Seismic Response Analysis of a Six-Story Building in Sofia Using Accelerograms from the 2012 Mw5.6 Pernik Earthquake
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Location
2.2. Data
2.3. Methods
2.3.1. Kanai–Yoshizawa Formula for Response Prediction
2.3.2. Spectral Methods
3. Results
3.1. Parameters of Strong Ground Motion
3.2. Evaluation of Amplification Effects Between Basement and Sixth-Floor Accelerations
3.3. Results from Spectral Analysis
- For SGL1 (basement), the fundamental frequency is at f0 ≈ 0.35–0.41 Hz and the amplification is A0 ≈ 6.1;
- For SGL2 (sixth floor), the fundamental frequency is f0 ≈ 2.2 Hz and the amplification is A0 ≈ 6.6.
4. Discussion and Study Implications
5. Conclusions
- Sufficient sensor deployment for meaningful modal extraction.
- Reasonable knowledge or estimation of structural properties.
- Consideration of soil–structure interaction effects where applicable.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
KY | Kanai–Yoshizawa |
PGA | Peak Ground Acceleration |
PGV | Peak Ground Velocity |
PGD | Peak Ground Displacement |
PFA | Peak Floor Acceleration |
PFV | Peak Floor Velocity |
PFD | Peak Floor Displacement |
HVSR or H/V | Horizontal-to-Vertical Spectral Ratio |
FSR | Floor Spectral Ratio |
RDM | Random Decrement Method |
SSI | Soil–Structure Interaction |
RSA | Response Spectra Acceleration |
References
- Christoskov, L.; Grigorova, E.; Petkov, P. Catalogue of Earthquakes in Bulgaria and the Balkan Region; Archives of the Geophysical Institute, Bulgarian Academy of Sciences: Sofia, Bulgaria, 1979. [Google Scholar]
- Bončev, E.; Bune, V.I.; Christoskov, L.; Karagjuleva, J.; Kostadinov, V.; Reisner, G.I.; Rizhikova, S.; Shebalin, N.V.; Sholpo, V.N.; Sokerova, D. A method for compilation of seismic zoning prognostic maps for the territory of Bulgaria. Geol. Balc. 1982, 12, 3–48. [Google Scholar]
- Gorshkov, A.I.; Kuznetsov, I.V.; Panza, G.F.; Soloviev, A.A. Identification of Future Earthquake Sources in the Carpatho-Balkan Orogenic Belt Using Morphostructural Criteria. In Seismic Hazard of the Circum-Pannonian Region; Panza, G.F., Radulian, M., Trifu, C.I., Eds.; Pageoph Topical Volumes; Birkhäuser: Basel, Switzerland, 2000. [Google Scholar] [CrossRef]
- Oynakov, E.; Ivanov, R.; Dimitrova, L.; Radulov, A. Evaluation and analysis of microseismic records on the territory of the Sofia basin. J. Theor. Appl. Mech. 2024, 54, 429–445. [Google Scholar] [CrossRef]
- Solakov, D.E.; Stefanov, D.; Simeonova, S.; Raykova-Tsankova, P. Seismic Risk Assessment for the City of Sofia, Bulgaria. Geosciences 2024, 14, 307. [Google Scholar] [CrossRef]
- European Seismological Commission, Subcommission on Engineering Seismology, Working Group Macroseismic Scales. European Macroseismic Scale 1998 (EMS-98); Grünthal, G., Ed.; Conseil de l’Europe, Cahiers du Centre Européen de Géodynamique et de Séismologie: Luxembourg, 1998; Volume 15. [Google Scholar]
- Hadjiyski, K.; Simeonov, S.; Botev, E. Seismic Impact of the Earthquake of 22.05.2012 for Sofia. 2012, pp. 28–35. Available online: https://www.kiip.bg/eforum/07-2012/lquality/files/assets/basic-html/page28.html (accessed on 15 March 2025). (In Bulgarian).
