A Multiband Dual Linear-to-Circular Polarization Conversion Reflective Metasurface Design Based on Liquid Crystal for X-Band Applications
Abstract
1. Introduction
2. Unit Cell Design and Properties of LC Materials
2.1. Unit Cell Structure Design
2.2. Electromagnetic Properties of LC Materials
3. Simulation Results of Unit Cell and Theory Analysis of LCPC
4. Discussion
4.1. Actual Test Environment Setup
4.2. Comparison and Analysis of Measurement and Simulation Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ullah, U.; Mabrouk, I.B.; Koziel, S. A Compact Circularly Polarized Antenna with Directional Pattern for Wearable Off-Body Communications. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 2523–2527. [Google Scholar] [CrossRef]
- Ullah, U.; Koziel, S.; Mabrouk, I.B. Rapid Redesign and Bandwidth/Size Tradeoffs for Compact Wideband Circular Polarization Antennas Using Inverse Surrogates and Fast EM-Based Parameter Tuning. IEEE Trans. Antennas Propag. 2020, 68, 81–89. [Google Scholar] [CrossRef]
- Ullah, U.; Al-Hasan, M.; Koziel, S.; Mabrouk, I.B. Circular Polarization Diversity Implementation for Correlation Reduction in Wideband Low-Cost Multiple-Input-Multiple-Output Antenna. IEEE Access 2020, 8, 95585–95593. [Google Scholar] [CrossRef]
- Deng, G.; Zhu, Y.; Zhang, Q.; Zhang, G.; Yin, Z.; Yang, J.; Li, Y. Reconfigurable Linear-to-Circular Polarization Conversion Using Liquid Crystal-Based Reflective Metasurface. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 2249–2253. [Google Scholar] [CrossRef]
- Li, A.; Singh, S.; Sievenpiper, D. Metasurfaces and Their Applications. Nanophotonics 2018, 7, 989–1011. [Google Scholar] [CrossRef]
- Hu, J.; Bandyopadhyay, S.; Liu, Y.-h.; Shao, L.-Y. A Review on Metasurface: From Principle to Smart Metadevices. Front. Phys. 2021, 8, 586087. [Google Scholar] [CrossRef]
- Qian, Y.-J.; Wang, Y.-B.; Yang, X.-D.; Wang, J.; Yan, Y.-Z. Manipulation of circular polarization and mechanical waves in gyroscopic metamaterials. Phys. Rev. Appl. 2024, 22, 054016. [Google Scholar] [CrossRef]
- Lin, X.; Shen, Z.; Huang, D. Broadband circular polarization selector and converter based on multilayer metamaterials with stacked split-rings. Phys. Rev. Mater. 2024, 8, 015203. [Google Scholar] [CrossRef]
- Dutta, R.; Ghosh, J.; Yang, Z.; Zhang, X. Multi-Band Multi-Functional Metasurface-Based Reflective Polarization Converter for Linear and Circular Polarizations. IEEE Access 2021, 9, 152738–152748. [Google Scholar] [CrossRef]
- Li, J.; Yuan, Y.; Wu, Q.; Zhang, K. Bi-Isotropic Huygens’ Metasurface for Polarization-Insensitive Cross-Polarization Conversion and Wavefront Manipulation. IEEE Trans. Antennas Propag. 2024, 72, 2445–2454. [Google Scholar] [CrossRef]
- Khan, M.; Hu, B.; Chen, Y.; Ullah, N.; Khan, M.J.I.; Khalid, A.U.R. Multiband Efficient Asymmetric Transmission with Polarization Conversion Using Chiral Metasurface. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 1137–1141. [Google Scholar] [CrossRef]
- Kang, W.; Chen, S.; Li, Y.; Sima, B.; Wu, W. Simultaneous Polarization Conversion and Retro-reflection Based on Surface-Circuit Metasurfaces. IEEE Antennas Wirel. Propag. Lett. 2023, 22, 2002–2006. [Google Scholar] [CrossRef]
- Zheng, Q.; Guo, C.; Ding, J. Wideband Metasurface-Based Reflective Polarization Converter for Linear-to-Linear and Linear-to-Circular Polarization Conversion. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1459–1463. [Google Scholar] [CrossRef]
