Effect of Low-Salt Processing on Lipolytic Activity, Volatile Compound Profile, Color, Lipid Oxidation, and Microbiological Properties of Four Different Types of Pastırma
Abstract
1. Introduction
2. Materials and Methods
2.1. Material
2.2. The Production of Pastırma
2.3. Determination of pH, aw and Thiobarbituric Acid-Reactive Substance Content (TBARS) Values
2.4. Determination of Color Values
2.5. Lipolytic Enzyme Activities
2.6. Determination of Volatile Compounds
2.7. Microbiological Analysis
2.8. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, C.; Hu, W.; Chen, L.; Ouyang, K.; Chen, H.; Lin, S.; Wang, W. Basic amino acids as salt substitutes in low-salt gel-based meat products: A comprehensive review of mechanisms, benefits, and future perspectives. Foods 2025, 14, 637. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, H.O.; O’Grady, M.N.; O’Sullivan, M.G.; Kerry, J.P. The effect of reducing fat and salt on the quality and shelf life of pork sausages containing brown seaweeds (sea spaghetti and Irish wakame). Appl. Sci. 2024, 14, 7811. [Google Scholar] [CrossRef]
- Fraqueza, M.J.; Alfaia, C.M.; Rodrigues, S.S.; Teixeira, A. Strategies to reduce salt content: PDO and PGI meat products case. Foods 2024, 13, 2681. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, R.; Moustafa, N.Y.; Kirrella, G.A.K.; Al-Hawary, I.I.; Komiya, Y.; Arihara, K. Effect of NaCl reduction and substitution with KCl on behaviour and functional characteristics of Lactobacillus rhamnosus ferm p-15120 in fermented beef sausage. J. Anim. Plant Sci. 2018, 28, 744–753. [Google Scholar]
- World Health Organization (WHO). Guideline: Sodium Intake for Adults and Children; WHO: Geneva, Switzerland, 2012. [Google Scholar]
- Li, M.; Zhang, X.; Yin, Y.; Li, J.; Qu, C.; Liu, L.; Zhang, Y.; Zhu, Q.; Wang, S. Perspective of sodium reduction based on endogenous proteases via the strategy of sodium replacement in conjunction with mediated-curing. Crit. Rev. Food Sci. Nutrit. 2024, 64, 9353–9364. [Google Scholar] [CrossRef] [PubMed]
- Uğuz, Ş.; Soyer, A.; Dalmış, Ü. Effects of different salt contents on some quality characteristics during processing of dry-cured Turkish pastirma. J. Food Qual. 2011, 34, 204–211. [Google Scholar] [CrossRef]
- Hernández Correas, N.; Abellán, A.; Cayuela, J.M.; Bande-De León, C.; Tejada, L. Effect of overripening on the physico-chemical and sensory characteristics of boneless, salt-reduced iberian dry-cured Ham. Foods 2024, 13, 1588. [Google Scholar] [CrossRef] [PubMed]
- Kaya, M.; Oral, Z.F.Y.; Kaban, G. Pastırma. In Production of Traditional Mediterranean Meat Products; Lorenzo, J.M., Domínguez, R., Pateiro, M., Munekata, P.E.S., Eds.; Springer: Cham, Switzerland; Humana Press: New York, NY, USA, 2022; pp. 143–152. [Google Scholar] [CrossRef]
- Pretorius, B.; Schönfeldt, H.C. The contribution of processed pork meat products to total salt intake in the diet. Food Chem. 2018, 238, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Vidal, V.A.; Paglarini, C.S.; Lorenzo, J.M.; Munekata, P.E.; Pollonio, M.A. Salted meat products: Nutritional characteristics, processing and strategies for sodium reduction. Food Rev. Int. 2023, 39, 2183–2202. [Google Scholar] [CrossRef]
