A Matrix Effect Calibration Method of Laser-Induced Breakdown Spectroscopy Based on Laser Ablation Morphology
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
- a.
- Configure the required gradient of the standard solution, and mix 3 mL of standard solution with 2 g of powder sample in the reagent bottles.
- b.
- Place the reagent bottles containing the mixed solution in the ultrasonic cleaning machine, and apply the ultrasonic oscillation for 10 min.
- c.
- After the ultrasonic oscillation, place the reagent bottles on the heating device to completely evaporate the solution.
- d.
- Transfer the dried powder into mortar and grind evenly.
- e.
- Press the powder sample into pellets with a diameter of 40 mm under a pressure of 40 Mpa, 50 Mpa, 60 Mpa, 70 Mpa, 80 Mpa, 90 Mpa, 10 Mpa, and 11 Mpa, as Figure 2 shows. Figure 2 shows the surface morphology of WC pellets prepared with different Co content and compaction pressures. At lower pressure (40 MPa), the pellet surface exhibits notable roughness and micro-voids, especially for samples with low Co content. As the pressure increases to 70 MPa and 110 MPa, the morphology becomes smoother and more uniform, indicating improved densification and reduced porosity. These results highlight the combined effect of Co content and compaction pressure on pellet quality, which is critical for achieving consistent LIBS measurements.
2.2. Laser-Induced Breakdown Spectroscopy Experimental Model
2.3. LIBS Calibration Model
2.4. Depth of Focus 3D Reconstruction
- (1)
- Configure serial port parameters: Configure the serial port information between the computer and the camera and motor control module through the unified interface provided by the Python Serial module (pySerial version 3.5).
- (2)
- Real-time display of images: The camera captures an image of the object under test at each focus position and displays it in real time so that the clarity of each image can be calculated next.
- (3)
- Calculate the clarity value of the image at each focus position: Use the Tenengrad function to calculate the clarity value of the image of the object under test at each focus position and compare them. When the focusing process is completed, record the focus position parameter corresponding to the image when the image clarity value is the largest.
- (4)
- Control the motor: During the autofocus process, the motor is controlled to rotate from the initial focus position to the maximum focus position through the corresponding instructions. When the focusing process is completed, the motor is driven again to move the platform to the location of the parameter.
3. Results
3.1. Three-Dimensional Reconstruction System Construction
3.2. Correlation Between LIBS Physical Parameters and Ablation Morphology Parameters
- (a)
- Quantitative Analysis of the Influence of Crater Morphology
- (b)
- Morphology-induced spectral deviation
3.3. Matrix Effect Calibration of Laser-Induced Breakdown Spectroscopy Based on Ablation Morphology
3.4. Repeatability and Stability Verification Experiment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Zhang, T.; Li, H. Application of laser-induced breakdown spectroscopy (LIBS) in environmental monitoring. Spectrochim. Acta Part B At. Spectrosc. 2021, 181, 106218. [Google Scholar] [CrossRef]
- Elazem, A.; Abd Elfattah, M. LIBS Principles, Advantages, Applications, Outline of Nanostructure Enhanced LIBS (NELIBS). J. Basic Environ. Sci. 2023, 10, 26–38. [Google Scholar] [CrossRef]
- Pedarnig, J.D.; Trautner, S.; Grünberger, S.; Giannakaris, N.; Eschlböck-Fuchs, S.; Hofstadler, J. Review of element analysis of industrial materials by in-line laser-induced breakdown spectroscopy (LIBS). Appl. Sci. 2021, 11, 9274. [Google Scholar] [CrossRef]
- Wang, L.; Tolok, G.; Fu, Y.; Xu, L.; Li, L.; Gao, H.; Zhou, Y. Application and Research Progress of Laser-Induced Breakdown Spectroscopy in Agricultural Product Inspection. ACS Omega 2024, 9, 24203–24218. [Google Scholar] [CrossRef]
