Concentration-Related Ultrastructural Alterations in Mouse Oocytes Following In Vitro Lindane Exposure
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Animals
2.3. In Vitro Maturation (IVM), Oocyte Isolation, and Experimental Protocol
2.4. Preparations for LM and TEM
2.5. Morphometric Analysis
2.6. Statistical Analysis
3. Results
3.1. Controls
3.2. Lindane 1 µM (L1)
3.3. Lindane 10 µM (L10)
3.4. Lindane 100 µM (L100)
3.5. Morphometric Analysis
4. Discussion
4.1. Mitochondrial Alterations and Cytoskeleton Impairments
4.2. ER Dilatation, Vacuole Formation, and Autophagy as Markers of Oocyte Stress
4.3. Effects on CG and Microvilli Distribution
4.4. Hypothesis on Role of Cumulus Cells in Lindane-Induced Oocyte Damage, Study Limitations, and Future Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Fucic, A.; Duca, R.C.; Galea, K.S.; Maric, T.; Garcia, K.; Bloom, M.S.; Andersen, H.R.; Vena, J.E. Reproductive health risks associated with occupational and environmental exposure to pesticides. Int. J. Environ. Res. Public. Health 2021, 18, 6576. [Google Scholar] [CrossRef]
- Arnesano, G.; Merella, M.; Meraglia, I.; Messineo, A.; Pallocci, M.; Soave, P.M.; Treglia, M.; Magnavita, N. Human Effects of Lindane in a one health perspective. A Review. Ann. Environ. Sci. Toxicol. 2023, 7, 066–071. [Google Scholar] [CrossRef]
- Maranghi, F.; Rescia, M.; Macrì, C.; Di Consiglio, E.; De Angelis, G.; Testai, E.; Farini, D.; De Felici, M.; Lorenzetti, S.; Mantovani, A. Lindane may modulate the female reproductive development through the interaction with er-β: An in vivo-in vitro approach. Chem. Biol. Interact. 2007, 169, 1–14. [Google Scholar] [CrossRef]
- Zhou, H.; Young, C.J.; Loch-Caruso, R.; Shikanov, A. Detection of Lindane and 7,12-Dimethylbenz[a]Anthracene toxicity at low concentrations in a three-dimensional ovarian follicle culture system. Reprod. Toxicol. 2018, 78, 141–149. [Google Scholar] [CrossRef]
- Naidu, R.; Biswas, B.; Willett, I.R.; Cribb, J.; Kumar Singh, B.; Paul Nathanail, C.; Coulon, F.; Semple, K.T.; Jones, K.C.; Barclay, A.; et al. Chemical pollution: A growing peril and potential catastrophic risk to humanity. Environ. Int. 2021, 156, 106616. [Google Scholar] [CrossRef]
- Dalsenter, P.; Faqi, A.; Webb, J.; Merker, H.-J.; Chahoud, I. Reproductive toxicity and toxicokinetics of lindane in the male offspring of rats exposed during lactation. Hum. Exp. Toxicol. 1997, 16, 146–153. [Google Scholar] [CrossRef]
- Bretveld, R.W.; Thomas, C.M.; Scheepers, P.T.; Zielhuis, G.A.; Roeleveld, N. Pesticide exposure: The hormonal function of the female reproductive system disrupted? Reprod. Biol. Endocrinol. 2006, 4, 30. [Google Scholar] [CrossRef]
- Rattan, S.; Zhou, C.; Chiang, C.; Mahalingam, S.; Brehm, E.; Flaws, J.A. Exposure to endocrine disruptors during adulthood: Consequences for female fertility. J. Endocrinol. 2017, 233, R109–R129. [Google Scholar] [CrossRef]
- Laws, M.J.; Neff, A.M.; Brehm, E.; Warner, G.R.; Flaws, J.A. Endocrine disrupting chemicals and reproductive disorders in women, men, and animal models. In Advances in Pharmacology; Elsevier: Amsterdam, The Netherlands, 2021; Volume 92, pp. 151–190. [Google Scholar] [CrossRef]
- Green, M.P.; Harvey, A.J.; Finger, B.J.; Tarulli, G.A. Endocrine disrupting chemicals: Impacts on human fertility and fecundity during the peri-conception period. Environ. Res. 2021, 194, 110694. [Google Scholar] [CrossRef]
- Panagopoulos, P.; Mavrogianni, D.; Christodoulaki, C.; Drakaki, E.; Chrelias, G.; Panagiotopoulos, D.; Potiris, A.; Drakakis, P.; Stavros, S. Effects of endocrine disrupting compounds on female fertility. Best Pract. Res. Clin. Obstet. Gynaecol. 2023, 88, 102347. [Google Scholar] [CrossRef]