- Fischer, A. Produktbezogene TechnologieHerstellung von Fleischerzeugnissen. In Fleisch: Technologie und Hygiene der Gewinnung und Verarbeitung; Prändl, O., Fischer, A., Schmidhofer, T., Sinell, H.J., Eds.; Eugen Ulmer GmbH and Co.: Stuttgart, Germany, 1988; pp. 488–593. ISBN 3-8001-2135-2. [Google Scholar]
- Bosse, R.; Müller, A.; Gibis, M.; Weiss, A.; Schmidt, H.; Weiss, J. Recent advances in cured raw ham manufacture. Crit. Rev. Food Sci. Nutr. 2018, 58, 610–630. [Google Scholar] [CrossRef] [PubMed]
- Kaban, G. Changes in the composition of volatile compounds and in microbiological and physicochemical parameters during pastırma processing. Meat Sci. 2009, 82, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Yalınkılıç, B.; Kaban, G.; Kaya, M. Effect of sodium replacement on the quality characteristics of pastırma (a dry-cured meat product). Food Sci. Hum. Well. 2023, 12, 266–274. [Google Scholar] [CrossRef]
- Hastaoglu, E.; Vural, H. New approaches to production of Turkish-type dry-cured meat product “Pastirma”: Salt reduction and different drying techniques. Korean J. Food Sci. Anim. Resour. 2018, 38, 224–239. [Google Scholar] [CrossRef] [PubMed]
- Hazar, F.Y.; Kaban, G.; Kaya, M. The effects of different processing conditions on biogenic amine formation and some qualitative properties in pastırma. J. Food Sci. Technol. 2017, 54, 3892–3898. [Google Scholar] [CrossRef] [PubMed]
- Akköse, A.; Kaban, G.; Karaoğlu, M.M.; Kaya, M. Characteristics of pastırma types produced from water buffalo meat. Kafkas Univ. Vet. Fak. Derg. 2018, 24, 179–185. [Google Scholar] [CrossRef]
- TS No: TS 1071; Pastırma, Turkish Standard. Turkish Standards Institute: Ankara, Turkey, 2002.
- Çakıcı, N.; Aksu, M.I.; Erdemir, E. A survey of the physico-chemical and microbiological quality of different pastırma types: A dry-cured meat product. CyTA—J. Food 2015, 13, 196–203. [Google Scholar] [CrossRef]
- Gençcelep, H.; İhtiyar, B.; Yüzer, M.O. Determination of quality properties of Kastamonu pastırma: A dry-cured meat product. Harran Tar. Gıda Bilim. Derg. 2022, 26, 491–500. [Google Scholar] [CrossRef]
- Güngören, A. Historical, technological, biochemical, and microbiological aspects of pastırma, an ethnic meat product from asia to anatolia: A narrative literature review. Sustainability 2025, 17, 2801. [Google Scholar] [CrossRef]
- Lemon, D.W. An Improved Tba Test for Rancidity New Series Circular; No:51; Halifax-Laboratory: Halifax, NS, Canada, 1975. [Google Scholar]
- Motilva, M.J.; Toldra, F.; Flores, J. Assay of lipase and esterase activities in fresh pork meat and dry-cured ham. Z. Lebensm. Unters. Forsch. 1992, 195, 446–450. [Google Scholar] [CrossRef]
- Yılmaz Oral, Z.F.; Kaban, G. Effects of autochthonous strains on volatile compounds and technological properties of heat-treated sucuk. Food Biosci. 2021, 43, 101140. [Google Scholar] [CrossRef]
- Salfinger, Y.; Tortorello, M.L. (Eds.) Compendium of Methods for the Microbiological Examination of Foods, 3rd ed.; American Public Health Association: Washington, DC, USA, 1992. [Google Scholar]
- ChiPlot. Available online: https://www.chiplot.online/ (accessed on 30 May 2025).
