The Post-Harvest Application of UV-C Rays: Effects on the Shelf Life and Antioxidants of Fresh Green Asparagus (Asparagus officinalis L.)
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Proximate Composition
2.3. Hardness Determination
2.4. Color Measurement
2.5. Extraction and Analysis of Phenolic Compounds
2.6. Total Phenolic Content (TPC)
2.7. Total Flavonoid Content (TFC)
2.8. Antioxidant Activity Measured by ABTS and DPPH Assays
2.9. Phenolic Acids and Flavonoids Content Quantification
2.10. Statistical Analysis
3. Results
3.1. Asparagus Antioxidants Variation: Effect of UV-C Treatment, Storage Time, and Their Interaction
3.2. Asparagus Shelf Life and Nutritional Composition: Effect of UV-C Treatment, Storage Time, and Their Interaction
3.3. PCA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chin, C.K.; Garrison, S.A. Functional elements from asparagus for human health. Acta Hortic. 2008, 776, 219–226. [Google Scholar] [CrossRef]
- Lee, E.J.; Yoo, K.S.; Patil, B.S. Development of a rapid HPLC-UV method for simultaneous quantification of protodioscin and rutin in white and green asparagus spears. J. Food Sci. 2010, 75, C703–C709. [Google Scholar] [CrossRef] [PubMed]
- Pegiou, E.; Mumm, R.; Acharya, P.; de Vos, R.C.H.; Hall, R.D. Green and White Asparagus (Asparagus officinalis): A Source of Developmental, Chemical and Urinary Intrigue. Metabolites 2020, 10, 17. [Google Scholar] [CrossRef]
- Asparagus Market Outlook 2022–2026. Daily Updated Industry Statistics and Top Emerging Trends About the Asparagus Industry. Available online: https://www.reportlinker.com/clp/global/3633 (accessed on 18 March 2025).
- Chin, C.K.; Garrison, S.A.; Ho, C.T.; Shao, Y.; Wang, M.; Simon, J.; Huang, M.T. Functional Elements from Asparagus for Human Health. Acta Hortic. 2002, 589, 233–241. [Google Scholar] [CrossRef]
- Wang, M.; Tadmor, Y.; Wu, Q.L.; Chin, C.K.; Garrison, S.A.; Simon, J.E. Quantification of protodioscin and rutin in asparagus shoots by LC/MS and HPLC methods. J. Agric. Food Chem. 2003, 51, 6132–6136. [Google Scholar] [CrossRef]
- Fuentes-Alventosa, J.M.; Jaramillo, S.; Rodriguez-Guitierrez, G.; Cermeno, P.; Espejo, J.A.; Jimenez-Araujo, A.; Guillen Bejarano, R.; Fernandez-Bolanos, J.; Rodriguez-Arcos, R. Flavonoid profile of green asparagus genotypes. J. Agric. Food Chem. 2008, 56, 6977–6984. [Google Scholar] [CrossRef]
- Ganeshpurkar, A.; Saluja, A.K. The Pharmacological Potential of Rutin. Saudi Pharm. J. 2017, 25, 149–164. [Google Scholar] [CrossRef] [PubMed]
- Guillén, R.; Rodríguez, R.; Jaramillo, S.; Rodríguez, G.; Espejo, J.A.; Fernández-Bolaños, J.; Heredia, A.; Jiménez, A. Antioxidants from asparagus spears: Phenolics. Acta Hortic. 2008, 776, 247–253. [Google Scholar] [CrossRef]
- Kohmura, H.; Watanabe, Y.; Muto, N. Polyphenol content, antioxidant capacity and surface colour of asparagus spears cultivated under different conditions of sunlight. Acta Hortic. 2008, 776, 255–260. [Google Scholar] [CrossRef]