- Beard, A.P. Endocrine and reproductive function in ewes exposed to the organochlorine pesticides lindane or pentachlorophenol. J. Toxicol. Environ. Health A 1999, 56, 23–46. [Google Scholar] [CrossRef]
- Beard, A.P.; Rawlings, N.C. Thyroid function and effects on reproduction in ewes exposed to the organochlorine pesticides Lindane or Pentachlorophenol (PCP) from conception. J. Toxicol. Environ. Health A 1999, 58, 509–530. [Google Scholar] [CrossRef]
- Venkidasamy, B.; Subramanian, U.; Samynathan, R.; Rajakumar, G.; Shariati, M.A.; Chung, I.-M.; Thiruvengadam, M. Organopesticides and fertility: Where does the link lead to? Environ. Sci. Pollut. Res. 2021, 28, 6289–6301. [Google Scholar] [CrossRef]
- Miao, Y.; Zeng, J.-Y.; Rong, M.; Li, M.; Zhang, L.; Liu, C.; Tian, K.-M.; Yang, K.-D.; Liu, C.-J.; Zeng, Q. Organochlorine pesticide exposures, metabolic enzyme genetic polymorphisms and semen quality parameters among men attending an infertility clinic. Chemosphere 2022, 303, 135010. [Google Scholar] [CrossRef]
- Tiemann, U. In vivo and in vitro effects of the organochlorine pesticides DDT, TCPM, Methoxychlor, and Lindane on the female reproductive tract of mammals: A review. Reprod. Toxicol. 2008, 25, 316–326. [Google Scholar] [CrossRef]
- Snedeker, S.M. Pesticides and Breast Cancer Risk: A review of DDT, DDE, and Dieldrin. Environ. Health Perspect. 2001, 109, 35–47. [Google Scholar] [CrossRef]
- Qi, S.-Y.; Xu, X.-L.; Ma, W.-Z.; Deng, S.-L.; Lian, Z.-X.; Yu, K. Effects of organochlorine pesticide residues in maternal body on infants. Front. Endocrinol. 2022, 13, 890307. [Google Scholar] [CrossRef]
- Ataniyazova, O.; Baumann, R.; Liem, A.; Mukhopadhyay, U.; Vogelaar, E.; Boersma, E. Levels of certain metals, organochlorine pesticides and dioxins in cord blood, maternal blood, human milk and some commonly used nutrients in the surroundings of the Aral sea (Karakalpakstan, Republic of Uzbekistan). Acta Paediatr. 2001, 90, 801–808. [Google Scholar] [CrossRef]
- Loomis, D.; Guyton, K.; Grosse, Y.; El Ghissasi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Mattock, H.; Straif, K. Carcinogenicity of Lindane, DDT, and 2,4-Dichlorophenoxyacetic Acid. Lancet Oncol. 2015, 16, 891–892. [Google Scholar] [CrossRef]
- Breivik, K.; Pacyna, J.M.; Münch, J. Use of α-, β- and γ-Hexachlorocyclohexane in Europe, 1970–1996. Sci. Total Environ. 1999, 239, 151–163. [Google Scholar] [CrossRef]
- Scascitelli, M. Effects of Lindane on oocyte maturation and preimplantation embryonic development in the mouse. Reprod. Toxicol. 2003, 17, 299–303. [Google Scholar] [CrossRef]
- Zhurabekova, G.; Balmagambetova, A.; Bianchi, S.; Belli, M.; Bekmukhambetov, Y.; Macchiarelli, G. The toxicity of Lindane in the female reproductive system: A review on the Aral sea. EuroMediterranean Biomed. J. 2018, 13, 104–108. [Google Scholar] [CrossRef]
- Chattopadhyay, P.; Karnik, A.B.; Thakore, K.N.; Lakkad, B.C.; Nigam, S.K.; Kashyap, S.K. Health effects among workers involved in the manufacture of hexachlorocyclohexane. Occup. Med. 1988, 38, 77–81. [Google Scholar] [CrossRef]
- Drummond, L.; Gillanders, E.M.; Wilson, H.K. Plasma gamma-Hexachlorocyclohexane concentrations in forestry workers exposed to lindane. Occup. Environ. Med. 1988, 45, 493–497. [Google Scholar] [CrossRef]
- Srivastava, S.; Singh, A.; Shukla, R.K.; Khanna, V.K.; Parmar, D. Effect of prenatal exposure of lindane on alterations in the expression of cerebral cytochrome p450s and neurotransmitter receptors in brain regions. Food Chem. Toxicol. 2015, 77, 74–81. [Google Scholar] [CrossRef]
- Stockholm Convention on Persistent Organic Pollutants (POPs). Available online: https://chm.pops.int/Countries/StatusofRatifications/PartiesandSignatoires/tabid/4500/Default.aspx (accessed on 28 May 2025).