- Hadjiyski, K.D.; Simeonov, S.M.; Botev, E.A. The May 22, 2012 Mw = 5.6 Pernik Earthquake—Local Effects and Seismic Impact on Sofia city. In Proceedings of the SE-50EEE Conference, Skopje, North Macedonia, 29–31 May 2013; Available online: https://www.niggg.bas.bg/wp-content/uploads/2014/03/seiz_vazd_en.pdf (accessed on 15 March 2025).
- Botev, E.; Protopopova, V.; Popova, I.; Babachkova, B.; Velichkova, S.; Tzoncheva, I.; Raykova, P.; Boychev, V.; Lazarov, D. Data and Analysis of the Events Recorded by NOTSSI in 2012. Bulg. Geophys. J. 2012, 38, 93–102. Available online: https://www.niggg.bas.bg/wp-content/uploads/2013/06/8.pdf (accessed on 29 April 2025).
- Paskaleva, I.; Dojcinovski, D.; Ivanov, R. A note on the attenuation for peak ground acceleration and response spectra for the May 22 2012 earthquake (western Bulgaria). In Proceedings of the SE-50EEE Conference, Skopje, North Macedonia, 29–31 May 2013. [Google Scholar]
- Rudman, A.; Douglas, J.; Tubaldi, E. The assessment of probabilistic seismic risk using ground-motion simulations via a Monte Carlo approach. Nat. Hazards 2024, 120, 6833–6852. [Google Scholar] [CrossRef]
- Weatherill, G.; Kotha, S.R.; Danciu, L.; Vilanova, S.; Cotton, F. Modelling seismic ground motion and its uncertainty in different tectonic contexts: Challenges and application to the 2020 European Seismic Hazard Model (ESHM20). Nat. Hazards Earth Syst. Sci. 2024, 24, 1795–1834. [Google Scholar] [CrossRef]
- Mesgar, M.A.A.; Jalilvand, P. Vulnerability Analysis of the Urban Environments to Different Seismic Scenarios: Residential Buildings and Associated Population Distribution Modelling through Integrating Dasymetric Mapping Method and GIS. Procedia Eng. 2017, 198, 454–466. [Google Scholar] [CrossRef]
- Smerzini, C.; Pitilakis, K. Seismic risk assessment at urban scale from 3D physics-based numerical modeling: The case of Thessaloniki. Bull. Earthq. Eng. 2018, 16, 2609–2631. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Z.; Wei, B.; Li, X.; Fu, B. Seismic vulnerability assessment at urban scale using data mining and GIScience technology: Application to Urumqi (China). Geomat. Nat. Hazard Risk 2019, 10, 958–985. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Liu, W.; Lin, Y.; Su, F.; Cui, Y.; Wei, B.; Cheng, H.; Gross, L. Seismic vulnerability and risk assessment at the urban scale using support vector machine and GIScience technology: A case study of the Lixia District in Jinan City, China. Geomat. Nat. Hazards Risk 2023, 14, 2173663. [Google Scholar] [CrossRef]
- Trifunac, M.D. Site conditions and earthquake ground motion—A review. Soil Dyn. Earthq. Eng. 2016, 90, 88–100. [Google Scholar] [CrossRef]
- Panza, G.F.; La Mura, C.; Romanelli, F.; Vaccari, F. Earthquakes, Strong-Ground Motion. In Encyclopedia of Solid Earth Geophysics. Encyclopedia of Earth Sciences Series; Gupta, H.K., Ed.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Li, X.; Li, N.; Rong, M.; Dong, Q. Novel Evaluation Method for Site Effect on Earthquake Ground Motion Based on Modified Horizontal to Vertical Spectral Ratio. Front. Earth Sci. 2022, 10, 938514. [Google Scholar] [CrossRef]
- Pashova, L.; Ivanov, R.; Paskaleva, I. Analysis of Strong Ground Motions from the Pernik Earthquake, May 22, 2012, Recorded in the Sofia Area. In Proceedings of the National Scientific Conference “80 Years of the Union of Scientists in Bulgaria—In Service of Society”, Varna, Bulgaria, 4–6 October 2024; pp. 128–135, ISBN 978-954-397-050-6. (In Bulgarian). [Google Scholar]
- Kanai, K.; Yoshizawa, S. Some New Problems of Seismic Vibrations of a Structure. Part 1. Bull. Earthq. Res. Inst. 1963, 41, 825–833. Available online: https://darc.gsj.jp/archives/detail?cls=geolis&pkey=196400684 (accessed on 21 May 2025).
