on locally-optimal control laws. In Proceedings of the ICNPAA 2018 WORLD CONGRESS: 12th International Conference on Mathematical Problems in Engineering, Aerospace and Sciences, Yerevan, Armenia, 3–6 July 2018. [Google Scholar] [CrossRef]
- McInnes, C.R. Azimuthal repositioning of payloads in heliocentric orbit using solar sails. J. Guid. Control. Dyn. 2003, 26, 662–664. [Google Scholar] [CrossRef]
- Johnson, L.; Akhavan-Tafti, M.; Sood, R.; Szabo, A.; Thomas, H.D. Space Weather Investigation Frontier (SWIFT) Mission Concept: Continuous, Distributed Observations of Heliospheric Structures from the Vantage Points of Sun-Earth L1 and Sub-L1. Acta Astronaut. 2025, in press. [CrossRef]
- Colasurdo, G.; Casalino, L. Optimal Control Law for Interplanetary Trajectories with Nonideal Solar Sail. J. Spacecr. Rocket. 2003, 40, 260–265. [Google Scholar] [CrossRef]
- Casalino, L.; Colasurdo, G.; Pastrone, D. Optimization of ΔV Earth-Gravity-Assist Trajectories. J. Guid. Control. Dyn. 1998, 21, 991–995. [Google Scholar] [CrossRef]
- Bai, S.; Wang, Y.; Cheng, M.; Sun, X.; Xu, M. Analytical Sensitivity Matrix for Near-Optimal Solution to Elliptical Orbit Transfer. IEEE Trans. Aerosp. Electron. Syst. 2025, 1–21. [Google Scholar] [CrossRef]
- Quarta, A.A.; Bassetto, M.; Mengali, G.; Abu Salem, K.; Palaia, G. Optimal guidance laws for diffractive solar sails with Littrow transmission grating. Aerosp. Sci. Technol. 2024, 145, 1–13. [Google Scholar] [CrossRef]
- Pezent, J.; Sood, R.; Heaton, A. High-fidelity contingency trajectory design and analysis for NASA’s near-earth asteroid (NEA) Scout solar sail Mission. Acta Astronaut. 2019, 159, 385–396. [Google Scholar] [CrossRef]
- Pezent, J.B.; Sood, R.; Heaton, A.; Miller, K.; Johnson, L. Preliminary trajectory design for NASA’s Solar Cruiser: A technology demonstration mission. Acta Astronaut. 2021, 183, 134–140. [Google Scholar] [CrossRef]
- Dubill, A. Diffractive Solar Sailing NIAC Phase III. In Proceedings of the 6th International Symposium on Space Sailing, New York, NY, USA, 5–9 June 2023. [Google Scholar]
- Bate, R.R.; Mueller, D.D.; White, J.E. Fundamentals of Astrodynamics; Dover Publications: New York, NY, USA, 1971; Chapter 4; pp. 181–188. ISBN 0-486-60061-0. [Google Scholar]
- Chai, R.; Savvaris, A.; Tsourdos, A.; Chai, S.; Xia, Y. A review of optimization techniques in spacecraft flight trajectory design. Prog. Aerosp. Sci. 2019, 109, 100543. [Google Scholar] [CrossRef]
- Ross, I.M. A Primer on Pontryagin’s Principle in Optimal Control; Collegiate Publishers: San Francisco, CA, USA, 2015. [Google Scholar]
- Quarta, A.A. Fast initialization of the indirect optimization problem in the solar sail circle-to-circle orbit transfer. Aerosp. Sci. Technol. 2024, 147, 109058. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quarta, A.A. Heliocentric Orbital Repositioning of a Sun-Facing Diffractive Sail with Controlled Binary Metamaterial Arrayed Grating. Appl. Sci. 2025, 15, 8755. https://doi.org/10.3390/app15158755
Quarta AA. Heliocentric Orbital Repositioning of a Sun-Facing Diffractive Sail with Controlled Binary Metamaterial Arrayed Grating. Applied Sciences. 2025; 15(15):8755. https://doi.org/10.3390/app15158755
Chicago/Turabian StyleQuarta, Alessandro A. 2025. "Heliocentric Orbital Repositioning of a Sun-Facing Diffractive Sail with Controlled Binary Metamaterial Arrayed Grating" Applied Sciences 15, no. 15: 8755. https://doi.org/10.3390/app15158755
APA StyleQuarta, A. A. (2025). Heliocentric Orbital Repositioning of a Sun-Facing Diffractive Sail with Controlled Binary Metamaterial Arrayed Grating. Applied Sciences, 15(15), 8755. https://doi.org/10.3390/app15158755