The Effects of Anthyllis vulneraria Hydroalcoholic Leaf Extract as an Adjuvant in Wound Healing
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Plant Source
2.3. Obtaining and Characterization of the Vegetal Extract
2.3.1. Leaf Extract Preparation
2.3.2. Total Phenolic and Total Flavonoid Content of A. vulneraria Leaves
2.3.3. Total Antioxidant Capacity (TAC)
Assessment of ABTS Radical Scavenging Activity
Evaluation of DPPH Radical-Scavenging Capacity
2.3.4. Methodology of Phytochemical Analysis by LC-MS/MS
2.4. Cream Preparation
2.5. Methodology of Experimental Animal Study
2.5.1. Animal In Vivo Wound Healing
- -
- Group 1 served as the negative control (NC) and received daily topical applications of base cream on the lesion surface;
- -
- Group 2 served as the positive control (PC) and received daily topical applications of silver sulfadiazine on the lesion surface;
- -
- Group 3, the experimental group 1 (EG1), received daily topical applications of 1 mg/cm2 polyphenols cream of A. vulneraria;
- -
- Group 4, the experimental group 2 (EG2), received daily topical applications of 2 mg/cm2 polyphenols cream of A. vulneraria.
2.5.2. Methodology of Wound Contraction Assessment
Assessment of Wound Contraction
2.5.3. Methodology of Oxidative Stress Markers Evaluation
2.5.4. Methodology of Histopathological Analysis
2.6. Statistical Analysis
3. Results
3.1. Characterization of the Vegetal Extract
3.1.1. Leaf Extract
3.1.2. Total Phenolic Content and Total Flavonoid Content Determination
3.1.3. Total Antioxidant Capacity Determination in the Leaf Extract
3.1.4. Phytochemical Analysis by LC-MS/MS
3.2. Experimental Animal Study
3.2.1. Assessment of Wound Contraction
3.2.2. Oxidative Stress Markers Evaluation
3.2.3. Histopathological Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Anthyllis vulneraria | A. vulneraria |
Actual area | AA |
Catalase | CAT |
Experimental group 1 | EG1 |
Experimental group 2 | EG2 |
Extracted ion chromatogram | EIC |
Extraction time | ET |
Glutathione peroxidase | GPX |
Healed area | HA |
Interleukin 8 | IL-8 |
In electrospray ionization | ESI |
Limit of quantification | LOQ |
Liquid chromatography-tandem mass spectrometry | LC-MS/MS |
Malondialdehyde | MDA |
Mm Quercetin equivalents | QE Mm |
Negative control | NC |
Oxidized glutathione | GSSG |
Positive control | PC |
Quercetin | QE |
Reduced glutathione | GSH |
Solvent concentration | SC |
Superoxide dismutase | SOD |
Total antioxidant capacity | TAC |
Total flavonoid content | TFC |
Total polyphenolic content | TPC |
References
- Rana, A.; Samtiya, M.; Dhewa, T.; Mishra, V.; Aluko, R.E. Health Benefits of Polyphenols: A Concise Review. J. Food Biochem. 2022, 46, e14264. [Google Scholar] [CrossRef]
- Ouerfelli, M.; Bettaieb Ben Kâab, L.; Almajano, M.P. Radical Scavenging and Antioxidant Activity of Anthyllis vulneraria Leaves and Flowers. Molecules 2018, 23, 1657. [Google Scholar] [CrossRef]
