Comparison Between Measurements Taken on AI-Generated and Conventional Digital Models: A Retrospective Study
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TMJ | Temporomandibular joint |
AI | Artificial intelligence |
DM | Dental Monitoring |
CA | Clear aligners |
Stl | Standard triangulation language |
C.stl | Conventional stl |
AI.stl | Artificial intelligence stl |
Δ | Difference between means |
References
- Hamet, P.; Tremblay, J. Artificial intelligence in medicine. Metabolism 2017, 69, S36–S40. [Google Scholar] [CrossRef]
- Jung, S.K.; Kim, T.W. New approach for the diagnosis of extractions with neural network machine learning. Am. J. Orthod. Dentofac. Orthop. 2016, 149, 127–133. [Google Scholar] [CrossRef]
- Mintz, Y.; Brodie, R. Introduction to artificial intelligence in medicine. Minim Invasinve Ther Allied Technol. 2019, 28, 73–81. [Google Scholar] [CrossRef]
- Schwendicke, F.; Samek, W.; Krois, J. Artificial intelligence in dentistry: Chances and challenges. J. Dent. Res. 2020, 99, 769–774. [Google Scholar] [CrossRef]
- Arik, S.Ö.; Ibragimov, B.; Xing, L. Fully automatic cephalometric x-ray landmark detection using convolutional neural networks. J. Med. Imaging 2017, 4, 014501. [Google Scholar] [CrossRef]
- Hansa, I.; Semaan, S.J.; Vaid, N.R. Remote monitoring and “tele-orthodontics”: Concept, scope and applications. Semin. Orthod. 2018, 24-4, 470–481. [Google Scholar] [CrossRef]
- Kazimierczak, N.; Kazimierczak, W.; Serafin, Z.; Nowicki, P.; Nożewski, J.; Janiszewska-Olszowska, J. AI in Orthodontics: Revolutionizing Diagnostics and Treatment Planning-A Comprehensive Review. J. Clin. Med. 2024, 13, 344. [Google Scholar] [CrossRef]
- Kök, H.; Acilar, A.M.; İzgi, M.S. Usage and comparison of artificial intelligence algorithms for determination of growth and development by cervical vertebrae stages in orthodontics. Prog. Orthod. 2019, 20, 41. [Google Scholar] [CrossRef]
- Dipalma, G.; Inchingolo, A.D.; Inchingolo, A.M.; Piras, F.; Carpentiere, V.; Garofoli, G.; Azzollini, D.; Campanelli, M.; Paduanelli, G.; Palermo, A.; et al. Artificial Intelligence and Its Clinical Applications in Orthodontics: A Systematic Review. Diagnostics 2023, 13, 3677. [Google Scholar] [CrossRef]
- de Queiroz Tavares Borges Mesquita, G.; Vieira, W.A.; Vidigal, M.T.C.; Travençolo, B.A.N.; Beaini, T.L.; Spin-Neto, R.; Paranhos, L.R.; de Brito Júnior, R.B. Artificial Intelligence for Detecting Cephalometric Landmarks: A Systematic Review and Meta-analysis. J. Digit. Imaging 2023, 36, 1158–1179. [Google Scholar] [CrossRef]
- Wang, H.; Minnema, J.; Batenburg, K.J.; Forouzanfar, T.; Hu, F.J.; Wu, G. Multiclass CBCT Image Segmentation for Orthodontics with Deep Learning. J. Dent. Res. 2021, 100, 943–949. [Google Scholar] [CrossRef]
- Polizzi, A.; Quinzi, V.; Ronsivalle, V.; Venezia, P.; Santonocito, S.; Lo Giudice, A.; Leonardi, R.; Isola, G. Tooth automatic segmentation from CBCT images: A systematic review. Clin. Oral Investig. 2023, 27, 3363–3378. [Google Scholar] [CrossRef]
- Evangelista, K.; de Freitas Silva, B.S.; Yamamoto-Silva, F.P.; Valladares-Neto, J.; Silva, M.-A.G.; Cevidanes, L.H.S.; de Luca Canto, G.; Massignan, C. Accuracy of artificial intelligence for tooth extraction decision-making in orthodontics: A systematic review and meta-analysis. Clin. Oral Investig. 2022, 26, 6893–6905. [Google Scholar] [CrossRef]