- Huang, R.; Fang, Y.; Lu, W.; Zhong, Y.; Deng, Y.; Zhang, M.; Zhao, F. Rethinking salt in dry-cured meats: Innovations for a healthier and flavorful future. Food Rev. Int. 2025, 1–24. [Google Scholar] [CrossRef]
- Zhang, J.; Mora, L.; Toldrá, F.; Zhang, W.; Flores, M. Effects of ultrasound pretreatment on flavor characteristics and physicochemical properties of dry-cured ham slices during refrigerated vacuum storage. LWT Food Sci. Technol. 2024, 199, 116132. [Google Scholar] [CrossRef]
- Gan, X.; Li, H.; Wang, Z.; Emara, A.M.; Zhang, D.; He, Z. Does protein oxidation affect proteolysis in low sodium Chinese traditional bacon processing? Meat Sci. 2019, 150, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, J.; Gao, H.; Zhao, Y.; Wang, J.; Wang, S. Substituting sodium by various metal ions affects the cathepsins activity and proteolysis in dry-cured pork butts. Meat Sci. 2020, 166, 108132. [Google Scholar] [CrossRef] [PubMed]
- Oz, E.; Kaya, M. The proteolytic changes in two different types of pastırma during the production. J. Food Process. Preserv. 2019, 43, e14042. [Google Scholar] [CrossRef]
- Ruiz-Ramírez, J.; Arnau, J.; Serra, X.; Gou, P. Effect of pH24, NaCl content and proteolysis index on the relationship between water content and texture parameters in biceps femoris and semimembranosus muscles in dry-cured ham. Meat Sci. 2006, 72, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.L. Myofibrillar protein from different muscle fiber types: Implications of biochemical and functional properties in meat processing. Crit. Rev. Food Sci. Nutr. 1994, 34, 293–320. [Google Scholar] [CrossRef] [PubMed]
- Vaskoska, R.; Vénien, A.; Ha, M.; White, J.D.; Unnithan, R.R.; Astruc, T.; Warner, R.D. Thermal denaturation of proteins in the muscle fibre and connective tissue from bovine muscles composed of type I (masseter) or type II (cutaneous trunci) fibres: DSC and FTIR microspectroscopy study. Food Chem. 2021, 343, 128544. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Chen, Y.; Han, X.; Tan, D.; Chen, J.; Lai, C.; Yang, X.; Shan, X.; Silva, L.H.P.; Jiang, H. Effects of muscle fiber composition on meat quality, flavor characteristics, and nutritional traits in lamb. Foods 2025, 14, 2309. [Google Scholar] [CrossRef] [PubMed]
- Martuscelli, M.; Lupieri, L.; Sacchetti, G.; Mastrocola, D.; Pittia, P. Prediction of the salt content from water activity analysis in dry-cured ham. J. Food Eng. 2017, 200, 29–39. [Google Scholar] [CrossRef]
- Bermudez, R.; Franco, D.; Carballo, J.; Lorenzo, J.M. Physicochemical changes during manufacture and final sensory characteristics of dry-cured Celta ham. Effect of muscle type. Food Control 2014, 43, 263–269. [Google Scholar] [CrossRef]