- Ebrahimian, M.; Trifunac, M.D.; Todorovska, M.I. Prediction of building response at any level from recorded roof response: The Kanai–Yoshizawa formula revisited. Soil Dyn. Earthq. Eng. 2016, 80, 241–250. [Google Scholar] [CrossRef]
- Herak, M. Systematic detailed microtremor H/V surveys in urban areas: A tool for reliable microzonation. Soil Dyn. Earthq. Eng. 2009, 29, 982–993. [Google Scholar] [CrossRef]
- Herak, M. Overview of recent ambient noise measurements in Croatia in free-field and in buildings. Geofizika 2011, 28, 21–40. Available online: http://geofizika-journal.gfz.hr/vol_28/No1/28_1_herak.pdf (accessed on 21 May 2025).
- Cole, H.A. On-line Failure Detection and Damping Measurements of Aerospace Structures by Random Decrement Signature; CR-2205; NASA: Washington, DC, USA, 1973. [Google Scholar]
- Farsi, M.N.; Chatelain, J.L.; Guillier, B.; Bouchelouh, A. Evaluation of the Quality of Repairing and Strengthening of Buildings. In Proceedings of the 14th ECEE, Ohrid, Macedonia, 30 August–3 September 2010; Available online: https://www.proceedings.com/11356.html (accessed on 12 May 2025).
- Irie, Y.; Nakamura, K. Dynamic characteristics of a r/c building of five stories based on microtremor measurements and earthquake observations. In Proceedings of the XII World Conference Earthquake. Engineering, Wellington, New Zealand, 30 January–4 February 2000; pp. 500–508. Available online: https://www.iitk.ac.in/nicee/wcee/twelfth_conf_NewZealand/ (accessed on 12 May 2025).
- Nakamura, Y.; Saita, J.; Sato, T. Applications to work heritage site. In Increasing Seismic Safety by Combining Engineering Technologies and Seismological Data; Mucciarelli, M., Herak, M., Cassidy, J., Eds.; Springer—NATO series: Dordrecht, The Netherlands, 2009; pp. 281–292. [Google Scholar] [CrossRef]
- Nakamura, Y. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Q. Rep. Railw. Tech. Res. Inst. 1989, 30, 25–33. [Google Scholar]
- Gosar, A.; Rošer, J.; Šket Motnikar, B.; Zupančič, P. Microtremor study of site effects and soil-structure resonance in the city of Ljubljana (central Slovenia). Bull. Earthq. Eng. 2010, 8, 571–592. [Google Scholar] [CrossRef]
- Jeary, A.P. Damping in tall buildings—A mechanism and a predictor. Earthq. Eng. Struct. Dyn. 1986, 14, 733–750. [Google Scholar] [CrossRef]
- Davenport, A.G.; Hill-Carol, R. Damping of tall buildings. Proc. Inst. Civ. Eng. Struct. Build. 1986, 84, 579–594. [Google Scholar]
- Lagomarsino, S. Dynamic characteristics of existing buildings. Earthq. Eng. Struct. Dyn. 1993, 22, 485–500. [Google Scholar] [CrossRef]
- Tamura, Y.; Suda, K.; Fujii, K.; Itoh, M. Damping in buildings for wind-resistant design. J. Wind Eng. Ind. Aerodyn. 1993, 50, 279–292. [Google Scholar]
- Kareem, A.; Gurley, K. Damping in structures: Its evaluation and treatment of uncertainty. J. Wind Eng. Ind. Aerodyn. 1996, 59, 131–157. [Google Scholar] [CrossRef]
- Arakawa, T.; Yamamoto, Y. Estimation of damping ratio of buildings using ambient vibration records. J Struct. Constr. Eng. (Trans. of AIJ) 2002, 568, 109–116. (In Japanese) [Google Scholar]
- Arakawa, T.; Yamamoto, Y. A study on identification of damping characteristics using ambient vibration. In Proceedings of the 13th World Conference on Earthquake Engineering (13WCEE), Vancouver, BC, Canada, 1–6 August 2004; Paper No. 337. Available online: https://www.iitk.ac.in/nicee/wcee/thirteenth_conf_Canada/ (accessed on 12 May 2025).
