How the Pandemic Changes the Factors Influencing Aircraft Utilization: The Case of Korea
Abstract
1. Introduction
2. Literature Review
2.1. Prospects for the Air Transport Industry and Tourism Industry After COVID-19
2.2. Prospects and Analysis of Airlines’ Strategies
2.3. Methodologies for Analyzing Grouping Factors
2.4. Comparative Test Among Groups
3. Methodology
4. Results
4.1. Findings of Basic Analysis
4.2. SHAP Analysis
4.2.1. Total (FSC + LCC)
4.2.2. FSC
4.2.3. LCC
4.3. Random Forest Analysis
4.3.1. Total (FSC + LCC)
4.3.2. FSC
4.3.3. LCC
5. Discussions and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Homsombat, W.; Lei, Z.; Fu, X. Competitive effects of the airlines-within-airlines strategy–Pricing and route entry patterns. Transp. Res. Part E Logist. Transp. Rev. 2014, 63, 1–16. [Google Scholar] [CrossRef]
- Petersen, J.D.; Sölveling, G.; Clarke, J.P.; Johnson, E.L.; Shebalov, S. An optimization approach to airline integrated recovery. Transp. Sci. 2012, 46, 482–500. [Google Scholar] [CrossRef]
- Hanlon, P. Global Airlines; Routledge: Abingdon-on-Thames, UK, 2006. [Google Scholar]
- Madhavan, M.; Ali Sharafuddin, M.; Piboonrungroj, P.; Yang, C.C. Short-term forecasting for airline industry: The case of Indian air passenger and air cargo. Glob. Bus. Rev. 2023, 24, 1145–1179. [Google Scholar] [CrossRef]
- Abrahams, M. A service quality model of air travel demand: An empirical study. Transp. Res. Part A Gen. 1983, 17, 385–393. [Google Scholar] [CrossRef]
- Brons, M.; Pels, E.; Nijkamp, P.; Rietveld, P. Price elasticities of demand for passenger air travel: A meta-analysis. J. Air Transp. Manag. 2002, 8, 165–175. [Google Scholar] [CrossRef]
- Yang, T.; Liu, M.; Ye, Y. Empirical estimation of civil aviation demand elasticity: The case of China Mainland. In Proceedings of the 2017 4th International Conference on Industrial Economics System and Industrial Security Engineering (IEIS), Kyoto, Japan, 24–27 July 2017; IEEE: New York, NY, USA, 2017; pp. 1–6. [Google Scholar]
- Wu, C.Y.; Heiets, I.; Shvindina, H.O. Business model management of low-cost: In a search for impact-factors of performance (case of AirAsia group airlines). Mark. Manag. Innov. 2020, 2, 354–367. [Google Scholar] [CrossRef]
- Pace, R.K.; Barry, R. Sparse spatial autoregressions. Stat. Probab. Lett. 1997, 33, 291–297. [Google Scholar] [CrossRef]
- Komatsu, M.; Takada, C.; Neshi, C.; Unoki, T.; Shikida, M. Feature extraction with SHAP value analysis for student per-formance evaluation in remote collaboration. In Proceedings of the 2020 15th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP), Bangkok, Thailand, 18–20 November 2020; pp. 1–5. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Sun, X.; Zheng, C.; Zhang, A. COVID-19 and aviation, lessons learned from the trenches: A survey among participants at the 26th ATRS World Conference. J. Air Transp. Res. Soc. 2024, 2, 100005. [Google Scholar] [CrossRef]
- Sharma, G.D.; Thomas, A.; Paul, J. Reviving tourism industry post-COVID-19: A resilience-based framework. Tour. Manag. Perspect. 2021, 37, 100786. [Google Scholar] [CrossRef] [PubMed]
- Halteh, K.; AlKhoury, R.; Ziadat, S.A.; Gepp, A.; Kumar, K. Using machine learning techniques to assess the financial impact of the COVID-19 pandemic on the global aviation industry. Transp. Res. Interdiscip. Perspect. 2024, 24, 101043. [Google Scholar] [CrossRef]
- Dube, K.; Nhamo, G.; Chikodzi, D. COVID-19 pandemic and prospects for recovery of the global aviation industry. J. Air Transp. Manag. 2021, 92, 102022. [Google Scholar] [CrossRef]