- Zhao, X.-B.; Wei, F.; Shi, X.W.; Zeng, C. Broadband Folded Reflectarray Antenna Using Single-Layer Cross-Polarization Conversion Subwavelength Elements. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 612–616. [Google Scholar] [CrossRef]
- Zhang, P.-P.; Zhu, X.-C.; Hu, Y.; Hao, Z.-C.; Luo, G.-Q. A Wideband Circularly Polarized Folded Reflectarray Antenna with Linearly Polarized Feed. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 913–917. [Google Scholar] [CrossRef]
- Yang, Y.-H.; Sun, B.-H.; Guo, J.-L. A Single-Layer Wideband Circularly Polarized Antenna for Millimeter-Wave Applications. IEEE Trans. Antennas Propag. 2020, 68, 4925–4929. [Google Scholar] [CrossRef]
- Yang, X.; Wen, E.; Bharadia, D.; Sievenpiper, D.F. Multifunctional Metasurface: Simultaneous Beam Steering, Polarization Conversion, and Phase Offset. IEEE Trans. Antennas Propag. 2024, 72, 4589–4593. [Google Scholar] [CrossRef]
- Gao, X.; Qi, J.C.; Lan, F.; Wang, G.F.; Xie, X.M.; Li, H.Y. 1-Bit Metasurface-Based Beam-Scanning Circularly Polarized Folded Reflector Antenna. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 638–642. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Dwari, S.; Mandal, M.K. Polarization-Reconfigurable Compact Monopole Antenna with Wide Effective Bandwidth. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 1041–1045. [Google Scholar] [CrossRef]
- Cui, Y.; Qi, C.; Li, R. A Low-Profile Broadband Quad-Polarization Reconfigurable Omnidirectional Antenna. IEEE Trans. Antennas Propag. 2019, 67, 4178–4183. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, Z.; Su, J.; Qu, M.; Li, Z.; Xu, S.; Yang, F. Quad-Polarization Reconfigurable Reflectarray with Independent Beam-Scanning and Polarization Switching Capabilities. IEEE Trans. Antennas Propag. 2023, 71, 7285–7298. [Google Scholar] [CrossRef]
- Yan, X.; Li, L.; Zhang, H.; Han, J. Broadband Polarization-Reconfigurable Liquid Dielectric Resonator Antenna Controlled by Gravity. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 2105–2109. [Google Scholar] [CrossRef]
- Majeed, A.; Zhang, J.; Awan, Z.A.; Memon, S.; Ishfaq, M.; Wang, C. A High-Efficiency Dual-Band Linear-to-Circular Polarization Converter Based on Rectangular-Slot Reflective Metasurface. Appl. Sci. 2022, 12, 9172. [Google Scholar] [CrossRef]
- Park, J.; Yoo, Y.; Lee, C.; Yoon, D.K.; Park, S.-O. Liquid-Crystal-Based Beam-Steering Guided-Wave Metasurface Antenna at Millimeter-Wave Band. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 4208–4212. [Google Scholar] [CrossRef]
- Yin, S.; Xiao, D.; Liu, J.; Li, K.; He, H.; Jiang, S.; Luo, D.; Sun, X.W.; Ji, W.; Liu, Y.J. Reconfigurable Chiral Metasurface Absorbers Based on Liquid Crystals. IEEE Photonics J. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, H. Dual-Patch Polarization Conversion Metasurface-Based Wideband Circular Polarization Slot Antenna. IEEE Access 2018, 6, 74772–74777. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, A. Dual Circularly Polarized Fabry–Perot Resonator Antenna Employing a Polarization Conversion Metasurface. IEEE Access 2021, 9, 44881–44887. [Google Scholar] [CrossRef]
- Li, E.; Li, X.J.; Seet, B.-C.; Ghaffar, A.; Aneja, A. A Metasurface-Based LTC Polarization Converter with S-Shaped Split Ring Resonator Structure for Flexible Applications. Sensors 2023, 23, 6268. [Google Scholar] [CrossRef]