- Jha, N.; Lee, K.S.; Kim, Y.J. Diagnosis of temporomandibular disorders using artificial intelligence technologies: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0272715. [Google Scholar] [CrossRef]
- Moylan, H.B.; Carrico, C.K.; Lindauer, S.J.; Tüfekçi, E. Accuracy of a smartphone-based orthodontic treatment-monitoring application: A pilot study. Angle Orthod. 2019, 89, 727–733. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sangalli, L.; Alessandri-Bonetti, A.; Dalessandri, D. Effectiveness of dental monitoring system in orthodontics: A systematic review. J. Orthod. 2024, 51, 28–40. [Google Scholar] [CrossRef]
- Sangalli, L.; Savoldi, F.; Dalessandri, D.; Bonetti, S.; Gu, M.; Signoroni, A.; Paganelli, C. Effects of remote digital monitoring on oral hygiene of orthodontic patients: A prospective study. BMC Oral Health. 2021, 21, 435. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Snider, V.; Homsi, K.; Kusnoto, B.; Atsawasuwan, P.; Viana, G.; Allareddy, V.; Gajendrareddy, P.; Elnagar, M.H. Clinical evaluation of Artificial Intelligence Driven Remote Monitoring technology for assessment of patient oral hygiene during orthodontic treatment. Am. J. Orthod. Dentofac. Orthop. 2024, 165, 586–592. [Google Scholar] [CrossRef]
- Hansa, I.; Vandana, K.; Steven, J.S.; Coyne, R.; Vaid, N.R. Artificial Intelligence Driven Remote Monitoring of orthodontic patients: Clinical applicability and rationale. Semin. Orthod. 2021, 27, 138–156. [Google Scholar] [CrossRef]
- Hansa, I.; Semaan, S.J.; Vaid, N.R. Clinical outcomes and patient perspectives of Dental Monitoring® GoLive® with Invisalign®-a retrospective cohort study. Prog. Orthod. 2020, 21, 16. [Google Scholar] [CrossRef]
- Ferlito, T.; Hsiou, D.; Hargett, K.; Herzog, C.; Bachour, P.; Katebi, N.; Tokede, O.; Larson, B.; Masoud, M.I. Assessment of artificial intelligence–based remote monitoring of clear aligner therapy: A prospective study. Am. J. Orthod. Dentofac. Orthop. 2023, 164, 194–200. [Google Scholar] [CrossRef]
- Lam, J.; Freer, E.; Miles, P. Comparative assessment of treatment efficiency and patient experience between Dental Monitoring and conventional monitoring of clear aligner therapy: A single-center randomized controlled trial. Am. J. Orthod. Dentofacial. Orthop. 2023, 163, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Marks, J.; Freer, E.; Ong, D.; Lam, J.; Miles, P. Evaluating Dental Monitoring effectiveness compared with conventional monitoring of clear aligner therapy using the Peer Assessment Rating index. Am. J. Orthod. Dentofacial. Orthop. 2024, 166, 350–355. [Google Scholar] [CrossRef]
- Morris, R.S.; Hoye, L.N.; Elnagar, M.H.; Atsawasuwan, P.; Galang-Boquiren, M.T.; Caplin, J.; Viana, G.C.; Obrez, A.; Kusnoto, B. Accuracy of Dental Monitoring 3D digital dental models using photograph and video mode. Am. J. Orthod. Dentofacial. Orthop. 2019, 156, 420–428. [Google Scholar] [CrossRef]
- Homsi, K.; Snider, V.; Kusnoto, B.; Atsawasuwan, P.; Viana, G.; Allareddy, V.; Gajendrareddy, P.; Elnagar, M.H. In-vivo evaluation of Artificial Intelligence Driven Remote Monitoring technology for tracking tooth movement and reconstruction of 3-dimensional digital models during orthodontic treatment. Am. J. Orthod. Dentofac. Orthop. 2023, 164, 690–699. [Google Scholar] [CrossRef]
