Detecting Left Ventricular Systolic Dysfunction in Left Bundle Branch Block Patients Using Electrocardiogram: A Deep Learning Approach with Limited Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Management
2.2. System Framework
2.3. Preprocessing
2.3.1. Bandpass Filtering
2.3.2. Outlier Removal and Feature Normalization
2.4. Autoencoder Anomaly Detection Model
2.5. Classification Model
2.6. Lead-Wise Ensemble
3. Results and Discussion
3.1. Validation of an Existing Model
3.2. CNN Model Training: Single-Lead Results
3.3. Lead-Wise Ensemble Prediction: Multi-Lead Results
3.4. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial intelligence |
BNP | B-type natriuretic peptide |
CNN | Convolutional neural network |
ECG | Electrocardiogram |
LBBB | Left bundle branch block |
LVSD | Left ventricular systolic dysfunction |
MSE | Mean squared error |
References
- Lau, E.W.; Bonnemeier, H.; Baldauf, B. Left bundle branch block—Innocent bystander, silent menace, or both. Heart Rhythm 2024, 22, e229–e236. [Google Scholar] [CrossRef]
- Tan, N.Y.; Witt, C.M.; Oh, J.K.; Cha, Y.M. Left bundle branch block: Current and future perspectives. Circ. Arrhythm. Electrophysiol. 2020, 13, e008239. [Google Scholar] [CrossRef]
- Costello-Boerrigter, L.C.; Boerrigter, G.; Redfield, M.M.; Rodeheffer, R.J.; Urban, L.H.; Mahoney, D.W.; Jacobsen, S.J.; Heublein, D.M.; Burnett, J.C. Amino-terminal pro-B-type natriuretic peptide and B-type natriuretic peptide in the general community: Determinants and detection of left ventricular dysfunction. J. Am. Coll. Cardiol. 2006, 47, 345–353. [Google Scholar] [CrossRef]
- Cho, J.; Lee, B.; Kwon, J.M.; Lee, Y.; Park, H.; Oh, B.H.; Jeon, K.H.; Park, J.; Kim, K.H. Artificial intelligence algorithm for screening heart failure with reduced ejection fraction using electrocardiography. ASAIO J. 2021, 67, 314–321. [Google Scholar] [CrossRef] [PubMed]
- Attia, Z.I.; Kapa, S.; Lopez-Jimenez, F.; McKie, P.M.; Ladewig, D.J.; Satam, G.; Pellikka, P.A.; Enriquez-Sarano, M.; Noseworthy, P.A.; Munger, T.M.; et al. Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram. Nat. Med. 2019, 25, 70–74. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.; Robb, S.; Murdoch, D.; Morton, J.; Ford, I.; Morrison, C.; Tunstall-Pedoe, H.; McMurray, J.; Dargie, H. Biochemical detection of left-ventricular systolic dysfunction. Lancet 1998, 351, 9–13. [Google Scholar] [CrossRef]
- Davie, A.; Francis, C.; Love, M.; Caruana, L.; Starkey, I.; Shaw, T.; Sutherland, G.; McMurray, J. Value of the electrocardiogram in identifying heart failure due to left ventricular systolic dysfunction. BMJ 1996, 312, 222. [Google Scholar] [CrossRef]
- Choi, J.; Lee, S.; Chang, M.; Lee, Y.; Oh, G.C.; Lee, H.Y. Deep learning of ECG waveforms for diagnosis of heart failure with a reduced left ventricular ejection fraction. Sci. Rep. 2022, 12, 14235. [Google Scholar] [CrossRef]
- Potter, E.L.; Rodrigues, C.H.; Ascher, D.B.; Abhayaratna, W.P.; Sengupta, P.P.; Marwick, T.H. Machine learning of ECG waveforms to improve selection for testing for asymptomatic left ventricular dysfunction. Cardiovasc. Imaging 2021, 14, 1904–1915. [Google Scholar] [CrossRef]
- Yao, X.; Rushlow, D.R.; Inselman, J.W.; McCoy, R.G.; Thacher, T.D.; Behnken, E.M.; Bernard, M.E.; Rosas, S.L.; Akfaly, A.; Misra, A.; et al. Artificial intelligence–enabled electrocardiograms for identification of patients with low ejection fraction: A pragmatic, randomized clinical trial. Nat. Med. 2021, 27, 815–819. [Google Scholar] [CrossRef] [PubMed]