- Iqbal, I.; Wilairatana, P.; Saqib, F.; Nasir, B.; Wahid, M.; Latif, M.F.; Iqbal, A.; Naz, R.; Mubarak, M.S. Plant Polyphenols and Their Potential Benefits on Cardiovascular Health: A Review. Molecules 2023, 28, 6403. [Google Scholar] [CrossRef]
- Chandrasekaran, V.; Hediyal, T.A.; Anand, N.; Kendaganna, P.H.; Gorantla, V.R.; Mahalakshmi, A.M.; Ghanekar, R.K.; Yang, J.; Sakharkar, M.K.; Chidambaram, S.B. Polyphenols, Autophagy and Neurodegenerative Diseases: A Review. Biomolecules 2023, 13, 1196. [Google Scholar] [CrossRef] [PubMed]
- Gasmi, A.; Mujawdiya, P.K.; Noor, S.; Lysiuk, R.; Darmohray, R.; Piscopo, S.; Lenchyk, L.; Antonyak, H.; Dehtiarova, K.; Shanaida, M.; et al. Polyphenols in Metabolic Diseases. Molecules 2022, 27, 6280. [Google Scholar] [CrossRef] [PubMed]
- Csekes, E.; Račková, L. Skin Aging, Cellular Senescence and Natural Polyphenols. Int. J. Mol. Sci. 2021, 22, 12641. [Google Scholar] [CrossRef]
- Osborn, L.J.; Schultz, K.; Massey, W.; DeLucia, B.; Choucair, I.; Varadharajan, V.; Banerjee, R.; Fung, K.; Horak, A.J.; Orabi, D.; et al. A Gut Microbial Metabolite of Dietary Polyphenols Reverses Obesity-Driven Hepatic Steatosis. Proc. Natl. Acad. Sci. USA 2022, 119, e2202934119. [Google Scholar] [CrossRef]
- Burgess, M.; Valdera, F.; Varon, D.; Kankuri, E.; Nuutila, K. The Immune and Regenerative Response to Burn Injury. Cells 2022, 11, 3073. [Google Scholar] [CrossRef] [PubMed]
- Roshangar, L.; Soleimani Rad, J.; Kheirjou, R.; Reza Ranjkesh, M.; Ferdowsi Khosroshahi, A. Skin Burns: Review of Molecular Mechanisms and Therapeutic Approaches. Wounds 2019, 31, 308–315. [Google Scholar]
- Zhang, J.; Ding, L.; Wu, Y.; Yao, M.; Ma, Q. Perceived Stigma in Burn Survivors: Associations with Resourcefulness and Alexithymia. Burns 2023, 49, 1448–1456. [Google Scholar] [CrossRef]
- Dobson, G.P.; Morris, J.L.; Letson, H.L. Pathophysiology of Severe Burn Injuries: New Therapeutic Opportunities From a Systems Perspective. J. Burn Care Res. 2024, 45, 1041–1050. [Google Scholar] [CrossRef]
- Shi, Z.; Yao, C.; Shui, Y.; Li, S.; Yan, H. Research Progress on the Mechanism of Angiogenesis in Wound Repair and Regeneration. Front. Physiol. 2023, 14, 1284981. [Google Scholar] [CrossRef]
- Wang, P.-H.; Huang, B.-S.; Horng, H.-C.; Yeh, C.-C.; Chen, Y.-J. Wound Healing. J. Chin. Med. Assoc. 2018, 81, 94–101. [Google Scholar] [CrossRef]
- Di Sotto, A.; Di Giacomo, S. Plant Polyphenols and Human Health: Novel Findings for Future Therapeutic Developments. Nutrients 2023, 15, 3764. [Google Scholar] [CrossRef] [PubMed]
- Andersone-Ozola, U.; Jēkabsone, A.; Karlsons, A.; Osvalde, A.; Banaszczyk, L.; Samsone, I.; Ievinsh, G. Heavy Metal Tolerance and Accumulation Potential of a Rare Coastal Species, Anthyllis vulneraria subsp. maritima. Stresses 2025, 5, 6. [Google Scholar] [CrossRef]
- Ghalem, M.; Merghache, S.; Said, G.; Belarbi, M. Phenolic Contents and In Vitro Antioxidant Activity of Some Secondary Metabolites of Anthyllis vulneraria L. From Algeria. Int. J. Med. Pharm. Sci. (IJMPS) 2012, 2, 51–64. [Google Scholar]