- Vidal, V.A.; Lorenzo, J.M.; Munekata, P.E.; Pollonio, M.A. Challenges to reduce or replace NaCl by chloride salts in meat products made from whole pieces—A review. Crit. Rev. Food Sci. Nutr. 2021, 61, 2206. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Cao, S.; Yang, L.; Li, Z. Flavor formation based on lipid in meat and meat products: A review. J. Food. Biochem. 2022, 46, e14439. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Piao, C.; Ju, M.; Zhang, J.; Zhang, W.; Cui, F.; Li, G.; Cui, M. Effects of low salt on lipid oxidation and hydrolysis, fatty acids composition and volatiles flavor compounds of dry-cured ham during ripening. LWT Food Sci. Technol. 2023, 187, 115347. [Google Scholar] [CrossRef]
- Cao, S.M.; Wu, Y.Y.; Li, L.H.; Yang, X.Q.; Chen, S.J.; Hu, X.; Ma, H.X. Activities of endogenous lipase and lipolysis-oxidation of low-salt lactic acid-fermented fish (Decapterus maruadsi). J. Oleo Sci. 2018, 67, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Vestergaard, C.S.; Schivazappa, C.; Virgili, R. Lipolysis in dry-cured ham maturation. Meat Sci. 2000, 55, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Xiao, G.G.; Zhang, J.H.; Zhang, D.Q.; Ma, C.W. Changes of intramuscular fat composition, lipid oxidation and lipase activity in Biceps femoris and Semimembranosus of Xuanwei ham during controlled salting stages. J. Integ. Agricult. 2013, 12, 1993–2001. [Google Scholar] [CrossRef]
- Hernandez, P.; Navarro, L.; Toldra, F. Lipid composition and lipolytic enzyme activities in porcine skeletal muscles with different oxidative pattern. Meat Sci. 1998, 49, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Flores, M.; Alasnier, C.; Aristoy, M.C.; Navarro, J.L.; Gandemer, G.; Toldra, F. Activity of aminopeptidase and lipolytic enzymes in five skeletal muscles with various oxidative patterns. J. Sci. Food Agric. 1996, 70, 127–130. [Google Scholar] [CrossRef]
- Jin, G.; Zhang, J.; Yu, X.; Zhang, Y.; Lei, Y.; Wang, J. Lipolysis and lipid oxidation in bacon during curing and drying–ripening. Food Chem. 2010, 123, 465–471. [Google Scholar] [CrossRef]
- Toldra, F.; Flores, M.; Sanz, Y. Dry-cured ham flavour: Enzymatic generation and process influence. Food Chem. 1997, 59, 523–530. [Google Scholar] [CrossRef]
- Hazar, F.Y.; Kaban, G.; Kaya, M. The effects of transglutaminase on the qualitative properties of different pastırma types. LWT Food Sci. Technol. 2021, 145, 111289. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Y.T.; Cao, J.X.; Chen, Y.J.; Sun, Y.Y.; Zeng, X.Q.; Pan, D.D.; Ou, C.R.; Gan, N. Study on lipolysis-oxidation and volatile flavour compounds of dry cured goose with different curing salt content during production. Food Chem. 2016, 190, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Mariutti, L.R.B.; Bragagnolo, N. Influence of salt on lipid oxidation in meat and seafood products: A review. Food Res. Int. 2017, 94, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Huang, X.H.; Zhang, Y.Y.; Li, S.; Dong, X.; Qin, L. Effect of sodium salt on meat products and reduction sodium strategies—A review. Meat Sci. 2023, 205, 109296. [Google Scholar] [CrossRef] [PubMed]