- Sun, X.; Wandelt, S.; Zhang, A. A data-driven analysis of the aviation recovery from the COVID-19 pandemic. J. Air Transp. Manag. 2023, 109, 102401. [Google Scholar] [CrossRef]
- Obembe, D.; Kolade, O.; Obembe, F.; Owoseni, A.; Mafimisebi, O. COVID-19 and the tourism industry: An early stage sentiment analysis of the impact of social media and stakeholder communication. Int. J. Inf. Manag. Data Insights 2021, 1, 100040. [Google Scholar] [CrossRef]
- Tanrıverdi, G.; Bakır, M.; Merkert, R. What can we learn from the JATM literature for the future of aviation post COVID-19?-A bibliometric and visualization analysis. J. Air Transp. Manag. 2020, 89, 101916. [Google Scholar] [CrossRef]
- Michelmann, J.; Schmalz, U.; Becker, A.; Stroh, F.; Behnke, S.; Hornung, M. Influence of COVID-19 on air travel-A scenario study toward future trusted aviation. J. Air Transp. Manag. 2023, 106, 102325. [Google Scholar] [CrossRef]
- Sun, X.; Zheng, C.; Wandelt, S.; Zhang, A. Air transportation and COVID-19: A tale with three episodes. Transp. Econ. Manag. 2023, 1, 13–21. [Google Scholar]
- Wang, W.; Wu, X.; Fu, X.; Wang, K. Airline competition in Indonesian domestic market: Airline-within-airline strategies and impact of the COVID-19 pandemic. Transp. Policy 2024, 156, 1–12. [Google Scholar] [CrossRef]
- Gualini, A.; Zou, L.; Dresner, M. Airline strategies during the pandemic: What worked? Transp. Res. Part A Policy Pract. 2023, 170, 103625. [Google Scholar] [CrossRef] [PubMed]
- Arrigo, U.; Beccarello, M.; Di Foggia, G. Strategic Response of European Airlines to Market Dynamics: A Comparative Analysis. Adm. Sci. 2023, 13, 255. [Google Scholar] [CrossRef]
- Xuan, X.; Khan, K.; Su, C.W.; Khurshid, A. Will COVID-19 threaten the survival of the airline industry? Sustainability 2021, 13, 11666. [Google Scholar] [CrossRef]
- Štimac, I.; Vidović, A.; Mihetec, T.; Drljača, M. Optimization of airport capacity efficiency by selecting optimal aircraft and airline business model. Sustainability 2020, 12, 3988. [Google Scholar] [CrossRef]
- Enki, Y.; Özkir, V.; Şen, C.; Çiftçi, M.E. Extended flexible capacity planning methodology with flight network contribution to the airline fleet assignment problem. Expert Syst. Appl. 2024, 255, 124541. [Google Scholar] [CrossRef]
- Eufrásio, A.B.R.; Eller, R.A.; Oliveira, A.V. Are on-time performance statistics worthless? An empirical study of the flight scheduling strategies of Brazilian airlines. Transp. Res. Part E Logist. Transp. Rev. 2021, 145, 102186. [Google Scholar] [CrossRef]
- Atay, M.; Seckiner, S.U.; Eroglu, Y. Critical limit assessment and optimization of airline fleet service strategy. J. Air Transp. Res. Soc. 2025, 4, 100052. [Google Scholar] [CrossRef]
- Kızıloğlu, K.; Sakallı, Ü.S. Integrating Flight Scheduling, Fleet Assignment, and Aircraft Routing Problems with Codesharing Agreements under Stochastic Environment. Aerospace 2023, 10, 1031. [Google Scholar] [CrossRef]
- Gelhausen, M.C.; Berster, P.; Wilken, D. Post-COVID-19 scenarios of global airline traffic until 2040 that reflect airport capacity constraints and mitigation strategies. Aerospace 2021, 8, 300. [Google Scholar] [CrossRef]
- Song, K.H.; Choi, S.; Elkosantini, S.; Suh, W. Determining Factors Influencing Short-Term International Aviation Traffic Demand Using SHAP Analysis: Before COVID-19 and Now. Sustainability 2023, 15, 14924. [Google Scholar] [CrossRef]
- Verma, R.; Ukkusuri, S.V. What determines travel time and distance decay in spatial interaction and accessibility? J. Transp. Geogr. 2025, 122, 104061. [Google Scholar] [CrossRef]
- Li, X.; Shi, L.; Shi, Y.; Tang, J.; Zhao, P.; Wang, Y.; Chen, J. Exploring interactive and nonlinear effects of key factors on intercity travel mode choice using XGBoost. Appl. Geogr. 2024, 166, 103264. [Google Scholar] [CrossRef]