- Ouerfelli, M.; Majdoub, N.; Aroussi, J.; Almajano, M.P.; Bettaieb Ben Kaâb, L. Phytochemical Screening and Evaluation of the Antioxidant and Anti-Bacterial Activity of Woundwort (Anthyllis vulneraria L.). Braz. J. Bot. 2021, 44, 549–559. [Google Scholar] [CrossRef]
- Eichenauer, E.; Saukel, J.; Glasl, S. VOLKSMED Database: A Source for Forgotten Wound Healing Plants in Austrian Folk Medicine. Planta Medica 2024, 90, 498–511. [Google Scholar] [CrossRef]
- Daco, L.; Matthies, D.; Hermant, S.; Colling, G. Genetic Diversity and Differentiation of Populations of Anthyllis vulneraria along Elevational and Latitudinal Gradients. Ecol. Evol. 2022, 12, e9167. [Google Scholar] [CrossRef] [PubMed]
- Csepregi, R.; Temesfői, V.; Das, S.; Alberti, Á.; Tóth, C.A.; Herczeg, R.; Papp, N.; Kőszegi, T. Cytotoxic, Antimicrobial, Antioxidant Properties and Effects on Cell Migration of Phenolic Compounds of Selected Transylvanian Medicinal Plants. Antioxidants 2020, 9, 166. [Google Scholar] [CrossRef] [PubMed]
- Csepregi, R.; Bencsik, T.; Papp, N. Examination of Secondary Metabolites and Antioxidant Capacity of Anthyllis vulneraria, Fuchsia sp., Galium mollugo and Veronica beccabunga. Acta Biol. Hung. 2016, 67, 442–446. [Google Scholar] [CrossRef]
- Lorenz, P.; Bunse, M.; Klaiber, I.; Conrad, J.; Laumann-Lipp, T.; Stintzing, F.; Kammerer, D. Comprehensive Phytochemical Characterization of Herbal Parts from Kidney Vetch (Anthyllis vulneraria L.) by LC-MSn and GC-MS. Chem. Biodivers. 2020, 17, e2000485. [Google Scholar] [CrossRef]
- Suganda, A.G.; Amoros, M.; Girre, L.; Fauconnier, B. Effets Inhibiteurs de Quelques Extraites Bruts et Semi Purifiés de Plantes Indigènes Françaises Sur La Multiplication de l’Herpesvirus Humain 1 et Du Poliovirus Humain 2 En Culture Cellulaire. J. Nat. Prod. 1983, 46, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Ouerfelli, M.; Metón, I.; Codina-Torrella, I.; Almajano, M.P. Phenolic Profile, EPR Determination, and Antiproliferative Activity against Human Cancer Cell Lines of Anthyllis vulneraria Extracts. Molecules 2022, 27, 7495. [Google Scholar] [CrossRef] [PubMed]
- Jelitto Perennial Seed | ANTHYLLIS Vulneraria Var. Coccinea Portion(s). Available online: https://www.jelitto.com/Seed/Perennials/ANTHYLLIS+vulneraria+var+coccinea+Portion+s.html (accessed on 2 March 2025).
- Vlad, V.; Florea, N.; Toti, M.; Daniela, R.; Seceleanu, I.; Vintila, R.; Cojocaru, G.; Voicu, V.; Dumitru, S.; Eftene, M.; et al. Definition of the Soil Units of the 1:200,000 Soil Map of Romania Using an Extended Terminology of the WRB System. Ann. Univ. Craiova 2012, 42, 615–639. [Google Scholar]
- Rusu, M.E.; Gheldiu, A.-M.; Mocan, A.; Moldovan, C.; Popa, D.-S.; Tomuta, I.; Vlase, L. Process Optimization for Improved Phenolic Compounds Recovery from Walnut (Juglans regia L.) Septum: Phytochemical Profile and Biological Activities. Molecules 2018, 23, 2814. [Google Scholar] [CrossRef]