- Yagi, R.; Goto, S.; Katsumata, Y.; MacRae, C.A.; Deo, R.C. Importance of external validation and subgroup analysis of artificial intelligence in the detection of low ejection fraction from electrocardiograms. Eur. Heart J.-Digit. Health 2022, 3, 654–657. [Google Scholar] [CrossRef] [PubMed]
- König, S.; Hohenstein, S.; Nitsche, A.; Pellissier, V.; Leiner, J.; Stellmacher, L.; Hindricks, G.; Bollmann, A. Artificial intelligence-based identification of left ventricular systolic dysfunction from 12-lead electrocardiograms: External validation and advanced application of an existing model. Eur. Heart J.-Digit. Health 2024, 5, 144–151. [Google Scholar] [CrossRef]
- Kashou, A.H.; Medina-Inojosa, J.R.; Noseworthy, P.A.; Rodeheffer, R.J.; Lopez-Jimenez, F.; Attia, I.Z.; Kapa, S.; Scott, C.G.; Lee, A.T.; Friedman, P.A.; et al. Artificial intelligence–augmented electrocardiogram detection of left ventricular systolic dysfunction in the general population. Mayo Clin. Proc. 2021, 96, 2576–2586. [Google Scholar] [CrossRef]
- Mondo, C.; Attia, Z.; Benavente, E.; Friedman, P.; Noseworthy, P.; Kapa, P.; Ingabire, P.; Semanda, S.; Perel, P.; Lopez-Jimenez, F. External validation of an electrocardiography artificial intelligence-generated algorithm to detect left ventricular systolic function in a general cardiac clinic in Uganda. Eur. Heart J. 2020, 41, ehaa946.1013. [Google Scholar] [CrossRef]
- Jentzer, J.C.; Kashou, A.H.; Attia, Z.I.; Lopez-Jimenez, F.; Kapa, S.; Friedman, P.A.; Noseworthy, P.A. Left ventricular systolic dysfunction identification using artificial intelligence-augmented electrocardiogram in cardiac intensive care unit patients. Int. J. Cardiol. 2021, 326, 114–123. [Google Scholar] [CrossRef]
- Adedinsewo, D.; Carter, R.E.; Attia, Z.; Johnson, P.; Kashou, A.H.; Dugan, J.L.; Albus, M.; Sheele, J.M.; Bellolio, F.; Friedman, P.A.; et al. Artificial intelligence-enabled ECG algorithm to identify patients with left ventricular systolic dysfunction presenting to the emergency department with dyspnea. Circ. Arrhythm. Electrophysiol. 2020, 13, e008437. [Google Scholar] [CrossRef]
- Attia, Z.I.; Kapa, S.; Noseworthy, P.A.; Lopez-Jimenez, F.; Friedman, P.A. Artificial intelligence ECG to detect left ventricular dysfunction in COVID-19: A case series. Mayo Clin. Proc. 2020, 95, 2464–2466. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, Y.; Gan, J.; Li, X.; Yuan, J.; Zhao, W. Multi-scale Masked Autoencoder for Electrocardiogram Anomaly Detection. arXiv 2025, arXiv:2502.05494. [Google Scholar]
- Alghieth, M. DeepECG-Net: A hybrid transformer-based deep learning model for real-time ECG anomaly detection. Sci. Rep. 2025, 15, 20714. [Google Scholar] [CrossRef] [PubMed]
- Strauss, D.G.; Selvester, R.H.; Wagner, G.S. Defining left bundle branch block in the era of cardiac resynchronization therapy. Am. J. Cardiol. 2011, 107, 927–934. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.; Lee, K.; Mokhtar, S.A.; Ismail, I.; Pauzi, A.L.b.M.; Zhang, Q.; Lim, P.Y. Deep Learning-Based ECG Arrhythmia Classification: A Systematic Review. Appl. Sci. 2023, 13, 4964. [Google Scholar] [CrossRef]
- Narotamo, H.; Dias, M.; Santos, R.; Carreiro, A.V.; Gamboa, H.; Silveira, M. Deep learning for ECG classification: A comparative study of 1D and 2D representations and multimodal fusion approaches. Biomed. Signal Process. Control 2024, 93, 106141. [Google Scholar] [CrossRef]