- Bi, J.W.; Li, H.; Fan, Z.P. Tourism demand forecasting with time series imaging: A deep learning model. Ann. Tour. Res. 2021, 90, 103255. [Google Scholar] [CrossRef]
- Chansuk, C.; Arreeras, T.; Chiangboon, C.; Phonmakham, K.; Chotikool, N.; Buddee, R.; Arreeras, S. Using factor analyses to understand the post-pandemic travel behavior in domestic tourism through a questionnaire survey. Transp. Res. Interdiscip. Perspect. 2022, 16, 100691. [Google Scholar] [CrossRef]
- Li, Q.; Jing, R.; Zhu, X. Determinants of travel satisfaction for commercial airlines: A data mining approach. Eng. Appl. Artif. Intell. 2024, 133, 108597. [Google Scholar] [CrossRef]
- Bakır, M.; Akan, Ş.; Özdemir, E.; Nguyen, P.H.; Tsai, J.F.; Pham, H.A. How to achieve passenger satisfaction in the airport? Findings from regression analysis and necessary condition analysis approaches through online airport reviews. Sustainability 2022, 14, 2151. [Google Scholar] [CrossRef]
- Ye, J.; Gao, L.; Deng, J. Identifying the key factors of intermodal travel using interpretative ensemble learning. Int. J. Transp. Sci. Technol. 2024, in press. [Google Scholar] [CrossRef]
- Wu, F.; Zheng, C.; Zhou, S.; Lu, Y.; Wu, Z.; Zheng, S. An interpretable approach to passenger flow prediction and irregular passenger travel patterns understanding in metro system. Expert Syst. Appl. 2025, 265, 125991. [Google Scholar] [CrossRef]
- Deng, J.; Li, T.; Yang, Z.; Yuan, Q.; Chen, X. Heterogeneity in route choice during peak hours: Implications on travel demand management. Travel Behav. Soc. 2025, 38, 100922. [Google Scholar] [CrossRef]
- Dao, P.B. On Wilcoxon rank sum test for condition monitoring and fault detection of wind turbines. Appl. Energy 2022, 318, 119209. [Google Scholar] [CrossRef]
- Natarajan, S.; Lipsitz, S.R.; Fitzmaurice, G.M.; Sinha, D.; Ibrahim, J.G.; Haas, J.; Gellad, W. An extension of the Wilcoxon rank sum test for complex sample survey data. J. R. Stat. Soc. Ser. C Appl. Stat. 2012, 61, 653–664. [Google Scholar] [CrossRef]
- Bridge, P.D. The Comparative Power of the Independent-Samples t-Test and Wilcoxon Rank Sum Test in Non-Normal Distributions of Real Data Sets in Education and Psychology. Ph.D. Thesis, Wayne State University, Detroit, MI, USA, 1996. [Google Scholar]
- Van den Broeck, G.; Lykov, A.; Schleich, M.; Suciu, D. On the tractability of SHAP explanations. J. Artif. Intell. Res. 2022, 74, 851–886. [Google Scholar] [CrossRef]
- Lundberg, S. A unified approach to interpreting model predictions. arXiv 2017, arXiv:1705.07874. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017. Available online: https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf (accessed on 30 December 2024).
- Rigatti, S.J. Random forest. J. Insur. Med. 2017, 47, 31–39. [Google Scholar] [CrossRef]
- Huang, N.; Lu, G.; Xu, D. A permutation importance-based feature selection method for short-term electricity load forecasting using random forest. Energies 2016, 9, 767. [Google Scholar] [CrossRef]
- Liaw, A. Classification and regression by randomForest. R News 2002, 2–3, 18–22. [Google Scholar]
- Kruskal, W.H.; Wallis, W.A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 1952, 47, 583–621. [Google Scholar] [CrossRef]
- Norton, B.J.; Strube, M.J. Guide for the Interpretation of One-way Analysis of Variance. Phys. Ther. 1985, 65, 1888–1896. [Google Scholar] [CrossRef]
- ECB. Pandemic Emergency Purchase Programme (PEPP). 16 December 2021. Available online: https://www.ecb.europa.eu/mopo/implement/pepp/html/index.en.html (accessed on 30 December 2024).