- Mocan, A.; Zengin, G.; Simirgiotis, M.; Schafberg, M.; Mollica, A.; Vodnar, D.C.; Crişan, G.; Rohn, S. Functional Constituents of Wild and Cultivated Goji (L. barbarum L.) Leaves: Phytochemical Characterization, Biological Profile, and Computational Studies. J. Enzym. Inhib. Med. Chem. 2017, 32, 153–168. [Google Scholar] [CrossRef]
- Pinacho, R.; Cavero, R.Y.; Astiasarán, I.; Ansorena, D.; Calvo, M.I. Phenolic Compounds of Blackthorn (Prunus spinosa L.) and Influence of in Vitro Digestion on Their Antioxidant Capacity. J. Funct. Foods 2015, 19, 49–62. [Google Scholar] [CrossRef]
- Erel, O. A Novel Automated Direct Measurement Method for Total Antioxidant Capacity Using a New Generation, More Stable ABTS Radical Cation. Clin. Biochem. 2004, 37, 277–285. [Google Scholar] [CrossRef]
- Parvu, M.; Vlase, L.; Parvu, A.E.; Rosca-Casian, O.; Gheldiu, A.-M.; Parvu, O. Phenolic Compounds and Antifungal Activity of Hedera helix L. (Ivy) Flowers and Fruits. Not. Bot. Horti Agrobot. Cluj-Napoca 2015, 43, 53–58. [Google Scholar] [CrossRef]
- Hanganu, D.; Benedec, D.; Vlase, L.; Popica, I.; Bele, C.; Raita, O.; Gheldiu, A.-M.; Valentin, C. Polyphenolic content and antioxidant activity of chrysanthemum parthenium extract. Farm. J. 2016, 64, 498–501. [Google Scholar]
- Barbu, I.A.; Toma, V.A.; Moț, A.C.; Vlase, A.-M.; Butiuc-Keul, A.; Pârvu, M. Chemical Composition and Antioxidant Activity of Six Allium Extracts Using Protein-Based Biomimetic Methods. Antioxidants 2024, 13, 1182. [Google Scholar] [CrossRef]
- Vlase, A.-M.; Toiu, A.; Tomuță, I.; Vlase, L.; Muntean, D.; Casian, T.; Fizeșan, I.; Nadăș, G.C.; Novac, C.Ș.; Tămaș, M.; et al. Epilobium Species: From Optimization of the Extraction Process to Evaluation of Biological Properties. Antioxidants 2023, 12, 91. [Google Scholar] [CrossRef] [PubMed]
- Gligor, O.; Clichici, S.; Moldovan, R.; Muntean, D.; Vlase, A.-M.; Nadăș, G.C.; Matei, I.A.; Filip, G.A.; Vlase, L.; Crișan, G. The Effect of Extraction Methods on Phytochemicals and Biological Activities of Green Coffee Beans Extracts. Plants 2023, 12, 712. [Google Scholar] [CrossRef]
- Solcan, M.-B.; Fizeșan, I.; Vlase, L.; Vlase, A.-M.; Rusu, M.E.; Mateș, L.; Petru, A.-E.; Creștin, I.-V.; Tomuțǎ, I.; Popa, D.-S. Phytochemical Profile and Biological Activities of Extracts Obtained from Young Shoots of Blackcurrant (Ribes nigrum L.), European Blueberry (Vaccinium myrtillus L.), and Mountain Cranberry (Vaccinium vitis-idaea L.). Horticulturae 2023, 9, 1163. [Google Scholar] [CrossRef]
- Solcan, M.-B.; Vlase, A.-M.; Marc, G.; Muntean, D.; Casian, T.; Nadăș, G.C.; Novac, C.Ș.; Popa, D.-S.; Vlase, L. Antimicrobial Effectiveness of Ribes nigrum L. Leaf Extracts Prepared in Natural Deep Eutectic Solvents (NaDESs). Antibiotics 2024, 13, 1118. [Google Scholar] [CrossRef]
- Bolfa, P.; Vidrighinescu, R.; Petruta, A.; Dezmirean, D.; Stan, L.; Vlase, L.; Damian, G.; Catoi, C.; Filip, A.; Clichici, S. Photoprotective Effects of Romanian Propolis on Skin of Mice Exposed to UVB Irradiation. Food Chem. Toxicol. 2013, 62, 329–342. [Google Scholar] [CrossRef]