- Sawchuk, D.; Currie, K.; Vich, M.L.; Palomo, J.M.; Flores-Mir, C. Diagnostic methods for assessing maxillary skeletal and dental transverse deficiencies: A systematic review. Korean J. Orthod. 2016, 46, 331–342. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tamburrino, R.K.; Boucher, N.S.; Vanarsdall, R.L.; Secchi, A.G. The Transverse Dimension: Diagnosis and Relevance to Functional Occlusion. RWISO J. 2010, 17–28. [Google Scholar]
- McNamara, J.A., Jr. Long-term adaptations to changes in the transverse dimension in children and adolescents: An overview. Am. J. Orthod. Dentofac. Orthop. 2006, 129, S71–S74. [Google Scholar] [CrossRef]
- McNamara, J.A., Jr. Early intervention in the transverse dimension: Is it worth the effort? Am. J. Orthod. Dentofac. Orthop. 2002, 121, 572–574. [Google Scholar] [CrossRef]
- Proffit, W.R.; Fields, H.; Larson, B.; Sarver, D.M. Contemporary Orthodontics, 5th ed.; Elsevier/Mosby: St. Louis, MO, USA, 2013. [Google Scholar]
- Akyalcin, S.; Cozad, B.E.; English, J.D.; Colville, C.D.; Laman, S. Diagnostic accuracy of impression-free digital models. Am. J. Orthod. Dentofac. Orthop. 2013, 144, 916–922. [Google Scholar] [CrossRef] [PubMed]
- Folco, A.; Benítez-Rogé, S.; Calabrese, D.; Iglesias, M.; Lumi, M.; Hetch, P.; Mateu, M.E. Method for evaluation of transverse dimension in self-ligating orthodontic treatment. A comparative study. Acta. Odontol. Latinoam. 2017, 30, 124–128. [Google Scholar] [PubMed]
- Kuriakose, P.; Greenlee, G.M.; Heaton, L.J.; Khosravi, R.; Tressel, W.; Bollen, A.M. The assessment of rapid palatal expansion using a remote monitoring software. J. World Fed. Orthodontists 2019, 8, 165–170. [Google Scholar] [CrossRef]
- Sosiawan, A.; Jordana, J.; Dhywinanda, D.E.; Salim, J.F.; Ramadhani, N.F.; Nurdiansyah, R.; Ardani, I.G.A.W.; Nugraha, A.P. Artificial intelligence driven dental monitoring and surveillance of malocclusion treatment in orthodontic patients. World J. Adv. Res. Rev. 2022, 16, 49–53. [Google Scholar] [CrossRef]
- Ender, A.; Mehl, A. Accuracy of complete-arch dental impressions: A new method of measuring trueness and precision. J. Prosthet. Dent. 2013, 109, 121–128. [Google Scholar] [CrossRef]
- Atieh, M.A.; Ritter, A.V.; Ko, C.C.; Duqum, I. Accuracy evaluation of intraoral optical impressions: A clinical study using a reference appliance. J. Prosthet. Dent. 2017, 118, 400–405. [Google Scholar] [CrossRef]
- Pellitteri, F.; Albertini, P.; Vogrig, A.; Spedicato, G.A.; Siciliani, G.; Lombardo, L. Comparative analysis of intraoral scanners accuracy using 3D software: An in vivo study. Prog. Orthod. 2022, 23, 21. [Google Scholar] [CrossRef]
- Casko, J.S.; Vaden, J.L.; Kokich, V.G.; Damone, J.; James, R.D.; Cangialosi, T.J.; Riolo, M.L.; Owens, S.E., Jr.; Bills, E.D. Objective grading system for dental casts and panoramic radiographs. American Board of Orthodontics. Am. J. Orthod. Dentofac. Orthop. 1998, 114, 589–599. [Google Scholar] [CrossRef]
- Kang, S.J.; Kee, Y.J.; Lee, K.C. Effect of the presence of orthodontic brackets on intraoral scans. Angle Orthod. 2021, 91, 98–104. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Palone, M.; Bellavia, M.; Floris, M.; Rombolà, A.; Cremonini, F.; Albertini, P.; Lombardo, L. Evaluation of effects of brackets and orthodontic wires on intraoral scans: A prospective in-vivo study. Orthod. Craniofac. Res. 2024, 27, 44–54. [Google Scholar] [CrossRef] [PubMed]
Points | Measurements taken |
---|---|
C3 | Distance between canine cusp tips. |
ZC3 | Distance between the thickest area of the gingival margin at the palatal/lingual side of canines. |