- Balaram, V.; Sawant, S. Indicator minerals, pathfinder elements, and portable analytical instruments in mineral exploration studies. Minerals 2022, 12, 394. [Google Scholar] [CrossRef]
- Cui, M.; Xiong, S.; Yang, N.; Wang, Y.; Wang, Z.; Luo, M.; Yao, C.; Deguchi, Y. Applications of laser-induced breakdown spectroscopy in industrial measurement and monitoring: Multi-technology combination. Appl. Spectrosc. Rev. 2025, 60, 243–291. [Google Scholar] [CrossRef]
- Takahashi, T.; Thornton, B. Quantitative methods for compensation of matrix effects and self-absorption in Laser Induced Breakdown Spectroscopy signals of solids. Spectrochim. Acta Part B At. Spectrosc. 2017, 138, 31–42. [Google Scholar] [CrossRef]
- Marangoni, B.S.; Silva, K.S.; Nicolodelli, G.; Senesi, G.S.; Cabral, J.S.; Villas-Boas, P.R.; Silva, C.S.; Teixeira, P.; Nogueira, A.R.A.; Benites, V.M. Phosphorus quantification in fertilizers using laser induced breakdown spectroscopy (LIBS): A methodology of analysis to correct physical matrix effects. Anal. Methods 2016, 8, 78–82. [Google Scholar] [CrossRef]
- Sun, C.; Xu, W.; Tan, Y.; Zhang, Y.; Yue, Z.; Zou, L.; Shabbir, S.; Wu, M.; Chen, F.; Yu, J. From machine learning to transfer learning in laser-induced breakdown spectroscopy analysis of rocks for Mars exploration. Sci. Rep. 2021, 11, 21379. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, D.; Wang, W.; Chen, F.; Xu, Y.; Nie, J.; Chu, Y.; Guo, L. A review of calibration-free laser-induced breakdown spectroscopy. TrAC Trends Anal. Chem. 2022, 152, 116618. [Google Scholar] [CrossRef]
- Segnini, A.; Xavier, A.A.P.; Otaviani-Junior, P.L.; Ferreira, E.C.; Watanabe, A.M.; Sperança, M.A.; Nicolodelli, G.; Villas-Boas, P.R.; Oliveira, P.P.A.; Milori, D.M.B.P. Physical and chemical matrix effects in soil carbon quantification using laser-induced breakdown spectroscopy. Spectrochim. Acta B 2014, 101, 88–95. [Google Scholar] [CrossRef]
- Shabbir, S.; Xu, W.; Zhang, Y.; Sun, C.; Yue, Z.; Zou, L.; Chen, F.; Yu, J. Machine learning and transfer learning for correction of the chemical and physical matrix effects in the determination of alkali and alkaline earth metals with LIBS in rocks. Spectrochim. Acta Part B At. Spectrosc. 2022, 194, 106478. [Google Scholar] [CrossRef]
- Zhang, D.; Niu, X.; Nie, J.; Shi, S.; Ma, H.; Guo, L. Plasma parameters correction method based on plasma image-spectrum fusion for matrix effect elimination in LIBS. Opt. Express 2024, 32, 10851–10861. [Google Scholar] [CrossRef]
- Ma, H.; Shi, S.; Hu, X.; Li, G.; Zhuang, Y.; Zhu, Z.; Zhang, D.; Guo, L. Rapid and accurate classification of coal by laser-induced breakdown spectroscopy coupled with plasma image-spectrum fusion strategy. J. Anal. At. Spectrom. 2025, 40, 1796–1803. [Google Scholar] [CrossRef]
- Shao, J.; Zhang, Y.; Chen, A. Emission enhancement in fs+ns dual-pulse LIBS of Cu. Photonics 2023, 10, 783. [Google Scholar] [CrossRef]
- Tian, Y.; Cheung, H.C.; Zheng, R.; Ma, Q.; Chen, Y.; Delepine-Gilon, N.; Yu, J. Elemental analysis of powders with surface-assisted thin film laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2016, 124, 16–24. [Google Scholar] [CrossRef]
- Šindelářová, A.; Pořízka, P.; Modlitbová, P.; Vrlíková, L.; Kiss, K.; Kaška, M.; Prochazka, D.; Vrábel, J.; Buchtová, M.; Kaiser, J. Methodology for the implementation of internal standard to laser-induced breakdown spectroscopy analysis of soft tissues. Sensors 2021, 21, 900. [Google Scholar] [CrossRef] [PubMed]
- Araujo, A.S.; Castro, J.P.; Sperança, M.A.; Andrade, D.F.; De Mello, M.L.; Pereira-Filho, E.R. Multiway calibration strategies in laser-induced breakdown spectroscopy: A proposal. Spectrochim. Acta B 2021, 178, 105935. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Bais, A. A novel PCA-based calibration algorithm for classification of challenging laser-induced breakdown spectroscopy soil sample data. Spectrochim. Acta Part B At. Spectrosc. 2022, 193, 106451. [Google Scholar] [CrossRef]
- GB/T 4295-2019; Tungsten carbide powder. China National Standards: Beijing, China, 2019.