- Maeda, T.; Kakuta, H.; Sonoda, T.; Motoki, T.; Maekawa, K.; Suzuki, T.; Oosawa, K. Differences in antioxidative contents of asparagus related to cultivars and seasonal change under various cultural conditions of the mother-fern culture. Acta Hortic. 2008, 776, 227–233. [Google Scholar] [CrossRef]
- Toscano, S.; Rizzo, V.; Licciardello, F.; Romano, D.; Muratore, G. Packaging Solutions to Extend the Shelf Life of Green Asparagus (Asparagus officinalis L.) ‘Vegalim’. Foods 2021, 10, 478. [Google Scholar] [CrossRef]
- Yahaya, S.M.; Mardiyya, A.Y. Review of post-harvest losses of fruits and vegetables. Biomed. J. Sci. Tech. Res. 2019, 13, 10192–10200. [Google Scholar] [CrossRef]
- Hamdi, A.; Jaramillo-Carmona, S.; Rodríguez-Arcos, R.; Jiménez-Araujo, A.; Guillén-Bejarano, R. Asparagus. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Jaiswal, A.K., Ed.; Academic Press: Cambridge, MA, USA, 2020; Chapter 8; pp. 121–140. ISBN 9780128127803. [Google Scholar] [CrossRef]
- Jaramillo, S.; Rodríguez, R.; Jiménez, A.; Guillén, R.; Fernández-Bolaños, J.; Heredia, A. Effects of storage conditions on the accumulation of ferulic acid derivatives in white asparagus cell walls. J. Sci. Food Agric. 2007, 87, 286–296. [Google Scholar] [CrossRef]
- Kong, J.Q. Phenylalanine ammonia-lyase, a key component used for phenylpropanoids production by metabolic engineering. RSC Adv. 2015, 5, 62587–62603. [Google Scholar] [CrossRef]
- Anastasiadi, M.; Collings, E.R.; Shivembe, A.; Binghua, Q.; Terry, L.A. Seasonal and temporal changes during storage affect quality attributes of green asparagus. Postharvest Biol. Technol. 2020, 159, 111017. [Google Scholar] [CrossRef]
- Singh, V.; Hedayetullah, M.; Zaman, P.; Meher, J. Postharvest Technology of Fruits and Vegetables: An Overview. J. Postharvest Technol. 2014, 2, 124–135. [Google Scholar]
- Chaitradeepa, G.M.; Hanumantharaju, K.N.; Soumya, G.C.; Lokesh, A.C. Cold plasma technology and its applications in food industry. Biochem. Cell. Arch. 2023, 23. [Google Scholar] [CrossRef]
- Haro-Maza, J.; Guerrero-Beltran, J. Ultraviolet-C Light Effect on the Physicochemical and Antioxidant Properties of Blackberry, Blueberry, and Raspberry Nectars. J. Food Res. 2016, 5, 11–22. [Google Scholar] [CrossRef]
- Prakash, A.; Ornelas-Paz, J. Irradiation of Fruits and Vegetables. In Postharvest Technology of Perishable Horticultural Commodities; Woodhead Publishing: Cambridge, MA, USA, 2019; Chapter 17; pp. 563–589. [Google Scholar] [CrossRef]
- Bisht, B.; Bhatnagar, P.; Gururani, P.; Kumar, V.; Tomarf, S.M.; Sinhmar, R.; Rathi, N.; Kumar, S. Food irradiation: Effect of ionizing and non-ionizing radiations on preservation of fruits and vegetables—A review. Trends Food Sci. 2021, 114, 372–385. [Google Scholar] [CrossRef]
- Maharaj, R. Effects of Abiotic Stress (UV-C) Induced Activation of Phytochemicals on the Postharvest Quality of Horticultural Crops. In Phytochemicals—Isolation, Characterisation and Role in Human Health; InTech Digital Magazine: Rijeka, Croatia, 2015; Chapter 9; pp. 221–244. [Google Scholar] [CrossRef]