- Filip, A.; Daicoviciu, D.; Clichici, S.; Bolfa, P.; Catoi, C.; Baldea, I.; Bolojan, L.; Olteanu, D.; Muresan, A.; Postescu, I.D. The Effects of Grape Seeds Polyphenols on SKH-1 Mice Skin Irradiated with Multiple Doses of UV-B. J. Photochem. Photobiol. B Biol. 2011, 105, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Murakami, A. Dose-Dependent Functionality and Toxicity of Green Tea Polyphenols in Experimental Rodents. Arch. Biochem. Biophys. 2014, 557, 3–10. [Google Scholar] [CrossRef]
- Duda-Chodak, A.; Tarko, T. Possible Side Effects of Polyphenols and Their Interactions with Medicines. Molecules 2023, 28, 2536. [Google Scholar] [CrossRef]
- Martínez-Cuazitl, A.; Gómez-García, M.d.C.; Hidalgo-Alegria, O.; Flores, O.M.; Núñez-Gastélum, J.A.; Martínez, E.S.M.; Ríos-Cortés, A.M.; Garcia-Solis, M.; Pérez-Ishiwara, D.G. Characterization of Polyphenolic Compounds from Bacopa Procumbens and Their Effects on Wound-Healing Process. Molecules 2022, 27, 6521. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-S.; Lai, M.-C.; Hong, T.-Y.; Liu, I.-M. Exploring the Wound Healing Potential of Hispidin. Nutrients 2024, 16, 3161. [Google Scholar] [CrossRef]
- Boudjelal, A.; Smeriglio, A.; Ginestra, G.; Denaro, M.; Trombetta, D. Phytochemical Profile, Safety Assessment and Wound Healing Activity of Artemisia absinthium L. Plants 2020, 9, 1744. Plants 2020, 9, 1744. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Kim, J.; Lee, C.; Noh, S.G.; Kim, S.; Chung, H.Y.; Lee, H.; Moon, J.-O. Integrative Transcriptomic Analysis Reveals Upregulated Apoptotic Signaling in Wound-Healing Pathway in Rat Liver Fibrosis Models. Antioxidants 2023, 12, 1588. [Google Scholar] [CrossRef]
- Ekom, S.E.; Tamokou, J.-D.-D.; Kuete, V. Antibacterial and Therapeutic Potentials of the Capsicum Annuum Extract against Infected Wound in a Rat Model with Its Mechanisms of Antibacterial Action. Biomed. Res. Int. 2021, 2021, 4303902. [Google Scholar] [CrossRef]
- Ezzat, M.I.; Abdelhafez, M.M.; Al-Mokaddem, A.K.; Ezzat, S.M. Targeting TGF-β/VEGF/NF-κB Inflammatory Pathway Using the Polyphenols of Echinacea purpurea (L.) Moench to Enhance Wound Healing in a Rat Model. Inflammopharmacology 2025, 33, 2151–2164. [Google Scholar] [CrossRef] [PubMed]
- MacArthur Clark, J. The 3Rs in Research: A Contemporary Approach to Replacement, Reduction and Refinement. Br. J. Nutr. 2018, 120, S1–S7. [Google Scholar] [CrossRef] [PubMed]
- Vilotić, A.; Nacka-Aleksić, M.; Pirković, A.; Bojić-Trbojević, Ž.; Dekanski, D.; Jovanović Krivokuća, M. IL-6 and IL-8: An Overview of Their Roles in Healthy and Pathological Pregnancies. Int. J. Mol. Sci. 2022, 23, 14574. [Google Scholar] [CrossRef]
- Hu, M.L. Measurement of Protein Thiol Groups and Glutathione in Plasma. Methods Enzymol. 1994, 233, 380–385. [Google Scholar] [CrossRef]
- Freiha, M.; Achim, M.; Gheban, B.-A.; Moldovan, R.; Filip, G.A. In Vivo Study of the Effects of Propranolol, Timolol, and Minoxidil on Burn Wound Healing in Wistar Rats. J. Burn Care Res. 2023, 44, 1466–1477. [Google Scholar] [CrossRef] [PubMed]