- Vijgen, J.; De Borst, B.; Weber, R.; Stobiecki, T.; Forter, M. HCH and Lindane contaminated sites: European and global need for a permanent solution for a long-time neglected issue. Environ. Pollut. 2019, 248, 696–705. [Google Scholar] [CrossRef]
- Zhang, W.; Lin, Z.; Pang, S.; Bhatt, P.; Chen, S. Insights Into the biodegradation of Lindane (γ-Hexachlorocyclohexane) using a microbial system. Front. Microbiol. 2020, 11, 522. [Google Scholar] [CrossRef]
- Jit, S.; Dadhwal, M.; Kumari, H.; Jindal, S.; Kaur, J.; Lata, P.; Niharika, N.; Lal, D.; Garg, N.; Gupta, S.K.; et al. Evaluation of Hexachlorocyclohexane contamination from the last Lindane production plant operating in India. Environ. Sci. Pollut. Res. 2011, 18, 586–597. [Google Scholar] [CrossRef]
- Bouvier, G.; Blanchard, O.; Momas, I.; Seta, N. Pesticide exposure of non-occupationally exposed subjects compared to some occupational exposure: A french pilot study. Sci. Total Environ. 2006, 366, 74–91. [Google Scholar] [CrossRef]
- Briz, V.; Molina-Molina, J.-M.; Sánchez-Redondo, S.; Fernández, M.F.; Grimalt, J.O.; Olea, N.; Rodríguez-Farré, E.; Suñol, C. Differential estrogenic effects of the persistent organochlorine pesticides dieldrin, endosulfan, and lindane in primary neuronal cultures. Toxicol. Sci. 2011, 120, 413–427. [Google Scholar] [CrossRef]
- Ke, F.-C.; Fang, S.-H.; Lee, M.-T.; Sheu, S.-Y.; Lai, S.-Y.; Chen, Y.J.; Huang, F.-L.; Wang, P.S.; Stocco, D.M.; Hwang, J.-J. Lindane, a gap junction blocker, suppresses FSH and Transforming Growth Factor Β1-Induced Connexin43 gap junction formation and steroidogenesis in rat granulosa cells. J. Endocrinol. 2005, 184, 555–566. [Google Scholar] [CrossRef]
- Li, R.; Mather, J.P. Lindane, an inhibitor of gap junction formation, abolishes oocyte directed follicle organizing activity in vitro. Endocrinology 1997, 138, 4477–4480. [Google Scholar] [CrossRef]
- Loch-Caruso, R.; Upham, B.L.; Harris, C.; Trosko, J.E. Divergent roles for glutathione in lindane-induced acute and delayed-onset inhibition of rat myometrial gap junctions. Toxicol. Sci. 2005, 85, 694–702. [Google Scholar] [CrossRef]
- Pesando, D.; Robert, S.; Huitorel, P.; Gutknecht, E.; Pereira, L.; Girard, J.-P.; Ciapa, B. Effects of Methoxychlor, Dieldrin and Lindane on sea Urchin fertilization and early development. Aquat. Toxicol. 2004, 66, 225–239. [Google Scholar] [CrossRef]
- Alm, H.; Tiemann, U.; Torner, H. Influence of organochlorine pesticides on development of mouse embryos in vitro. Reprod. Toxicol. 1996, 10, 321–326. [Google Scholar] [CrossRef]
- Alm, H.; Torner, H.; Tiemann, U.; Kanitz, W. Influence of organochlorine pesticides on maturation and postfertilization development of bovine oocytes in vitro. Reprod. Toxicol. 1998, 12, 559–563. [Google Scholar] [CrossRef]
- Palmerini, M.G.; Zhurabekova, G.; Balmagambetova, A.; Nottola, S.A.; Miglietta, S.; Belli, M.; Bianchi, S.; Cecconi, S.; Di Nisio, V.; Familiari, G.; et al. The pesticide lindane induces dose-dependent damage to granulosa cells in an in vitro culture. Reprod. Biol. 2017, 17, 349–356. [Google Scholar] [CrossRef]