- GB/T 3685-2017; Conveyor belts—Laboratory scale flammability characteristics—Test method. China National Standards: Beijing, China, 2017.
- Rawer, K. The Boltzmann equation of a compressible plasma. In Wave Propagation in the Ionosphere; Springer: Berlin/Heidelberg, Germany, 1993; pp. 257–272. [Google Scholar]
- Akama, H. Relativistic Boltzmann equation for plasmas. J. Phys. Soc. Jpn. 1970, 28, 478–488. [Google Scholar] [CrossRef]
- Naeem, M.; Iqbal, M.; Amin, N.; Musadiq, M.; Jamil, Y.; Cecil, F. Measurement of Electron Density and Temperature of Laser-Induced Copper Plasma. Asian J. Chem. 2013, 25, 2192–2198. [Google Scholar] [CrossRef]
- Björck, Å. Least squares methods. In Handbook of Numerical Analysis; Elsevier: Amsterdam, The Netherlands, 1990; Volume 1, pp. 465–652. [Google Scholar]
- Krotkov, E.P. Active Computer Vision by Cooperative Focus and Stereo; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
Sample Ratio | WC (g) | Co (g) | Ratio |
---|---|---|---|
1 | 96 | 4 | 4% |
2 | 92 | 8 | 8% |
3 | 88 | 12 | 12% |
4 | 84 | 16 | 16% |
5 | 80 | 20 | 20% |
6 | 76 | 24 | 24% |
7 | 72 | 28 | 28% |
8 | 68 | 32 | 32% |
Sample | Co Concentration (%) | LIBS Signal Intensity (a.u.) | Coater Depth (µm) | Surface Roughness Ra (nm) |
---|---|---|---|---|
Sample A | 0.85 | 1200 | 5.2 | 150 |
Sample B | 0.87 | 935 | 8.4 | 320 |
Parameter | Mean Value | Standard Deviation (σ) | Coefficient of Variation (CV, %) |
---|---|---|---|
Co I Intensity (340.512 nm) | 8240 a.u. | 1030 a.u. | 12.5% |
Crater Depth | 18.7 μm | 1.75 μm | 9.4% |
Crater Diameter | 42.3 μm | 2.1 μm | 5.0% |
Surface Roughness (Ra) | 0.94 μm | 0.078 μm | 8.3% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, H.; Fan, Q.; Duan, Y.; Zhang, M. A Matrix Effect Calibration Method of Laser-Induced Breakdown Spectroscopy Based on Laser Ablation Morphology. Appl. Sci. 2025, 15, 8640. https://doi.org/10.3390/app15158640
Pei H, Fan Q, Duan Y, Zhang M. A Matrix Effect Calibration Method of Laser-Induced Breakdown Spectroscopy Based on Laser Ablation Morphology. Applied Sciences. 2025; 15(15):8640. https://doi.org/10.3390/app15158640
Chicago/Turabian StylePei, Hongliang, Qingwen Fan, Yixiang Duan, and Mingtao Zhang. 2025. "A Matrix Effect Calibration Method of Laser-Induced Breakdown Spectroscopy Based on Laser Ablation Morphology" Applied Sciences 15, no. 15: 8640. https://doi.org/10.3390/app15158640
APA StylePei, H., Fan, Q., Duan, Y., & Zhang, M. (2025). A Matrix Effect Calibration Method of Laser-Induced Breakdown Spectroscopy Based on Laser Ablation Morphology. Applied Sciences, 15(15), 8640. https://doi.org/10.3390/app15158640