- Satake, N.; Suda, K.; Arakawa, T.; Sasaki, A.; Tamura, Y. Damping evaluation using full-scale data of buildings in Japan. J. Struct. Eng. 2003, 129, 4. [Google Scholar] [CrossRef]
- Iiba, M.; Watakabe, M.; Fujii, A.; Koyama, S.; Sakai, S.; Morita, K. A study on dynamic soil structure interaction effect based on microtremor measurements of building and surrounding ground surface. In Proceedings of the Third UJNR Workshop on Soil-Structure Interaction, Menlo Park, CA, USA, 29–30 March 2004; 17p. [Google Scholar]
- Paskaleva, I.; Ivanov, R. An application of generating artificial earthquake accelerograms matched to the May 22 2012 Earthquake (Western Bulgaria). In Proceedings of the 14 International Conference VSU’2014, Sofia, Bulgaria, 5–6 June 2014; pp. 297–303. [Google Scholar]
- Paskaleva, I.; Ivanov, R. Comparison between records in Bulgaria and well-known international near-source records. In Proceedings of the XVII International Scientific Conference VSU’2017, Sofia, Bulgaria, 8–9 June 2017; Volume I, pp. 77–83. [Google Scholar]
- Radulov, A.; Yaneva, M.; Nikolov, N.; Kiselinov, H.; Donkova, Y.; Nikolov, G. Geological data on the source of the 2012 Mw 5.6 Pernik Earthquake, SW Bulgaria. Proceedings of XX CBGA Congress, Tirana, Albania, 24–26 September 2014; Volume 1, pp. 104–107. [Google Scholar]
- Radulov, A.; Rockwell, T.K.; Yaneva, M.; Donkova, Y.; Kiselinov, H.; Nikolov, N. Variable slip mode in the past 3300 years on the fault ruptured in the 2012 M 5.6 Pernik slow earthquake in Bulgaria. Nat. Hazards 2024, 120, 5309–5331. [Google Scholar] [CrossRef]
- Bommer, J.J.; Martínez-Pereira, A. The effective duration of earthquake strong motion. J. Earthq. Eng. 1999, 3, 127–172. [Google Scholar] [CrossRef]
- Castellaro, S.; Raykova, R.B.; Tsekov, M. Resonance Frequencies of Soil and Buildings Some Measurements in Sofia and Its Vicinity. In Proceedings of the 3rd National Congress on Physical Sciences, Sofia Section: Physics of Earth, Atmosphere and Space, Sofia, Bulgaria, 29 September–2 October 2016; 6pAvailable online: https://upb.phys.uni-sofia.bg/conference/3kongres/disk/html/pdf/S0621.pdf (accessed on 12 May 2025).
- Radulov, A.; Yaneva, M.; Shanov, S.; Nikolov, V.; Kostov, K.; Nikolov, N.; Hristov, V.; Dobrev, N.; Mitev, A. Coseismic geological effects related to the May 22, 2012 Pernik earthquake, Western Bulgaria. In Report on Field Survey After May 22, 2012 Pernik Earthquake; Geological Institute, BAS: Sofia, Bulgaria; 12p, Available online: https://www.earthquakegeology.com/materials/reports/Coseismic_Geological_Effects_Pernik_Bulgaria_Mw_5.6_Earthquake.pdf (accessed on 12 May 2025).