- Kingma, D.P.; Welling, M. Auto-encoding variational bayes. arXiv 2013, arXiv:1312.6114. [Google Scholar]
- Thiele, C.; Hirschfeld, G. cutpointr: Improved estimation and validation of optimal cutpoints in R. J. Stat. Softw. 2021, 98, 1–27. [Google Scholar] [CrossRef]
- Rickard, J.; Michtalik, H.; Sharma, R.; Berger, Z.; Iyoha, E.; Green, A.R.; Haq, N.; Robinson, K.A. Predictors of response to cardiac resynchronization therapy: A systematic review. Int. J. Cardiol. 2016, 225, 345–352. [Google Scholar] [CrossRef] [PubMed]
- McMurray, J.J.; Packer, M.; Desai, A.S.; Gong, J.; Lefkowitz, M.P.; Rizkala, A.R.; Rouleau, J.L.; Shi, V.C.; Solomon, S.D.; Swedberg, K.; et al. Angiotensin–neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 2014, 371, 993–1004. [Google Scholar] [CrossRef] [PubMed]
- Ye, N.; Li, K.; Bai, H.; Yu, R.; Hong, L.; Zhou, F.; Li, Z.; Zhu, J. Ood-bench: Quantifying and understanding two dimensions of out-of-distribution generalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 7947–7958. [Google Scholar]
- Ye, N.; Zeng, Z.; Zhou, J.; Zhu, L.; Duan, Y.; Wu, Y.; Wu, J.; Zeng, H.; Gu, Q.; Wang, X.; et al. Ood-control: Generalizing control in unseen environments. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 7421–7433. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, B.; Yang, C. Understanding why vit trains badly on small datasets: An intuitive perspective. arXiv 2023, arXiv:2302.03751. [Google Scholar]
Lead | Accuracy | Precision | Recall | F1-Score | AUC |
---|---|---|---|---|---|
I | 0.75 | 0.8 | 0.43 | 0.56 | 0.68 |
II | 0.76 | 0.69 | 0.65 | 0.67 | 0.74 |
III | 0.77 | 0.75 | 0.57 | 0.65 | 0.73 |
aVR | 0.74 | 0.7 | 0.51 | 0.59 | 0.69 |
aVL | 0.76 | 0.78 | 0.49 | 0.6 | 0.7 |
aVF | 0.72 | 0.66 | 0.51 | 0.58 | 0.68 |
V1 | 0.74 | 0.92 | 0.34 | 0.5 | 0.66 |
V2 | 0.79 | 0.92 | 0.44 | 0.59 | 0.71 |
V3 | 0.76 | 0.85 | 0.41 | 0.55 | 0.68 |
V4 | 0.73 | 0.68 | 0.43 | 0.53 | 0.66 |
V5 | 0.72 | 0.62 | 0.5 | 0.55 | 0.67 |
V6 | 0.72 | 0.65 | 0.49 | 0.55 | 0.67 |
Experimental Cases | Accuracy | Precision | Recall | F1-Score | AUC |
---|---|---|---|---|---|
Existing Model | 0.6 | 0.62 | 0.2 | 0.28 | 0.56 |
Single Lead (CNN Model) | 0.74 | 0.7 | 0.48 | 0.58 | 0.69 |
Multi Lead (Lead-Wise Ensemble) | 0.81 | 0.87 | 0.56 | 0.68 | 0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, C.; Gwag, H.B.; Seok, J. Detecting Left Ventricular Systolic Dysfunction in Left Bundle Branch Block Patients Using Electrocardiogram: A Deep Learning Approach with Limited Data. Appl. Sci. 2025, 15, 8384. https://doi.org/10.3390/app15158384
Kwon C, Gwag HB, Seok J. Detecting Left Ventricular Systolic Dysfunction in Left Bundle Branch Block Patients Using Electrocardiogram: A Deep Learning Approach with Limited Data. Applied Sciences. 2025; 15(15):8384. https://doi.org/10.3390/app15158384
Chicago/Turabian StyleKwon, Chanjin, Hye Bin Gwag, and Jongwon Seok. 2025. "Detecting Left Ventricular Systolic Dysfunction in Left Bundle Branch Block Patients Using Electrocardiogram: A Deep Learning Approach with Limited Data" Applied Sciences 15, no. 15: 8384. https://doi.org/10.3390/app15158384
APA StyleKwon, C., Gwag, H. B., & Seok, J. (2025). Detecting Left Ventricular Systolic Dysfunction in Left Bundle Branch Block Patients Using Electrocardiogram: A Deep Learning Approach with Limited Data. Applied Sciences, 15(15), 8384. https://doi.org/10.3390/app15158384