Classification | Pre-Pandemic | During the Pandemic | Post-Pandemic | |||
---|---|---|---|---|---|---|
Feature Importance Vals (Percentage) | Rank | Feature Importance Vals (Percentage) | Rank | Feature Importance Vals (Percentage) | Rank | |
KOSDAQ_
Index | 4.33% | 9 | 29.98% | 2 | 0.53% | 9 |
KOSPI_
Index | 14.28% | 3 | 4.93% | 5 | 3.93% | 5 |
Coincident_Composite_Index | 23.99% | 1 | 0.32% | 8 | 0.25% | 10 |
Leading_
Composite_Index | 4.70% | 8 | 0.09% | 9 | 51.09% | 1 |
Price_
Index | 16.90% | 2 | 2.90% | 7 | 26.65% | 2 |
W/
JPY100 | 7.78% | 6 | 14.35% | 3 | 2.25% | 6 |
W/
USD | 8.20% | 5 | 6.25% | 4 | 7.25% | 3 |
W/
CNY | 11.61% | 4 | 3.67% | 6 | 1.68% | 7 |
W/
EUR | 7.56% | 7 | 37.50% | 1 | 1.37% | 8 |
Lagging_
Composite_Index | 0.64% | 10 | 0.00% | 10 | 5.01% | 4 |
Classification | Pre-Pandemic | During the Pandemic | Post-Pandemic | |||
---|---|---|---|---|---|---|
Feature Importance Vals (Percentage) | Rank | Feature Importance Vals (Percentage) | Rank | Feature Importance Vals (Percentage) | Rank | |
KOSDAQ_Index | 3.98% | 8 | 19.59% | 2 | 19.25% | 2 |
KOSPI_ Index | 3.32% | 9 | 6.68% | 5 | 6.57% | 5 |
Coincident_Composite_Index | 7.61% | 6 | 2.13% | 8 | 2.09% | 8 |
Leading_Composite_Index | 22.74% | 1 | 0.14% | 9 | 0.14% | 9 |
Price_ Index | 6.70% | 7 | 19.52% | 3 | 19.19% | 3 |
W/ JPY100 | 15.98% | 2 | 6.28% | 6 | 6.18% | 6 |
W/ USD | 11.26% | 5 | 6.93% | 4 | 8.52% | 4 |
W/ CNY | 14.98% | 3 | 4.95% | 7 | 4.86% | 7 |
W/ EUR | 11.62% | 4 | 33.77% | 1 | 33.19% | 1 |
Lagging_Composite_Index | 1.82% | 10 | 0.01% | 10 | 0.01% | 10 |
Classification | Pre-Pandemic | During the Pandemic | Post-Pandemic | |||
---|---|---|---|---|---|---|
Feature Importance Vals (Percentage) | Rank | Feature Importance Vals (Percentage) | Rank | Feature Importance Vals (Percentage) | Rank | |
KOSDAQ_Index | 1.03% | 8 | 0.80% | 8 | 19.25% | 2 |
KOSPI_Index | 40.55% | 1 | 31.43% | 1 | 6.57% | 5 |
Coincident_Composite_Index | 0.27% | 9 | 0.21% | 9 | 2.09% | 8 |
Leading_Composite_Index | 10.55% | 4 | 8.17% | 5 | 0.14% | 9 |
Price_Index | 16.61% | 2 | 12.88% | 3 | 19.19% | 3 |
W/JPY100 | 6.06% | 7 | 4.69% | 7 | 6.18% | 6 |
W/USD | 6.67% | 6 | 27.66% | 2 | 8.52% | 4 |
W/CNY | 11.48% | 3 | 8.90% | 4 | 4.86% | 7 |
W/EUR | 6.78% | 5 | 5.26% | 6 | 33.19% | 1 |
Lagging_Composite_Index | 0.00% | 10 | 0.00% | 10 | 0.01% | 10 |
Classification | Pre-Pandemic | During the Pandemic | Post-Pandemic | |||
---|---|---|---|---|---|---|
Feature Importance Vals (Percentage) | Rank | Feature Importance Vals (Percentage) | Rank | Feature Importance Vals (Percentage) | Rank | |
KOSDAQ_Index | 5.55% | 8 | 6.32% | 2 | 0.16% | 10 |
KOSPI_Index | 5.27% | 9 | 2.58% | 5 | 0.36% | 6 |
Coincident_Composite_Index | 10.42% | 5 | 1.07% | 7 | 14.39% | 3 |
Leading_Composite_Index | 2.98% | 10 | 0.58% | 10 | 18.64% | 2 |
Price_Index | 17.13% | 1 | 1.20% | 6 | 14.18% | 4 |