- EN 1998-1/NA ICS 91.120.95; Bulgarian Eurocode 8. Design of Structures for Seismic Actions, Part 1: General Rules, Seismic Actions and Rules for Buildings, National Annex BDS. Bulgarian Institute for Standardization: Sofia, Bulgaria, 2012. (In Bulgarian)
- Antoniou, S.; Pinho, R. SeismoSignal: A Computer Program for Signal Processing of Strong-Motion Data. SeismoSoft, Italy. 2025. Available online: https://seismosoft.com/ (accessed on 24 January 2025).
- Konno, K.; Ohmachi, T. Ground-Motion Characteristics Estimated from Spectral Ratio between Horizontal and Vertical Components of Microtremor. Bull. Seismol. Soc. Am. 1998, 88, 228–241. [Google Scholar] [CrossRef]
- Gosar, A. Site Effects and Soil-Structure Resonance Study in the Kobarid Basin (NW Slovenia) Using Microtremors. Nat. Hazards Earth Syst. Sci. 2010, 10, 761–772. [Google Scholar] [CrossRef]
- Sungkono, S.; Warnana, D.D.; Triwulan, T.; Utama, W. Evaluation of buildings strength from microtremor analyses. Int. J. Civ. Environ. Eng. 2011, 11, 108–114. [Google Scholar]
- Rodrigues, J.; Brincker, R. Application of the Random Decrement Technique in Operational Modal Analysis. In Proceedings of the 1st International Operational Modal Analysis Conference, Copenhagen, Denmark, 26–27 April 2005; Brincker, R., Møller, N., Eds.; Aalborg Universitet: Aalborg, Denmark, 2005; pp. 191–200. [Google Scholar]
- Wathelet, M.; Chatelain, J.-L.; Cornou, C.; Giulio, G.D.; Guillier, B.; Ohrnberger, M.; Savvaidis, A. Geopsy: A User-Friendly Open-Source Tool Set for Ambient Vibration Processing. Seismol. Res. Lett. 2020, 91, 1878–1889. [Google Scholar] [CrossRef]
- Ghanat, S.T.; Kavazanjian, E.J. Site-specific response analysis at non-standard sites. In Proceedings of the 5th International Conference on Earthquake Geotechnical Engineering, Santiago, Chile, 9–14 January 2011; Available online: https://www.issmge.org/uploads/publications/59/67/4.19.SSRGH.pdf (accessed on 8 April 2025).
- Davoodi, M.; Sadjadi, M. Evaluation of the Effect of PGV/PGA Ratio of Strong Ground Motions on Responses of Soil Structure SDOF Systems. In Proceedings of the 7th International Conference on Seismology and Earthquake Engineering, Tehran, Iran, 15–21 May 2015; pp. 315–316. Available online: https://www.iiees.ac.ir/wp-content/uploads/2016/04/00160-SE.pdf (accessed on 8 April 2025).
- FEMA P-58. Seismic Performance Assessment of Buildings, Volume 1-Methodology, 2nd ed.; Technical Report FEMA P-58-1; Applied Technology Council: Redwood City, CA, USA, 2018; Available online: https://femap58.atcouncil.org/documents/fema-p-58/24-fema-p-58-volume-1-methodology-second-edition (accessed on 12 April 2025).