- Hazar, F.Y.; Kaban, G.; Kaya, M. Volatile compounds of pastırma under different curing processes. J. Food Process. Preserv. 2019, 43, e14040. [Google Scholar] [CrossRef]
- Xiao, Y.; Liu, Y.; Chen, C.; Xie, T.; Li, P. Effect of Lactobacillus plantarum and Staphylococcus xylosus on flavour development and bacterial communities in Chinese dry fermented sausages. Food Res. Int. 2020, 135, 109247. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Li, X.; Huang, A. A metabolomics-based approach investigates volatile flavor formation and characteristic compounds of the Dahe black pig dry-cured ham. Meat Sci. 2019, 158, 107904. [Google Scholar] [CrossRef] [PubMed]
- Rysová, J.; Šmídová, Z. Effect of salt content reduction on food processing technology. Foods 2021, 10, 2237. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Jin, G.; Zhang, W.; Ahn, D.U.; Zhang, J. Effect of curing salt content on lipid oxidation and volatile flavour compounds of dry-cured turkey ham. LWT Food Sci. Technol. 2012, 48, 102–106. [Google Scholar] [CrossRef]
Production Stages | Temperature (°C) | Relative Humidity (%) | Time |
---|---|---|---|
Curing | 4 ± 1 | - | 2 days |
First drying | 15 ± 1 | 80 ± 2 | 6 days |
First pressing (15 kg weight per 1 kg meat) | 7 ± 1 | - | 20 h |
Second drying | 20 ± 1 | 70 ± 2 | 5 days |
Second pressing (15 kg weight per 1 kg meat) | 25 ± 1 | - | 7 h |
Third drying | 20 ± 1 | 70 ± 2 | 5 days |
Çemen coating | 7 ± 1 | - | 24 h |
Drying with çemen | 20 ± 1 | 70 ± 2 | 8 days |
pH | aw | L* | a* | b* | |
---|---|---|---|---|---|
Pastırma Type (PT) | |||||
Kuşgömü | 5.90 ± 0.07 a | 0.890 ± 0.013 a | 35.69 ± 0.64 b | 33.84 ± 1.29 b | 17.23 ± 0.42 b |
Sırt | 5.89 ± 0.02 a | 0.874 ± 0.013 b | 36.64 ± 2.20 b | 36.09 ± 0.73 a | 20.20 ± 1.20 a |
Bohça | 5.88 ± 0.07 a | 0.887 ± 0.017 a | 32.73 ± 1.01 c | 32.00 ± 0.73 c | 16.41 ± 0.44 b |
Şekerpare | 5.93 ± 0.09 a | 0.887 ± 0.014 a | 41.72 ± 0.64 a | 30.12 ± 2.02 d | 19.46 ± 2.02 a |
Significance | NS | ** | ** | ** | * |
Salt Level (SL) | |||||
3% | 5.90 ± 0.04 a | 0.890 ± 0.008 a | 37.92 ± 3.04 a | 32.67 ± 2.53 a | 18.58 ± 2.18 a |
5% | 5.90 ± 0.07 a | 0.872 ± 0.009 b | 35.99 ± 3.40 b | 33.09 ± 2.95 a | 18.07 ± 1.77 a |
Significance | NS | ** | ** | NS | NS |
PT × SL | ** | NS | NS | NS | NS |
Factors | Acid Lipase (U) | Phospholipase (U) | Neutral Lipase (U) | TBARS (µmol MDA/kg) |
---|---|---|---|---|
Pastırma Type (PT) | ||||
Kuşgömü | 0.86 ± 0.09 b | 0.77 ± 0.07 a | 1.29 ± 0.06 a | 30.16 ± 4.11 a |
Sırt | 1.11 ± 0.13 a | 0.55 ± 0.11 b | 1.14 ± 0.10 b | 30.22 ± 4.89 a |
Bohça | 0.70 ± 0.14 c | 0.36 ± 0.07 c | 0.91 ± 0.10 c | 23.47 ± 2.49 b |
Şekerpare | 0.66 ± 0.04 c | 0.29 ± 0.05 d | 0.98 ± 0.10 c | 22.40 ± 1.88 b |
Significance | ** | ** | ** | ** |
Salt Level (SL) | ||||
3% | 0.86 ± 0.17 a | 0.54 ± 0.21 a | 1.12 ± 0.14 a | 25.45 ± 4.68 b |
5% | 0.81 ± 0.25 b | 0.45 ± 0.19 b | 1.04 ± 0.20 b | 27.68 ± 5.24 a |
Significance | * | ** | * | * |
PT × SL | ** | ** | NS | NS |
Factors | Micrococcus/ Staphylococcus | Lactic Acid Bacteria | Yeast–Mold | Enterobacteriaceae |