- Chen, P.; Wang, D.; Wang, L.; Liu, L.; Gan, Z. Liquid Crystal-Based Reconfigurable Antenna for 5G Millimeter-Wave. Sci. Rep. 2024, 14, 2045–2322. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Y.; Zhang, Z. A Reconfigurable Reflectarray Antenna with an 8 μm-Thick Layer of Liquid Crystal. IEEE Trans. Antennas Propag. 2022, 70, 2770–2778. [Google Scholar] [CrossRef]
- Fei, P.; Guo, W.; Hu, W.; Zheng, Q.; Wen, X.; Chen, X.; Vandenbosch, G.A.E. A Transmissive Frequency-Reconfigurable Cross-Polarization Conversion Surface. IEEE Antennas Wirel. Propag. Lett. 2022, 21, 997–1001. [Google Scholar] [CrossRef]
- Lin, B.; Lv, L.; Guo, J.; Liu, Z.; Ji, X.; Wu, J. An Ultra-Wideband Reflective Linear-to-Circular Polarization Converter Based on Anisotropic Metasurface. IEEE Access 2020, 8, 82732–82740. [Google Scholar] [CrossRef]
- Majeed, A.; Zhang, J.; Ashraf, M.A.; Memon, S.; Mohammadani, K.H.; Ishfaq, M.; Sun, M. An Ultra-Wideband Linear-to-Circular Polarization Converter Based on a Circular, Pie-Shaped Reflective Metasurface. Electronics 2022, 11, 1681. [Google Scholar] [CrossRef]
Para. | Value | Para. | Value | Para. | Value | Para. | Value | Para. | Value |
---|---|---|---|---|---|---|---|---|---|
Lsub | 16 | L1 | 3.4 | L2 | 2.8 | g1 | 0.6 | g2 | 3.6 |
g3 | 2.7 | Lw | 1.5 | Rf | 1 | ds1 | 0.3 | h1 | 1.524 |
La | 9 | Lf | 2.5 | Ls1 | 10.2 | Ls2 | 0.9 | ws | 0.6 |
wf | 0.4 | df | 1 | Rvcc | 0.9 | La | 9 | Rex | 1.4 |
h2 | 0.762 | h3 | 0.508 | Rgnd | 0.8 | Rbs | 5 | Lvcc | 2.5 |
wvcc | 2.4 | wf1 | 1 | ds2 | 1.5 |
Ref. | Unit Cell P (mm) | Substrate Thickness h (mm) | No. of Substrate Layers | 3 dB AR FBW (%) | Polarization Conversion Mode | LTC PCR (%) | No. of Bands |
---|---|---|---|---|---|---|---|
[23] | 6.0 | 1.6 | 1 | 35.23 and 26.62 | y-CP | 99 | 2 |
[33] | 6.0 | 1.6 | 1 | 50.8 | y-CP | 98 | 1 |
[26] | 8.0 | 0.5 | 2 | 26.2 | x-CP | N.A. | 1 |
[27] | 8.0 | 3.2 | 3 | 5 | x-CP and y-CP | N.A. | 1 |
[28] | 13.0 | 1.575 | 1 | N.A. | y-CP | N.A. | single frequency (12.4 GHz) |
This work | 16.0 | 2.794 | 5 | 3.61, 1.1, 18.17, 23.46 and 14.77 | x-CP and y-CP | 98 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Tong, L.; Chen, P.; Liu, L.; Yin, Y.; Zhang, H. A Multiband Dual Linear-to-Circular Polarization Conversion Reflective Metasurface Design Based on Liquid Crystal for X-Band Applications. Appl. Sci. 2025, 15, 8499. https://doi.org/10.3390/app15158499
Wang X, Tong L, Chen P, Liu L, Yin Y, Zhang H. A Multiband Dual Linear-to-Circular Polarization Conversion Reflective Metasurface Design Based on Liquid Crystal for X-Band Applications. Applied Sciences. 2025; 15(15):8499. https://doi.org/10.3390/app15158499
Chicago/Turabian StyleWang, Xinju, Lihan Tong, Peng Chen, Lu Liu, Yutong Yin, and Haowei Zhang. 2025. "A Multiband Dual Linear-to-Circular Polarization Conversion Reflective Metasurface Design Based on Liquid Crystal for X-Band Applications" Applied Sciences 15, no. 15: 8499. https://doi.org/10.3390/app15158499
APA StyleWang, X., Tong, L., Chen, P., Liu, L., Yin, Y., & Zhang, H. (2025). A Multiband Dual Linear-to-Circular Polarization Conversion Reflective Metasurface Design Based on Liquid Crystal for X-Band Applications. Applied Sciences, 15(15), 8499. https://doi.org/10.3390/app15158499