- Owen, J.B.; Butterfield, D.A. Measurement of Oxidized/Reduced Glutathione Ratio. Methods Mol. Biol. 2010, 648, 269–277. [Google Scholar] [CrossRef]
- Pippenger, C.E.; Browne, R.W.; Armstrong, D. Regulatory Antioxidant Enzymes. Methods Mol. Biol. 1998, 108, 299–313. [Google Scholar] [CrossRef]
- Weydert, C.J.; Cullen, J.J. Measurement of Superoxide Dismutase, Catalase and Glutathione Peroxidase in Cultured Cells and Tissue. Nat. Protoc. 2010, 5, 51–66. [Google Scholar] [CrossRef]
- Cheng, C.-W.; Chen, L.-Y.; Chou, C.-W.; Liang, J.-Y. Investigations of Riboflavin Photolysis via Coloured Light in the Nitro Blue Tetrazolium Assay for Superoxide Dismutase Activity. J. Photochem. Photobiol. B 2015, 148, 262–267. [Google Scholar] [CrossRef]
- Flohé, L.; Günzler, W.A. Assays of Glutathione Peroxidase. In Methods in Enzymology; Oxygen Radicals in Biological Systems; Academic Press: Cambridge, MA, USA, 1984; Volume 105, pp. 114–120. [Google Scholar]
- Conti, M.; Morand, P.C.; Levillain, P.; Lemonnier, A. Improved Fluorometric Determination of Malonaldehyde. Clin. Chem. 1991, 37, 1273–1275. [Google Scholar] [CrossRef]
- Noviany, N.; Hadi, S.; Nofiani, R.; Lotulung, P.; Osman, H. Fabaceae: A Significant Flavonoid Source for Plant and Human Health. Phys. Sci. Rev. 2022, 8, 3897–3907. [Google Scholar] [CrossRef]
- Prakash, M.; Basavaraj, B.V.; Chidambara Murthy, K.N. Biological Functions of Epicatechin: Plant Cell to Human Cell Health. J. Funct. Foods 2019, 52, 14–24. [Google Scholar] [CrossRef]
- Zhang, S.; Gai, Z.; Gui, T.; Chen, J.; Chen, Q.; Li, Y. Antioxidant Effects of Protocatechuic Acid and Protocatechuic Aldehyde: Old Wine in a New Bottle. Evid. Based Complement. Alternat. Med. 2021, 2021, 6139308. [Google Scholar] [CrossRef]
- Lucarini, M.; Sciubba, F.; Capitani, D.; Di Cocco, M.E.; D’Evoli, L.; Durazzo, A.; Delfini, M.; Lombardi Boccia, G. Role of Catechin on Collagen Type I Stability upon Oxidation: A NMR Approach. Nat. Prod. Res. 2020, 34, 53–62. [Google Scholar] [CrossRef]
- Papp, N. Antioxidant potential of some plants used in folk medicine in Romania. Farmacia 2019, 67, 323–330. [Google Scholar] [CrossRef]
- Gođevac, D.; Zdunić, G.; Šavikin, K.; Vajs, V.; Menković, N. Antioxidant Activity of Nine Fabaceae Species Growing in Serbia and Montenegro. Fitoterapia 2008, 79, 185–187. [Google Scholar] [CrossRef]
- de Albuquerque, R.D.D.G.; Perini, J.A.; Machado, D.E.; Angeli-Gamba, T.; Esteves, R.d.S.; Santos, M.G.; Oliveira, A.P.; Rocha, L. Wound Healing Activity and Chemical Standardization of Eugenia Pruniformis Cambess. Pharmacogn. Mag. 2016, 12, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Zduńska, K.; Dana, A.; Kolodziejczak, A.; Rotsztejn, H. Antioxidant Properties of Ferulic Acid and Its Possible Application. Ski. Pharmacol. Physiol. 2018, 31, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Du, C.; Fikhman, D.A.; Persaud, D.; Monroe, M.B.B. Dual Burst and Sustained Release of P-Coumaric Acid from Shape Memory Polymer Foams for Polymicrobial Infection Prevention in Trauma-Related Hemorrhagic Wounds. ACS Appl. Mater. Interfaces 2023, 15, 24228–24243. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Huangfu, C.; Bai, Z.; Zhu, L.; Shen, P.; Wang, N.; Li, G.; Deng, H.; Ma, Z.; Zhou, W.; et al. Multifunctional Carbomer Based Ferulic Acid Hydrogel Promotes Wound Healing in Radiation-Induced Skin Injury by Inactivating NLRP3 Inflammasome. J. Nanobiotechnol. 2024, 22, 576. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Kim, J.; Shin, Y.-K.; Kim, K.-Y. Gentisic Acid Stimulates Keratinocyte Proliferation through ERK1/2 Phosphorylation. Int. J. Med. Sci. 2020, 17, 626–631. [Google Scholar] [CrossRef]
- Phiboonchaiyanan, P.P.; Harikarnpakdee, S.; Songsak, T.; Chowjarean, V. In Vitro Evaluation of Wound Healing, Stemness Potentiation, Antioxidant Activity, and Phytochemical Profile of Cucurbita Moschata Duchesne Fruit Pulp Ethanolic Extract. Adv. Pharmacol. Pharm. Sci. 2024, 2024, 9288481. [Google Scholar] [CrossRef]
- Dong, Y.; Su, J.; Guo, X.; Zhang, Q.; Zhu, S.; Zhang, K.; Zhu, H. Multifunctional Protocatechuic Acid-Polyacrylic Acid Hydrogel Adhesives for Wound Dressings. J. Mater. Chem. B. 2024, 12, 6617–6626. [Google Scholar] [CrossRef]
- Roviello, V.; Gilhen-Baker, M.; Vicidomini, C.; Roviello, G.N. The Healing Power of Clean Rivers: In Silico Evaluation of the Antipsoriatic Potential of Apiin and Hyperoside Plant Metabolites Contained in River Waters. Int. J. Environ. Res. Public Health 2022, 19, 2502. [Google Scholar] [CrossRef]
- Ku, S.-K.; Zhou, W.; Lee, W.; Han, M.-S.; Na, M.; Bae, J.-S. Anti-Inflammatory Effects of Hyperoside in Human Endothelial Cells and in Mice. Inflammation 2015, 38, 784–799. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shi, L.; Qiu, W.; Shi, Y. Ferulic Acid Exhibits Anti-Inflammatory Effects by Inducing Autophagy and Blocking NLRP3 Inflammasome Activation. Mol. Cell Toxicol. 2022, 18, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Boncler, M.; Golanski, J.; Lukasiak, M.; Redzynia, M.; Dastych, J.; Watala, C. A New Approach for the Assessment of the Toxicity of Polyphenol-Rich Compounds with the Use of High Content Screening Analysis. PLoS ONE 2017, 12, e0180022. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.-H.; Liu, J.-Y.; Tsai, F.L.; Syu, J.-J.; Yun, C.-S.; Chen, L.-Y.; Ye, J.-C. The Adverse and Beneficial Effects of Polyphenols in Green and Black Teas in Vitro and in Vivo. Int. J. Med. Sci. 2023, 20, 1247–1255. [Google Scholar] [CrossRef]
- Wang, X.-M.; Hamza, M.; Wu, T.-X.; Dionne, R.A. up-regulation of IL-6, IL-8 and CCL2 gene expression after acute inflammation: Correlation to clinical pain. Pain 2009, 142, 275–283. [Google Scholar] [CrossRef]
- Lin, T.; Bai, X.; Gao, Y.; Zhang, B.; Shi, J.; Yuan, B.; Chen, W.; Li, J.; Zhang, Y.; Zhang, Q.; et al. CTH/H2S Regulates LPS-Induced Inflammation through IL-8 Signaling in MAC-T Cells. Int. J. Mol. Sci. 2022, 23, 11822. [Google Scholar] [CrossRef]