- Sari, L.K.; Setha, S.; Naradisorn, M. Effect of UV-C irradiation on postharvest quality of ‘Phulae’ pineapple. Sci. Hort. 2016, 213, 314–320. [Google Scholar] [CrossRef]
- Baka, M.; Mercier, J.; Corcuff, R.; Castalgne, F.; Arul, J. Photochemical treatment to improve storability of fresh strawberries. J. Food Sci. 1999, 64, 1068–1072. [Google Scholar] [CrossRef]
- Erkan, M.; Wang, C.Y.; Krizek, D.T. UV-C irradiation reduces microbial populations and deterioration in Cucurbita pepo fruit tissue. Environ. Exp. Bot. 2001, 45, 1–9. [Google Scholar] [CrossRef]
- Perkins, P.; Collins, J.; Howard, L. Blueberry fruit response to postharvest application of ultraviolet radiation. Postharvest Biol. Technol. 2008, 47, 280–285. [Google Scholar] [CrossRef]
- AACC. Approved Methods of Analysis, 11th ed.; Methods: 46–30.01 (Protein); American Association of Cereal Chemists: St. Paul, MN, USA, 2012. [Google Scholar]
- Prosky, L.; Asp, N.G.; Schweizer, T.F.; De Vries, J.W.; Furda, I. Determination of insoluble and soluble dietary fiber in foods and food products: Collaborative study. J. AOAC 1992, 75, 360–367. [Google Scholar] [CrossRef]
- Menga, V.; Fares, C.; Campa, A.; Ferreira, J.J.; Bitocchi, E.; Papa, R.; Beleggia, R. Variability of Nutritional, Antioxidant, and Textural Traits of a Collection of Snap Beans of Different Colors. Horticulture 2023, 9, 311. [Google Scholar] [CrossRef]
- Mokrzycki, W.; Tatol, M. Color difference Delta E—A survey. Mach. Graph. Vis. 2011, 20, 383–411. [Google Scholar]
- Suriano, S.; Iannucci, A.; Codianni, P.; Fares, C.; Russo, M.; Pecchioni, N.; Marciello, U.; Savino, M. Phenolic acids profile, nutritional and phytochemical compounds, antioxidant properties in colored barley grown in southern Italy. Food Res. Int. 2018, 13, 221–233. [Google Scholar] [CrossRef]
- Kim, D.-O.; Jzeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 2003, 81, 321–326. [Google Scholar] [CrossRef]
- Fares, C.; Platani, C.; Baiano, A.; Menga, V. Effect of processing and cooking on phenolic acid profile and antioxidant capacity of durum wheat pasta enriched with debranning fractions of wheat. Food Chem. 2010, 119, 1023–1029. [Google Scholar] [CrossRef]
- Kaiser, H.F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [Google Scholar] [CrossRef]
- No 2377/1999; Commission Regulation (EC) No 2377/1999 of 9 November 1999 Laying Down the Marketing Standard for Asparagus. Official Journal of the European Communities 10: Luxembourg, 1999.
- Maeda, T.; Honda, K.; Sonoda, T.; Motoki, S.; Inoue, K.; Suzuki, T.; Oosawa, K.; Suzuki, M. Light condition influences rutin and polyphenol contents in asparagus spears in the mother-fern culture system during the summer-autumn harvest. J. Jpn. Soc. Hortic. Sci. 2010, 7, 161–167. [Google Scholar] [CrossRef]
- Nyarko, K. Investigating the Antioxidant Properties of Quercetin. In Quercetin—Effects on Human Health; InTechOpen: Rijeka, Croatia, 2024. [Google Scholar] [CrossRef]