---|---|---|---|---|
Pastırma Type (PT) | ||||
Kuşgömü | 7.47 ± 0.36 a | 4.53 ± 1.49 b | 4.93 ± 0.85 c | <2 |
Sırt | 6.55 ± 0.29 b | 3.82 ± 0.69 c | 4.91 ± 0.73 c | <2 |
Bohça | 7.85 ± 0.25 a | 5.45 ± 0.89 a | 6.64 ± 0.31 a | <2 |
Şekerpare | 7.63 ± 0.44 a | 5.25 ± 1.00 a | 5.82 ± 0.55 b | <2 |
Significance | ** | ** | ** | |
Salt Level (SL) | ||||
3% | 7.40 ± 0.68 a | 5.40 ± 1.13 a | 5.59 ± 0.95 a | <2 |
5% | 7.38 ± 0.60 a | 4.76 ± 1.20 b | 5.56 ± 0.99 a | <2 |
Significance | NS | ** | NS | |
PT × SL | NS | ** | ** |
Compound | KI | Salt Level | Pastırma Type | PT × SL | ||||
---|---|---|---|---|---|---|---|---|
3% | 5% | Kuşgömü | Sırt | Bohça | Şekerpare | |||
Aldehydes | ||||||||
Acetaldehyde | 623 | 36.93 ± 5.86 a | 31.73 ± 4.49 b | 32.81 ± 5.93 a | 37.57 ± 8.22 a | 34.21 ± 2.94 a | 33.05 ± 4.14 a | NS |
3-methylbutyraldehyde | 686 | 0.93 ± 1.47 b | 3.02 ± 4.89 a | 1.97 ± 3.70 ab | 0.27 ± 0.44 b | 4.80 ± 5.68 a | 1.06 ± 1.84 b | NS |
2-methyl-2-butenal | 788 | 6.27 ± 4.40 a | 5.86 ± 4.17 a | 5.91 ± 4.18 a | 5.35 ± 3.89 a | 8.39 ± 4.24 a | 4.91 ± 4.58 a | NS |
Hexanal | 849 | 7.83 ± 7.21 a | 5.83 ± 6.07 a | 11.88 ± 6.41 a | 4.48 ± 3.64 b | 5.10 ± 3.22 b | 5.78 ± 9.32 b | NS |
Heptanal | 955 | 0.73 ± 1.09 a | 0.70 ± 0.99 a | 1.08 ± 1.30 a | 0.82 ± 0.96 a | 0.00 ± 0.00 a | 0.86 ± 1.08 a | NS |
2-heptenal | 1019 | 0.15 ± 0.23 a | 0.03 ± 0.09 a | 0.13 ± 0.26 a | 0.12 ± 0.20 a | 0.08 ± 0.12 a | 0.04 ± 0.10 a | NS |
Benzaldehyde | 1026 | 3.54 ± 2.36 a | 1.95 ± 1.43 b | 2.20 ± 1.07 a | 2.56 ± 1.79 a | 4.61 ± 2.74 a | 1.95 ± 1.86 a | NS |
Octanal | 1051 | 0.75 ± 0.48 a | 0.53 ± 0.44 a | 0.90 ± 0.57 a | 0.69 ± 0.54 a | 0.56 ± 0.31 a | 0.42 ± 0.31 a | * |
Decanal | 1267 | 0.22 ± 0.41 a | 0.15 ± 0.21 a | 0.43 ± 0.53 a | 0.13 ± 0.13 ab | 0.00 ± 0.00 a | 0.17 ± 0.24 ab | NS |
Ketones | ||||||||
2.3-butanedione | 657 | 9.74 ± 8.37 a | 13.73 ± 16.31 a | 8.06 ± 9.50 b | 7.04 ± 4.91 b | 25.38 ± 18.18 a | 7.92 ± 7.64 b | NS |
3-pentanone | 733 | 1.94 ± 2.88 a | 1.77 ± 2.31 a | 3.6 ± 4.41 a | 0.791 ± 0.47 a | 2.111 ± 1.32 a | 0.961 ± 1.25 a | NS |
3-hydroxy -2-butanone | 779 | 5.18 ± 5.85 a | 8.25 ± 12.87 a | 3.63 ± 4.04 b | 4.34 ± 3.99 b | 16.31 ± 16.87 a | 3.57 ± 4.30 b | NS |
2-heptanone | 946 | 1.80 ± 1.34 a | 1.46 ± 1.55 a | 1.73 ± 1.86 a | 1.50 ± 1.55 a | 2.02 ± 1.10 a | 1.33 ± 1.26 a | NS |
2,3-octandione | 1025 | 1.35 ± 1.77 a | 0.67 ± 0.98 a | 1.07 ± 1.01 a | 0.25 ± 0.48 a | 1.74 ± 2.51 a | 1.13 ± 1.12 a | ** |
6-methyl-5-hepten-2-on | 1048 | 0.70 ± 0.46 a | 0.34 ± 0.25 b | 0.39 ± 0.35 b | 0.44 ± 0.41 b | 0.95 ± 0.46 a | 0.39 ± 0.14 b | NS |
4-methyl-, 2-hexanone | 1052 | 0.40 ± 0.33 a | 0.24 ± 0.24 a | 0.32 ± 0.39 a | 0.33 ± 0.34 a | 0.43 ± 0.21 a | 0.22 ± 0.20 a | NS |
Alcohols | ||||||||
Ethanol | 512 | 30.53 ± 11.22 a | 26.55 ± 11.60 a | 36.21 ± 11.21 a | 27.93 ± 8.94 ab | 18.80 ± 8.22 b | 30.24 ± 11.26 ab | NS |