- Palmerini, M.G.; Antinori, M.; Maione, M.; Cerusico, F.; Versaci, C.; Nottola, S.A.; Macchiarelli, G.; Khalili, M.A.; Antinori, S. Ultrastructure of immature and mature human oocytes after cryotop vitrification. J. Reprod. Dev. 2014, 60, 411–420. [Google Scholar] [CrossRef]
- Taghizabet, N.; Khalili, M.A.; Anbari, F.; Agha-Rahimi, A.; Nottola, S.A.; Macchiarelli, G.; Palmerini, M.G. Human cumulus cell sensitivity to vitrification, an ultrastructural study. Zygote 2018, 26, 224–231. [Google Scholar] [CrossRef]
- Gatti, M.; Belli, M.; De Rubeis, M.; Tokita, S.; Ikema, H.; Yamashiro, H.; Fujishima, Y.; Anderson, D.; Goh, V.S.T.; Shinoda, H.; et al. Ultrastructural analysis of large japanese field mouse (Apodemus speciosus) testes exposed to low-dose-rate (ldr) radiation after the Fukushima Nuclear Power Plant accident. Biology 2024, 13, 239. [Google Scholar] [CrossRef]
- Gatti, M.; Belli, M.; De Rubeis, M.; Khalili, M.A.; Familiari, G.; Nottola, S.A.; Macchiarelli, G.; Hajderi, E.; Palmerini, M.G. Ultrastructural evaluation of mouse oocytes exposed in vitro to different concentrations of the fungicide mancozeb. Biology 2023, 12, 698. [Google Scholar] [CrossRef]
- Cecconi, S.; Rossi, G.; Santilli, A.; Stefano, L.D.; Hoshino, Y.; Sato, E.; Palmerini, M.G.; Macchiarelli, G. Akt expression in mouse oocytes matured in vivo and in vitro. Reprod. Biomed. Online 2010, 20, 35–41. [Google Scholar] [CrossRef]
- Picton, H.M.; Kim, S.S.; Gosden, R.G. Cryopreservation of gonadal tissue and cells. Br. Med. Bull. 2000, 56, 603–615. [Google Scholar] [CrossRef]
- Younis, A.; Carnovale, D.; Butler, W.; Eroglu, A. Application of intra- and extracellular sugars and dimethylsulfoxide to human oocyte cryopreservation. J. Assist. Reprod. Genet. 2009, 26, 341–345. [Google Scholar] [CrossRef]
- Krieger, T.R.; Loch-Caruso, R. Antioxidants prevent γ-hexachlorocyclohexane-induced inhibition of rat myometrial gap junctions and contractions1. Biol. Reprod. 2001, 64, 537–547. [Google Scholar] [CrossRef]
- Komatsu, K.; Iwasaki, T.; Murata, K.; Yamashiro, H.; Goh, V.S.T.; Nakayama, R.; Fujishima, Y.; Ono, T.; Kino, Y.; Simizu, Y.; et al. Morphological reproductive characteristics of testes and fertilization capacity of cryopreserved sperm after the Fukushima accident in raccoon ( Procyon lotor). Reprod. Domest. Anim. 2021, 56, 484–497. [Google Scholar] [CrossRef]
- Palmerini, M.G.; Belli, M.; Nottola, S.A.; Miglietta, S.; Bianchi, S.; Bernardi, S.; Antonouli, S.; Cecconi, S.; Familiari, G.; Macchiarelli, G. Mancozeb impairs the ultrastructure of mouse granulosa cells in a dose-dependent manner. J. Reprod. Dev. 2018, 64, 75–82. [Google Scholar] [CrossRef]
- Nottola, S.; Coticchio, G.; De Santis, L.; Macchiarelli, G.; Maione, M.; Bianchi, S.; Iaccarino, M.; Flamigni, C.; Borini, A. Ultrastructure of human mature oocytes after slow cooling cryopreservation with ethylene glycol. Reprod. Biomed. Online 2008, 17, 368–377. [Google Scholar] [CrossRef]