- Siomos, A.S. The quality of asparagus as affected by preharvest factors. Sci. Hort. 2018, 233, 510–519. [Google Scholar] [CrossRef]
- Artés-Hernández, F.; Escalona, V.H.; Robles, P.A.; Martínez-Hernández, G.B.; Artés, F. Effect of UV-C Radiation on Quality of Minimally Processed Spinach Leaves. J. Sci. Food Agric. 2009, 89, 414–421. [Google Scholar] [CrossRef]
- González-Aguilar, G.A.; Villegas-Ochoa, M.A.; Martínez-Téllez, M.A.; Gardea, A.A.; Ayala-Zavala, J.F. Improving Antioxidant Capacity of Fresh-Cut Mangoes Treated with UV-C. J. Food Sci. 2007, 72, S197–S202. [Google Scholar] [CrossRef]
- Martínez-Sánchez, A.; Lozano-Pastor, P.; Artés-Hernández, F.; Artés, F.; Aguayo, E. Preharvest UV-C treatment improves the quality of spinach primary production and postharvest storage. Postharvest Biol. Technol. 2019, 155, 130–139. [Google Scholar] [CrossRef]
- Charles, M.T.; Mercier, J.; Makhlouf, J.; Arul, J. Physiological basis of UV-C induced resistance to Botrytis cinerea in tomato fruit. I. Role of pre-and post-challenge accumulation of the phytoalexin-rishitin. Postharvest Biol. Technol. 2008, 47, 10–20. [Google Scholar] [CrossRef]
- Shama, G. Process challenges in applying low doses of ultraviolet light to fresh produce for eliciting beneficial hormetic responses. Postharvest Biol. Technol. 2007, 44, 1–8. [Google Scholar] [CrossRef]
- Gastoł, M.; Błaszczyk, U. Effect of Magnetic Field and UV-C Radiation on Postharvest Fruit Properties. Agriculture 2024, 14, 1167. [Google Scholar] [CrossRef]
- Słupski, J.; Korus, A.; Lisiewska, Z.; Kmiecik, W. Content of amino acids and the quality of protein in as-eaten green asparagus (Asparagus officinalis L.) products. Int. J. Food Sci. Technol. 2010, 45, 733–739. [Google Scholar] [CrossRef]
- Csapó, J.; Prokisch, J.; Albert, C.; Sipos, P. Effect of UV Light on Food Quality and Safety. Acta Univa. Sapientiae Aliment. 2019, 12, 21–41. [Google Scholar] [CrossRef]
- Poubol, J.; Lichanporn, I.; Puthmee, T.; Kanlayanarat, S. Effect of Ultraviolet-C Irradiation on Quality and Natural Microflora of Asparagus Spears. Acta Hortic. 2010, 875, 257–262. [Google Scholar] [CrossRef]
- Barka, E.A.; Kalantari, S.; Makhlouf, J.; Arul, J. Impact of UV-C irradiation on the cell wall-degrading enzymes during ripening of tomato (Lycopersicon esculentum L.) fruit. J. Agric. Food Chem. 2000, 48, 667–671. [Google Scholar] [CrossRef]
- Kim, Y.H.; Jeong, S.G.; Back, K.H.; Park, K.H.; Chung, M.S.; Kang, D.H. Effect of Various Conditions on Inactivation of Escherichia Coli O157:H7, Salmonella Typhimurium, and Listeria Monocytogenes in Fresh-Cut Lettuce Using Ultraviolet Radiation. Int. J. Food Microbiol. 2013, 166, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Tavanikone, C.; Pranamornkith, T. Effects of Hot Water Combined with UV-C Treatment on Chinese Kale (Brassica oleracea Var. Alboglabra) during Storage. J. Food Sci. Agric. Technol. 2019, 5, 172–176. [Google Scholar]
Traits | UV-C Treatments | ||||
---|---|---|---|---|---|