Isobutyl alcohol | 643 | 2.81 ± 3.18 a | 1.08 ± 0.71 a | 2.51 ± 4.62 a | 1.74 ± 1.72 a | 2.06 ± 0.63 a | 1.59 ± 0.83 a | NS |
1-penten-3-ol | 743 | 1.28 ± 1.89 a | 2.59 ± 3.06 a | 2.29 ± 3.32 a | 0.92 ± 0.63 a | 2.05 ± 1.87 a | 2.42 ± 3.50 a | NS |
3-methyl-1-butanol | 783 | 1.86 ± 2.80 a | 2.66 ± 5.36 a | 0.52 ± 0.95 b | 0.62 ± 0.06 b | 7.16 ± 6.36 a | 1.296 ± 2.59 b | NS |
2-penten-1-ol | 829 | 1.01 ± 0.81 a | 0.89 ± 0.80 a | 0.89 ± 0.60 a | 0.69 ± 0.52 a | 1.60 ± 0.88 a | 0.71 ± 0.93 a | NS |
1-hexanol | 930 | 10.73 ± 10.36 a | 6.07 ± 6.75 a | 4.20 ± 1.51 b | 8.06 ± 10.03 b | 17.97 ± 10.29 a | 4.85 ± 5.01 b | NS |
2-ethyl-1-hexanol | 1084 | 0.73 ± 0.86 b | 1.38 ± 0.87 a | 2.05 ± 0.45 a | 1.12 ± 0.72 b | 0.35 ± 0.81 c | 0.58 ± 0.60 bc | NS |
1-(2-methoxypropoxy)-2-propanol | 1233 | 0.87 ± 1.53 a | 0.84 ± 1.57 a | 0.75 ± 0.51 b | 2.36 ± 2.40 a | 0.07 ± 0.13 b | 0.14 ± 0.17 b | NS |
Sulfur compounds | ||||||||
2-propen-1-thiol | 570 | 25.39 ± 11.92 a | 23.33 ± 10.84 a | 18.07 ± 9.40 b | 22.21 ± 12.45 b | 32.94 ± 10.42 a | 25.42 ± 9.07 ab | NS |
Allyl methyl sulfide | 730 | 15.15 ± 13.60 a | 13.47 ± 14.21 a | 13.59 ± 16.57 a | 16.03 ± 15.43 a | 20.48 ± 12.21 a | 8.02 ± 8.68 a | NS |
3,3′-thiobis-1-propen | 888 | 100.29 ± 104.40 a | 45.56 ± 40.97 b | 22.55 ± 12.22 b | 85.21 ± 110.47 ab | 145.09 ± 93.16 a | 51.30 ± 37.73 b | NS |
Propyl allyl sulfide | 907 | 0.80 ± 0.81 a | 0.43 ± 0.63 a | 0.47 ± 0.54 a | 0.50 ± 0.75 a | 1.20 ± 0.69 a | 0.39 ± 0.81 a | NS |
2,4-dimethl-thiophene | 909 | 1.53 ± 1.29 a | 0.85 ± 0.92 a | 0.83 ± 0.47 b | 1.28 ± 1.50 ab | 2.15 ± 1.26 a | 0.67 ± 0.76 b | NS |
3,4-dimethl-thiophene | 940 | 1.67 ± 1.40 a | 0.89 ± 0.83 a | 0.83 ± 1.11 a | 1.35 ± 1.58 a | 2.29 ± 1.02 a | 0.81 ± 0.29 a | NS |
Methyl 2-propenyl disulphide | 954 | 12.22 ± 13.22 a | 7.11 ± 4.29 a | 10.29 ± 4.72 a | 15.92 ± 17.61 a | 8.96 ± 4.498 a | 3.73 ± 2.12 a | NS |
Trans propenyl methyl disulphide | 969 | 1.26 ± 1.41 a | 0.70 ± 0.50 a | 1.34 ± 0.62 ab | 1.89 ± 1.57 a | 0.49 ± 0.35 bc | 0.17 ± 0.13 c | NS |
di-2-propenyl disulphide | 1135 | 77.23 ± 53.07 a | 42.61 ± 18.58 b | 36.97 ± 21.44 a | 83.52 ± 73.82 a | 70.01 ± 26.24 a | 52.61 ± 12.33 a | NS |
Esters | ||||||||
Hexanoic acid ethyl ester | 1014 | 1.43 ± 1.93 a | 0.81 ± 0.95 a | 0.53 ± 0.82 a | 2.36 ± 2.16 b | 1.08 ± 1.15 a | 0.53 ± 1.06 a | ** |
Acetic acid hexyl ester | 1050 | 0.57 ± 0.36 a | 0.43 ± 0.53 a | 0.46 ± 0.74 a | 0.48 ± 0.39 a | 0.66 ± 0.28 a | 0.43 ± 0.25 a | NS |
2,4-Hexadienoic acid methl ester | 1075 | 0.64 ± 0.40 a | 0.81 ± 0.73 a | 0.93 ± 0.84 a | 0.62 ± 0.51 a | 0.79 ± 0.45 a | 0.55 ± 0.46 a | NS |
Hexanoic acid hexyl ester | 1133 | 2.37 ± 2.24 a | 2.06 ± 2.90 a | 1.68 ± 1.11 a | 1.36 ± 1.04 a | 4.42 ± 3.54 a | 1.69 ± 2.87 a | NS |
Butanoic acid hexyl ester | 1221 | 0.69 ± 1.61 a | 0.94 ± 1.81 a | 0.41 ± 0.83 b | 0.00 ± 0.00 b | 2.30 ± 2.67 a | 0.71 ± 1.49 ab | NS |
Hexanoic acid penthyl ester | 1303 | 0.67 ± 1.13 a | 0.23 ± 0.68 a | 0.33 ± 0.93 a | 0.89 ± 1.54 a | 0.45 ± 0.43 a | 0.16 ± 0.39 a | NS |
Furans | ||||||||