- Belli, M.; Palmerini, M.G.; Bianchi, S.; Bernardi, S.; Khalili, M.A.; Nottola, S.A.; Macchiarelli, G. Ultrastructure of mitochondria of human oocytes in different clinical conditions during assisted reproduction. Arch. Biochem. Biophys. 2021, 703, 108854. [Google Scholar] [CrossRef]
- Cabry, R.; Merviel, P.; Madkour, A.; Lefranc, E.; Scheffler, F.; Desailloud, R.; Bach, V.; Benkhalifa, M. The impact of endocrine disruptor chemicals on oocyte/embryo and clinical outcomes in ivf. Endocr. Connect. 2020, 9, R134–R142. [Google Scholar] [CrossRef]
- Dutta, S.; Sengupta, P.; Bagchi, S.; Chhikara, B.S.; Pavlík, A.; Sláma, P.; Roychoudhury, S. Reproductive toxicity of combined effects of endocrine disruptors on human reproduction. Front. Cell Dev. Biol. 2023, 11, 1162015. [Google Scholar] [CrossRef]
- Yuksel, H.; Ispir, U.; Ulucan, A.; Turk, C.; Taysi, M.R. Effects of Hexachlorocyclohexane (HCH-γ-Isomer, Lindane) on the reproductive system of zebrafish (danio rerio). Turk. J. Fish. Aquat. Sci. 2016, 16, 917–921. [Google Scholar] [CrossRef]
- Sharma, A.; Gill, J.P.S.; Banga, H.S. Effect of low dose chronic exposure to deltamethrin and lindaneon reproductive system of male mice. Theriogenol. Insight Int. J. Reprod. Anim. 2017, 7, 25. [Google Scholar] [CrossRef]
- Cyr, D.G.; Devine, P.J.; Plante, I. Immunohistochemistry and female reproductive toxicology: The ovary and mammary glands. In Technical Aspects of Toxicological Immunohistochemistry; Aziz, S.A., Mehta, R., Eds.; Springer: New York, NY, USA, 2016; pp. 113–145. [Google Scholar] [CrossRef]
- Cooper, R.L.; Chadwick, R.W.; Rehnberg, G.L.; Goldman, J.M.; Booth, K.C.; Hein, J.F.; McElroy, W.K. Effect of lindane on hormonal control of reproductive function in the female rat. Toxicol. Appl. Pharmacol. 1989, 99, 384–394. [Google Scholar] [CrossRef]
- La Sala, G.; Farini, D.; De Felici, M. Proapoptotic effects of lindane on mouse primordial germ cells. Toxicol. Sci. 2009, 108, 445–451. [Google Scholar] [CrossRef]
- Bapayeva, G.; Issayeva, R.; Zhumadilova, A.; Nurkasimova, R.; Kulbayeva, S.; Tleuzhan, R. Organochlorine pesticides and female puberty in South Kazakhstan. Reprod. Toxicol. 2016, 65, 67–75. [Google Scholar] [CrossRef]
- Balmagambetova, A.; Abdelazim, I.; Zhurabekova, G.; Rakhmanov, S.; Bekmukhambetov, Y.; Ismagulova, E. Reproductive and health-related hazards of lindane exposure in Aral Sea Area. Environ. Dis. 2017, 2, 70. [Google Scholar] [CrossRef]
- Chen, M.-W.; Santos, H.M.; Que, D.E.; Gou, Y.-Y.; Tayo, L.L.; Hsu, Y.-C.; Chen, Y.-B.; Chen, F.-A.; Chao, H.-R.; Huang, K.-L. Association between organochlorine pesticide levels in breast milk and their effects on female reproduction in a taiwanese population. Int. J. Environ. Res. Public. Health 2018, 15, 931. [Google Scholar] [CrossRef]