- Matsui, C.; Koide, H.; Ikeda, T.; Ikegami, T.; Yamamoto, T.; Escandón, J.M.; Mohammad, A.; Ito, T.; Mizuno, H. Cytokines Released from Human Adipose Tissue-Derived Stem Cells by bFGF Stimulation: Effects of IL-8 and CXCL-1 on Wound Healing. Regen. Ther. 2024, 26, 401–406. [Google Scholar] [CrossRef]
- Kraft, R.; Herndon, D.N.; Finnerty, C.C.; Cox, R.A.; Song, J.; Jeschke, M.G. Predictive Value of IL-8 for Sepsis and Severe Infections after Burn Injury—A Clinical Study. Shock 2015, 43, 222–227. [Google Scholar] [CrossRef]
- Asiri, A.; Hazeldine, J.; Moiemen, N.; Harrison, P. IL-8 Induces Neutrophil Extracellular Trap Formation in Severe Thermal Injury. Int. J. Mol. Sci. 2024, 25, 7216. [Google Scholar] [CrossRef]
TPC (mg gallic acid equivalent/mL extract) | 2.058 ± 0.034 |
TFC (mg quercetin equivalents/g vegetal material) | 31.030 ± 4.029 |
ABTS | DPPH | |
---|---|---|
TAC (mM Trolox/g vegetal product) | 0.693 ± 0.026 | 0.15 ± 0.014 |
Compound | A. vulneraria Leaf Extract |
---|---|
Gentisic acid | 0.655 ± 0.052 |
p-coumaric acid | 0.762 ± 0.053 |
Ferulic acid | 0.784 ± 0.023 |
Hyperoside | 10.775 ± 1.185 |
Isoquercitrin | <LOQ |
Luteolin | <LOQ |
Kaempferol | <LOQ |
Apigenin | <LOQ |
Protocatechuic acid | 0.101 ± 0.013 |
Epigallocatechin | 0.144 ± 0.011 |
Epigallocatechin gallate | 0.342 ± 0.051 |
Evaluated Parameter | p Value |
---|---|
Reepithelization | 0.917 * |
Suppuration | 0.801 * |
Epithelial acanthosis | 0.943 * |
Fibrin crust presence | 0.710 * |
Calcification | 0.456 * |
Granulation tissue | 0.796 ** |
Fibrosis | 0.537 ** |
Congestion | 0.542 ** |
Chronic inflammation | 0.292 ** |
Presence of skin adnexa | 0.486 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iova, O.-M.; Marin, G.-E.; Vlase, A.-M.; Achim, M.; Muntean, D.; Tomuţă, I.; Moldovan, R.; Decea, N.; Gheban, B.A.; Pintilie, S.R.; et al. The Effects of Anthyllis vulneraria Hydroalcoholic Leaf Extract as an Adjuvant in Wound Healing. Appl. Sci. 2025, 15, 8388. https://doi.org/10.3390/app15158388
Iova O-M, Marin G-E, Vlase A-M, Achim M, Muntean D, Tomuţă I, Moldovan R, Decea N, Gheban BA, Pintilie SR, et al. The Effects of Anthyllis vulneraria Hydroalcoholic Leaf Extract as an Adjuvant in Wound Healing. Applied Sciences. 2025; 15(15):8388. https://doi.org/10.3390/app15158388
Chicago/Turabian StyleIova, Olga-Maria, Gheorghe-Eduard Marin, Ana-Maria Vlase, Marcela Achim, Dana Muntean, Ioan Tomuţă, Remus Moldovan, Nicoleta Decea, Bogdan Alexandru Gheban, Sebastian Romeo Pintilie, and et al. 2025. "The Effects of Anthyllis vulneraria Hydroalcoholic Leaf Extract as an Adjuvant in Wound Healing" Applied Sciences 15, no. 15: 8388. https://doi.org/10.3390/app15158388
APA StyleIova, O.-M., Marin, G.-E., Vlase, A.-M., Achim, M., Muntean, D., Tomuţă, I., Moldovan, R., Decea, N., Gheban, B. A., Pintilie, S. R., Hoteiuc, O.-A., Capras, R. D., & Filip, A. G. (2025). The Effects of Anthyllis vulneraria Hydroalcoholic Leaf Extract as an Adjuvant in Wound Healing. Applied Sciences, 15(15), 8388. https://doi.org/10.3390/app15158388