Control | UV-C1 | UV-C2 | UV-C3 | UV-C4 | |
TPC (mg FAE/g) | 17.01 ± 1.53 b | 16.19 ± 1.97 b | 18.81 ± 1.52 a | 19.28 ± 1.14 a | 19.28 ± 1.53 a |
TFC (mg CE/g) | 3.64 ± 0.74 c | 4.96 ± 0.57 a | 4.60 ± 0.86 ab | 4.30 ± 0.51 ac | 4.16 ± 0.54 bc |
ABTS (μM TE/g) | 20.86 ± 1.26 b | 19.01 ± 1.02 c | 19.58 ± 1.00 bc | 23.18 ± 1.36 a | 23.89 ± 3.26 a |
DPPH (μM TE/g) | 32.54 ± 1.64 c | 34.81 ± 1.28 ab | 34.99 ± 1.78 a | 33.27 ± 1.15 bc | 33.83 ± 3.22 ac |
Chlorogenic acid (μg/g) | 200.76 ±147.33 b | 221.76 ± 80.02 b | 310.43 ± 195.81 a | 143.43 ± 69.73 c | 137.04 ± 177.48 c |
Ferulic acid (μg/g) | 101.51 ±15.96 bc | 84.86 ± 24.22 c | 86.27 ± 30.22 c | 109.31 ± 31.86 ab | 125.06 ± 48.55 a |
Caffeic acid (μg/g) | 326.75 ± 51.90 bc | 377.47 ± 55.49 a | 298.82 ± 136.94 c | 347.59 ± 72.58 ab | 357.49 ± 108.81 ab |
trans-Cinnamic acid (μg/g) | 37.77 ± 23.00 b | 39.07 ± 20.70 b | 50.50 ± 29.26 a | 32.13 ± 13.24 b | 31.25 ± 17.01 b |
Rutin (μg/g) | 5138.52 ± 1307.42 c | 5497.53 ± 410.77 b | 5874.36 ± 1103.94 a | 5504.32 ± 928.05 b | 5156.94 ± 1226.05 c |
Quercetin (μg/g) | 279.60 ± 49.74 c | 300.77 ± 71.14 bc | 355.18 ± 49.21 a | 307.18 ±68.38 b | 314.94 ±75.21 b |
Kaempferol-3-O-rutinoside (μg/g) | 167.05 ± 28.64 b | 170.55 ± 29.86 b | 203.10 ± 37.63 a | 169.81 ±12.46 b | 158.21 ± 16.08 b |
Traits | Storage Time | |||
---|---|---|---|---|
T0 | T1 | T2 | T3 | |
TPC (mg FAE/g) | 17.53 ± 1.77 ab | 17.40 ± 1.76 b | 18.74 ± 2.59 ab | 18.79 ± 2.03 a |
TFC (mg CE/g) | 4.66 ± 0.75 a | 4.52 ± 0.73 ab | 4.21 ± 0.86 ab | 3.93 ± 0.59 b |
ABTS (μM TE/g) | 20.41 ± 1.69 b | 21.19 ± 2.46 b | 22.80 ± 3.46 a | 20.81 ± 2.05 b |
DPPH (μM TE/g) | 34.16 ± 1.31 a | 34.13 ± 1.51 a | 35.10 ± 2.32 a | 32.15 ± 2.09 b |
Chlorogenic acid (μg/g) | 99.76 ± 39.20 c | 109.38 ± 23.90 c | 256.09 ± 128.775 b | 345.51 ± 115.95 a |
Ferulic acid (μg/g) | 103.67 ± 17.93 b | 97.27 ± 20.50 bc | 123.28 ± 53.14 a | 81.38 ± 21.48 c |
Caffeic acid (μg/g) | 396.93 ± 50.91 a | 379.55 ± 72.06 a | 328.62 ± 72.23 b | 261.40 ± 105.13 c |
trans-Cinnamic acid (μg/g) | 19.66 ± 4.22 c | 20.67 ± 5.03 c | 49.21 ± 8.57 b | 63.04 ± 20.35 a |
Rutin (μg/g) | 6477.31 ± 524.87 a | 5878.37 ± 375.26 b | 5030.87 ± 1000.21 c | 4350.79 ± 616.53 d |
Quercetin (μg/g) | 233.50 ± 30.13 c | 287.37 ± 52.09 b | 362.71 ± 25.70 a | 362.56 ± 39.32 a |
Kaempferol-3-O-rutinoside (μg/g) | 170.38 ± 14.56 b | 153.15 ± 18.26 c | 201.05 ± 35.51 a | 170.39 ± 26.53 b |
Traits | UV-C Treatments | ||||
---|---|---|---|---|---|
Control | UV-C1 | UV-C2 | UV-C3 | UV-C4 | |
Hardness (N) | 33.12 ± 6.89 bc | 36.57 ± 8.62 a | 36.11 ± 8.97 a | 35.78 ± 9.23 ab | 32.54 ± 8.59 c |
Fiber content (%) | 32.19 ± 3.14 a | 31.83 ± 3.26 a | 30.52 ±1.90 a | 30.51 ± 1.98 a | 30.14 ± 2.49 a |
Protein (%) | 38.02 ± 2.51 b | 37.68 ± 2.05 c | 39.71 ± 2.45 a | 35.59 ± 1.32 d | 35.58 ± 1.25 d |
L* Tips | 40.80 ± 1.65 a | 40.56 ± 2.35 a | 40.77 ± 3.12 a | 41.49 ± 3.80 a | 42.33 ± 3.78 a |
a* Tips | −4.17 ± 1.49 bc | −2.33 ± 1.78 a | −2.63 ± 1.72 ab | −4.16 ± 2.08 bc | −5.04 ± 2.48 c |