W/JPY100 | 11.77% | 4 | 5.47% | 3 | 0.25% | 9 |
W/USD | 7.93% | 6 | 3.10% | 4 | 6.02% | 5 |
W/CNY | 16.73% | 2 | 0.86% | 8 | 0.36% | 6 |
W/EUR | 7.69% | 7 | 78.03% | 1 | 0.30% | 8 |
Lagging_Composite_Index | 14.53% | 3 | 0.79% | 9 | 45.34% | 1 |
Classification | Pre-Pandemic | During the Pandemic | Post-Pandemic | |||
---|---|---|---|---|---|---|
Feature Importance Vals (Percentage) | Rank | Feature Importance Vals (Percentage) | Rank | Feature Importance Vals (Percentage) | Rank | |
KOSDAQ_Index | 3.46% | 8 | 3.11% | 7 | 0.39% | 10 |
KOSPI_Index | 1.36% | 9 | 1.21% | 9 | 0.53% | 9 |
Coincident_Composite_Index | 1.12% | 10 | 0.23% | 10 | 20.48% | 3 |
Leading_Composite_Index | 14.80% | 3 | 3.59% | 5 | 26.40% | 2 |
Price_Index | 4.28% | 7 | 14.40% | 2 | 12.46% | 4 |
W/JPY100 | 17.55% | 2 | 3.59% | 5 | 0.55% | 8 |
W/USD | 12.97% | 4 | 4.41% | 3 | 3.72% | 5 |
W/CNY | 11.92% | 5 | 2.11% | 8 | 0.57% | 6 |
W/EUR | 11.53% | 6 | 63.50% | 1 | 0.56% | 7 |
Lagging_Composite_Index | 21.00% | 1 | 3.85% | 4 | 34.34% | 1 |
Classification | Pre-Pandemic | During the Pandemic | Post-Pandemic | |||
---|---|---|---|---|---|---|
Feature Importance Vals (Percentage) | Rank | Feature Importance Vals (Percentage) | Rank | Feature Importance Vals (Percentage) | Rank | |
KOSDAQ_Index | 16.93% | 2 | 4.75% | 3 | 0.14% | 10 |
KOSPI_Index | 17.85% | 1 | 0.69% | 5 | 0.16% | 9 |
Coincident_Composite_Index | 3.99% | 10 | 0.17% | 10 | 2.86% | 3 |
Leading_Composite_Index | 5.72% | 9 | 0.46% | 7 | 1.24% | 5 |
Price_Index | 12.87% | 4 | 0.33% | 8 | 1.86% | 4 |
W/JPY100 | 6.06% | 7 | 7.02% | 2 | 0.25% | 8 |
W/USD | 6.14% | 6 | 2.33% | 4 | 8.90% | 2 |
W/CNY | 15.84% | 3 | 0.68% | 6 | 0.41% | 6 |
W/EUR | 6.06% | 7 | 83.26% | 1 | 0.29% | 7 |
Lagging_Composite_Index | 8.53% | 5 | 0.31% | 9 | 83.88% | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.; Kim, S.-H.; Lee, S.-H.; Suh, W.; Elkosantini, S.; Lee, S.M.; Song, K.-H. How the Pandemic Changes the Factors Influencing Aircraft Utilization: The Case of Korea. Appl. Sci. 2025, 15, 8405. https://doi.org/10.3390/app15158405
Choi S, Kim S-H, Lee S-H, Suh W, Elkosantini S, Lee SM, Song K-H. How the Pandemic Changes the Factors Influencing Aircraft Utilization: The Case of Korea. Applied Sciences. 2025; 15(15):8405. https://doi.org/10.3390/app15158405
Chicago/Turabian StyleChoi, Solsaem, Se-Hwan Kim, Su-Hyun Lee, Wonho Suh, Sabeur Elkosantini, Seongkwan Mark Lee, and Ki-Han Song. 2025. "How the Pandemic Changes the Factors Influencing Aircraft Utilization: The Case of Korea" Applied Sciences 15, no. 15: 8405. https://doi.org/10.3390/app15158405
APA StyleChoi, S., Kim, S.-H., Lee, S.-H., Suh, W., Elkosantini, S., Lee, S. M., & Song, K.-H. (2025). How the Pandemic Changes the Factors Influencing Aircraft Utilization: The Case of Korea. Applied Sciences, 15(15), 8405. https://doi.org/10.3390/app15158405