- Wani, F.M.; Vemuri, J.; Rajaram, C. Strong ground motion characteristics observed in the February 6, 2023 Mw7.7 Türkiye earthquake. Earthq. Sci. 2024, 37, 241–266. [Google Scholar] [CrossRef]
- Paolucci, R.; Aimar, M.; Ciancimino, A.; Dotti, M.; Foti, S.; Lanzano, G.; Mattevi, P.; Pacor, F.; Vanini, M. Checking the site categorization criteria and amplification factors of the 2021 draft of Eurocode 8 Part 1–1. Bull. Earthq. Eng. 2021, 19, 4199–4234. [Google Scholar] [CrossRef]
- ASCE 7-16; Minimum Design Loads and Associated Criteria for Buildings and Other Structures (ASCE/SEI 7-16). American Society of Civil Engineers: Reston, VA, USA, 2017. [CrossRef]
- Elgammal, A.; Seleemah, A.; Elsharkawy, M.; Elwardany, H. Comprehensive Review on Seismic Pounding Between Adjacent Buildings and Available Mitigation Measures. Arch. Computat. Methods Eng. 2024, 31, 4269–4304. [Google Scholar] [CrossRef]
- Kardoutsou, V.; Taflampas, I.; Psycharis, I.N. A New Pulse Indicator for the Classification of Ground Motions. Bull. Seismol. Soc. Am. 2017, 107, 1356–1364. [Google Scholar] [CrossRef]
- Panella, D.S.; Tornello, M.E.; Frau, C. A simple and intuitive procedure to identify pulse-like ground motions. Soil Dyn. Earthq. Eng. 2017, 94, 234–243. [Google Scholar] [CrossRef]
- Boore, D.M. Orientation-Independent, Nongeometric-Mean Measures of Seismic Intensity from Two Horizontal Components of Motion. Bull. Seismol. Soc. Am. 2010, 100, 1830–1835. [Google Scholar] [CrossRef]
- Longarini, N.; Zucca, M.; Crespi, P.; Valente, M.; Aly, A.M. Tuned mass dampers for improving the sustainability and resilience of seven reinforced concrete chimneys under environmental loads. Environ. Dev. Sustain. 2025, 27, 16683–16715. [Google Scholar] [CrossRef]
Location of the Record | Component | PGA cm/s2 | PGV cm/s | PGD cm | PGV/PGA or PFV/PFA | PFA (Sixth Floor) vs. PGA (Basement) |
---|---|---|---|---|---|---|
SGL1 Basement | EW | 42.62 | 2.97 | 0.96 | 0.07 | |
NS | 30.26 | −4.76 | −1.35 | 0.16 | ||
UD | 21.94 | 1.42 | −0.38 | 0.06 | ||
SGL2 Sixth floor | EW | 87.15 | −7.77 | −1.57 | 0.09 | |
NS | −99.02 | 6.45 | −1.57 | 0.07 | ||
UD | 46.21 | 1.98 | 0.55 | 0.04 | ||
SGL1 vs. SGL2 | EW | 2.04 | ||||
NS | 3.27 | |||||
UD | 2.11 |
Characteristic | Basement SLG1 | Sixth Floor SLG2 |
---|---|---|
Orbit Size | Larger elliptical spread | Smaller, more concentrated pattern |
Displacement Range | Up to ±2.6 cm | Up to ±1.8 cm |
Motion Type | Broader elliptical orbit, strong directivity | Complex path, more twisting and looping |
Center Shift | Slightly shifted from origin | Slightly shifted, but less pronounced |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pashova, L.; Oynakov, E.; Paskaleva, I.; Ivanov, R. Seismic Response Analysis of a Six-Story Building in Sofia Using Accelerograms from the 2012 Mw5.6 Pernik Earthquake. Appl. Sci. 2025, 15, 8385. https://doi.org/10.3390/app15158385
Pashova L, Oynakov E, Paskaleva I, Ivanov R. Seismic Response Analysis of a Six-Story Building in Sofia Using Accelerograms from the 2012 Mw5.6 Pernik Earthquake. Applied Sciences. 2025; 15(15):8385. https://doi.org/10.3390/app15158385
Chicago/Turabian StylePashova, Lyubka, Emil Oynakov, Ivanka Paskaleva, and Radan Ivanov. 2025. "Seismic Response Analysis of a Six-Story Building in Sofia Using Accelerograms from the 2012 Mw5.6 Pernik Earthquake" Applied Sciences 15, no. 15: 8385. https://doi.org/10.3390/app15158385
APA StylePashova, L., Oynakov, E., Paskaleva, I., & Ivanov, R. (2025). Seismic Response Analysis of a Six-Story Building in Sofia Using Accelerograms from the 2012 Mw5.6 Pernik Earthquake. Applied Sciences, 15(15), 8385. https://doi.org/10.3390/app15158385