VC4 | Distance between the vestibular cusp tip on first premolars. |
CG4 | Distance between the center of the central groove of the first premolars. |
MVC6 | Distance between the mesio-buccal cusp tips on first molars. |
DPC6 | Distance between the disto-palatal cusp tips on upper/lower first molars. |
Z6 | Distance between the thickest areas of the gingival margin on the palatal/lingual side of first molars. |
C.stl | AI.stl | |||||||
---|---|---|---|---|---|---|---|---|
Mean ± SD | Median | 25th–75th Percentile | Mean ± SD | Median | 25th–75th Percentile | Δ | p-Value | |
ZC3 | 25.09 ± 2.11 | 25.23 | 23.73–25.74 | 25.30 ± 2.18 | 24.99 | 24.07–26.10 | 0.21 | 0.064 |
C3 | 34.60 ± 2.05 | 34.70 | 33.61–35.70 | 34.32 ± 1.91 | 34.39 | 32.90–35.67 | 0.28 | 0.310 |
CG4 | 36.12 ± 1.92 | 35.88 | 35.10–37.55 | 36.04 ± 1.89 | 36.10 | 34.81–37.70 | 0.08 | 0.557 |
VC4 | 41.97 ± 2.34 | 42.28 | 40.83–44.01 | 41.64 ± 2.12 | 42.02 | 40.20–42.91 | 0.3 | 0.076 |
Z6 | 34.81 ± 2.71 | 34.22 | 32.61–37.68 | 34.42 ± 2.62 | 34.05 | 32.39–36.76 | 0.39 | 0.002 * |
MVC6 | 50.93 ± 3.20 | 50.51 | 49.05–53.34 | 50.88 ± 3.09 | 50.72 | 49.37–53.51 | 0.05 | 0.312 |
DPC6 | 41.31 ± 3.12 | 40.58 | 39.03–44.41 | 41.09 ± 3.18 | 40.49 | 38.81–44.10 | 0.22 | 0.258 |
C.stl | AI.stl | |||||||
---|---|---|---|---|---|---|---|---|
Mean ± SD | Median | 25th–75th Percentile | Mean ± SD | Median | 25th–75th Percentile | Δ | p-Value | |
ZC3 | 20.02 ± 1.45 | 20.15 | 18.73–21.39 | 20.21 ± 1.64 | 20.72 | 18.57–21.51 | 0.19 | 0.195 |
C3 | 26.49 ± 1.87 | 26.71 | 25.50–27.84 | 26.40 ± 1.77 | 26.76 | 25.55–27.66 | 0.09 | 0.398 |
CG4 | 30.49 ± 1.87 | 30.78 | 29.38–31.63 | 30.33 ± 1.78 | 30.70 | 29.07–31.43 | 0.16 | 0.106 |
VC4 | 34.48 ± 1.92 | 34.74 | 33.21–35.54 | 34.44 ± 1.85 | 34.72 | 32.71–36.02 | 0.04 | 0.728 |
Z6 | 33.99 ± 2.73 | 34.22 | 32.40–35.39 | 33.73 ± 2.77 | 33.94 | 32.43–35.15 | 0.26 | 0.014 * |
MVC6 | 45.56 ± 2.92 | 45.93 | 44.38–47.71 | 45.16 ± 2.75 | 45.40 | 44.43–47.00 | 0.4 | 0.019 * |
DPC6 | 38.13 ± 3.00 | 38.21 | 35.97–40.24 | 37.88 ± 2.97 | 38.31 | 35.85–39.98 | 0.25 | 0.056 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pasciuti, E.; Guiducci, D.; Guidorizzi, F.; Terenzio, T.; Ceraulo, S.; Pepe, F.; Ranieri, L.; Cremonini, F.; Lombardo, L. Comparison Between Measurements Taken on AI-Generated and Conventional Digital Models: A Retrospective Study. Appl. Sci. 2025, 15, 8347. https://doi.org/10.3390/app15158347
Pasciuti E, Guiducci D, Guidorizzi F, Terenzio T, Ceraulo S, Pepe F, Ranieri L, Cremonini F, Lombardo L. Comparison Between Measurements Taken on AI-Generated and Conventional Digital Models: A Retrospective Study. Applied Sciences. 2025; 15(15):8347. https://doi.org/10.3390/app15158347
Chicago/Turabian StylePasciuti, Enzo, Daniela Guiducci, Filippo Guidorizzi, Tecla Terenzio, Saverio Ceraulo, Filippo Pepe, Luca Ranieri, Francesca Cremonini, and Luca Lombardo. 2025. "Comparison Between Measurements Taken on AI-Generated and Conventional Digital Models: A Retrospective Study" Applied Sciences 15, no. 15: 8347. https://doi.org/10.3390/app15158347
APA StylePasciuti, E., Guiducci, D., Guidorizzi, F., Terenzio, T., Ceraulo, S., Pepe, F., Ranieri, L., Cremonini, F., & Lombardo, L. (2025). Comparison Between Measurements Taken on AI-Generated and Conventional Digital Models: A Retrospective Study. Applied Sciences, 15(15), 8347. https://doi.org/10.3390/app15158347