b* Tips | 14.87 ± 1.58 a | 11.43 ± 1.82 b | 12.21 ± 1.87 b | 14.37 ± 3.14 a | 15.13 ± 2.83 a |
L* Middle | 46.45 ± 2.16 a | 43.78 ± 2.11 bc | 43.09 ± 1.28 c | 45.37 ± 2.46 ab | 43.82 ± 1.82 bc |
a* Middle | −11.06 ± 2.04 b | −7.50 ± 3.73 a | −9.63 ± 2.80 ab | −11.00 ± 3.19 b | −9.73 ± 3.34 ab |
b* Middle | 24.24 ± 2.98 a | 18.96 ± 2.47 c | 21.50 ± 3.44 b | 22.22 ± 4.00 ab | 20.75 ± 3.73 bc |
Traits | Storage Time | |||
---|---|---|---|---|
T0 | T1 | T2 | T3 | |
Hardness (N) | 30.59 ± 6.66 b | 35.20 ± 8.84 a | 36.07 ± 8.86 a | 37.43 ± 8.94 a |
Fiber content (%) | 31.45 ± 2.33 ab | 28.37 ± 3.32 b | 30.97 ± 3.10 ab | 33.36 ± 2.86 a |
Protein (%) | 36.17 ± 1.65 b | 35.46 ± 1.06 c | 38.84 ± 2.16 a | 38.79 ± 3.00 a |
L* Tips | 39.88 ± 2.28 b | 40.54 ± 1.70 b | 41.10 ± 2.82 ab | 43.24 ± 3.81 a |
a* Tips | −4.31 ± 1.82 a | −3.42 ± 2.13 a | −2.88 ± 1.75 a | −4.06 ± 2.53 a |
b* Tips | 13.78 ± 2.40 ab | 13.15 ± 2.46 b | 12.44 ± 2.47 b | 15.05 ± 2.88 a |
L* Middle | 45.36 ± 2.62 a | 44.70 ± 2.25 ab | 44.22 ± 2.05 ab | 43.73 ± 2.10 b |
a* Middle | −10.91 ± 2.36 b | −9.49 ± 2.93 ab | −9.99 ± 2.67 ab | −8.75 ± 2.68 a |
b* Middle | 23.32 ± 2.96 a | 20.72 ± 2.78 bc | 22.34 ± 3.15 ab | 19.76 ± 2.70 c |
ΔE | |||||
---|---|---|---|---|---|
T0 | T1 | T2 | T3 | ||
Tips | UV-C1 | 4.11 ± 0.16 | 6.50 ± 0.33 | 1.65 ± 0.52 | 5.25 ± 0.22 |
UV-C2 | 4.53 ± 0.28 | 2.1 ± 0.14 | 1.86 ± 0.07 | 4.38 ± 0.03 | |
UV-C3 | 1.87 ± 0.07 | 0.85 ± 0.08 | 2.28 ± 0.11 | 1.33 ± 0.25 | |
UV-C4 | 1.74 ±0.35 | 0.92 ± 0.11 | 2.18 ± 0.04 | 5.14 ± 0.20 | |
Middle | UV-C1 | 15.64 ± 0.06 | 1.74 ± 0.06 | 5.09 ± 0.01 | 5.76 ± 0.07 |
UV-C2 | 8.44 ± 0.06 | 4.46 ± 0.08 | 1.38 ± 0.10 | 6.00 ± 0.11 | |
UV-C3 | 2.21 ± 0.13 | 1.77 ± 0.11 | 2.44 ± 0.06 | 6.85 ± 0.21 | |
UV-C4 | 3.95 ± 0.08 | 4.68 ± 0.28 | 6.15 ± 0.07 | 4.76 ± 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menga, V.; Beleggia, R.; Prencipe, D.P.; Russo, M.; Fares, C. The Post-Harvest Application of UV-C Rays: Effects on the Shelf Life and Antioxidants of Fresh Green Asparagus (Asparagus officinalis L.). Appl. Sci. 2025, 15, 8533. https://doi.org/10.3390/app15158533
Menga V, Beleggia R, Prencipe DP, Russo M, Fares C. The Post-Harvest Application of UV-C Rays: Effects on the Shelf Life and Antioxidants of Fresh Green Asparagus (Asparagus officinalis L.). Applied Sciences. 2025; 15(15):8533. https://doi.org/10.3390/app15158533
Chicago/Turabian StyleMenga, Valeria, Romina Beleggia, Domenico Pio Prencipe, Mario Russo, and Clara Fares. 2025. "The Post-Harvest Application of UV-C Rays: Effects on the Shelf Life and Antioxidants of Fresh Green Asparagus (Asparagus officinalis L.)" Applied Sciences 15, no. 15: 8533. https://doi.org/10.3390/app15158533
APA StyleMenga, V., Beleggia, R., Prencipe, D. P., Russo, M., & Fares, C. (2025). The Post-Harvest Application of UV-C Rays: Effects on the Shelf Life and Antioxidants of Fresh Green Asparagus (Asparagus officinalis L.). Applied Sciences, 15(15), 8533. https://doi.org/10.3390/app15158533