2-pentyl-furane | 1021 | 0.86 ± 0.50 a | 0.57 ± 0.24 b | 0.51 ± 0.37 a | 0.72 ± 0.44 a | 1.00 ± 0.55 a | 0.70 ± 0.14 a | NS |
Terpenes | ||||||||
α-pinene | 950 | 0.64 ± 0.79 a | 0.66 ± 1.01 a | 0.86 ± 1.01 ab | 0.32 ± 0.60 b | 1.38 ± 0.99 a | 0.14 ± 0.39 b | NS |
β-myrcene | 998 | 0.39 ± 0.41 a | 0.09 ± 0.10 b | 0.38 ± 0.52 a | 0.33 ± 0.32 a | 0.09 ± 0.16 a | 0.16 ± 0.13 a | NS |
D-Limonene | 1054 | 2.22 ± 1.31 a | 1.13 ± 0.50 b | 1.48 ± 0.63 a | 1.46 ± 1.31 a | 2.46 ± 1.63 a | 1.48 ± 0.58 a | NS |
Aromatic hydrocarbons | ||||||||
Styrene | 935 | 1.04 ± 0.50 a | 0.68 ± 0.48 a | 0.83 ± 0.29 a | 0.76 ± 0.52 a | 1.03 ± 0.53 a | 0.87 ± 0.70 a | NS |
1-methyl-2-(1-methylethyl)-benzene | 1072 | 2.06 ± 1.69 a | 1.15 ± 1.11 a | 1.32 ± 0.90 a | 1.31 ± 1.42 a | 3.00 ± 1.97 a | 1.02 ± 0.89 a | NS |
Aliphatic hydrocarbons | ||||||||
Propene | <500 | 7.58 ± 6.49 a | 5.28 ± 4.04 a | 4.58 ± 2.65 b | 4.96 ± 6.60 b | 11.83 ± 5.83 a | 5.16 ± 3.43 b | NS |
1,4-Pentadiene | 555 | 62.77 ± 48.75 a | 18.79 ± 16.10 b | 46.79 ± 48.45 ab | 59.89 ± 57.41 a | 21.39 ± 11.57 b | 35.36 ± 33.56 ab | NS |
Hexane | 600 | 0.93 ± 1.75 a | 7.23 ± 18.37 a | 12.07 ± 24.75 a | 0.34 ± 0.52 a | 1.76 ± 1.85 a | 1.46 ± 2.66 a | NS |
Octane | 800 | 1.38 ± 1.72 a | 1.45 ± 2.05 a | 1.45 ± 2.39 a | 0.59 ± 0.80 a | 2.46 ± 1.62 a | 1.29 ± 2.06 a | NS |
Decane | 1000 | 0.62 ± 1.57 b | 0.98 ± 1.83 a | 1.06 ± 2.04 a | 0.13 ± 0.25 a | 1.19 ± 1.64 a | 0.82 ± 2.21 a | NS |
Tridecane | 1300 | 1.78 ± 2.36 a | 1.31 ± 3.26 a | 2.65 ± 4.76 a | 1.50 ± 2.50 a | 0.87 ± 0.50 a | 1.10 ± 1.49 a | NS |
Tetradecane | 1400 | 0.45 ± 0.42 a | 0.29 ± 0.49 a | 0.45 ± 0.66 a | 0.52 ± 0.55 a | 0.37 ± 0.21 a | 0.15 ± 0.10 a | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabil, E.; Hazar Suncak, F.Y.; Kaban, G.; Kaya, M. Effect of Low-Salt Processing on Lipolytic Activity, Volatile Compound Profile, Color, Lipid Oxidation, and Microbiological Properties of Four Different Types of Pastırma. Appl. Sci. 2025, 15, 8343. https://doi.org/10.3390/app15158343
Kabil E, Hazar Suncak FY, Kaban G, Kaya M. Effect of Low-Salt Processing on Lipolytic Activity, Volatile Compound Profile, Color, Lipid Oxidation, and Microbiological Properties of Four Different Types of Pastırma. Applied Sciences. 2025; 15(15):8343. https://doi.org/10.3390/app15158343
Chicago/Turabian StyleKabil, Emre, Fatma Yağmur Hazar Suncak, Güzin Kaban, and Mükerrem Kaya. 2025. "Effect of Low-Salt Processing on Lipolytic Activity, Volatile Compound Profile, Color, Lipid Oxidation, and Microbiological Properties of Four Different Types of Pastırma" Applied Sciences 15, no. 15: 8343. https://doi.org/10.3390/app15158343
APA StyleKabil, E., Hazar Suncak, F. Y., Kaban, G., & Kaya, M. (2025). Effect of Low-Salt Processing on Lipolytic Activity, Volatile Compound Profile, Color, Lipid Oxidation, and Microbiological Properties of Four Different Types of Pastırma. Applied Sciences, 15(15), 8343. https://doi.org/10.3390/app15158343