- Picard, A. Effect of organochlorine pesticides on maturation of starfish and mouse oocytes. Toxicol. Sci. 2003, 73, 141–148. [Google Scholar] [CrossRef]
- Motta, P.M.; Nottola, S.A.; Familiari, G.; Makabe, S.; Stallone, T.; Macchiarelli, G. Morphodynamics of the follicular-luteal complex during early ovarian development and reproductive life. In International Review of Cytology; Elsevier: Amsterdam, The Netherlands, 2002; Volume 223, pp. 177–288. [Google Scholar] [CrossRef]
- Pepling, M.E.; Wilhelm, J.E.; O’Hara, A.L.; Gephardt, G.W.; Spradling, A.C. Mouse oocytes within germ cell cysts and primordial follicles contain a balbiani body. Proc. Natl. Acad. Sci. USA 2007, 104, 187–192. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.-L.; Chen, M.-H.; Zhang, Z.; Xu, B.-H.; Liu, R.; Xu, L.; He, S.-W.; Li, F.-P.; Qi, Z.-Q.; et al. Methoxychlor exposure induces oxidative stress and affects mouse oocyte meiotic maturation: Methoxychlor affects mouse oocyte maturation. Mol. Reprod. Dev. 2016, 83, 768–779. [Google Scholar] [CrossRef]
- Cummins, J.M. The role of mitochondria in the establishment of oocyte functional competence. Eur. J. Obstet. Gynecol. Reprod. Biol. 2004, 115, S23–S29. [Google Scholar] [CrossRef]
- Dumollard, R.; Duchen, M.; Carroll, J. The role of mitochondrial function in the oocyte and embryo. In Current Topics in Developmental Biology; Elsevier: Amsterdam, The Netherlands, 2007; Volume 77, pp. 21–49. [Google Scholar] [CrossRef]
- Babayev, E.; Wang, T.; Szigeti-Buck, K.; Lowther, K.; Taylor, H.S.; Horvath, T.; Seli, E. Reproductive aging is associated with changes in oocyte mitochondrial dynamics, function, and mtdna quantity. Maturitas 2016, 93, 121–130. [Google Scholar] [CrossRef]
- Belli, M.; Rinaudo, P.; Palmerini, M.G.; Ruggeri, E.; Antonouli, S.; Nottola, S.A.; Macchiarelli, G. Pre-implantation mouse embryos cultured in vitro under different oxygen concentrations show altered ultrastructures. Int. J. Environ. Res. Public. Health 2020, 17, 3384. [Google Scholar] [CrossRef]
- Malott, K.F.; Luderer, U. Toxicant effects on mammalian oocyte mitochondria†. Biol. Reprod. 2021, 104, 784–793. [Google Scholar] [CrossRef]
- Brevini, T.A.; Cillo, F.; Antonini, S.; Gandolfi, F. Cytoplasmic remodelling and the acquisition of developmental competence in pig oocytes. Anim. Reprod. Sci. 2007, 8, 23–38. [Google Scholar] [CrossRef]
- Zhang, J.-W.; Xu, D.-Q.; Feng, X.-Z. The toxic effects and possible mechanisms of glyphosate on mouse oocytes. Chemosphere 2019, 237, 124435. [Google Scholar] [CrossRef]
- Chang, T.; Zhao, J.; Li, Q.; Meng, A.; Xia, Q.; Li, Y.; Xiang, W.; Yao, Z. Nuclear-cytoplasmic asynchrony in oocyte maturation caused by TUBB8 variants via impairing microtubule function: A novel pathogenic mechanism. Reprod. Biol. Endocrinol. 2023, 21, 109. [Google Scholar] [CrossRef]
- Ghadially, F.N. Ultrastructural Pathology of the Cell and Matrix, 3rd ed.; Butterworths: Oxford, UK, 1997; Volume 1. [Google Scholar]
- Xavier, V.J.; Martinou, J.-C. RNA granules in the mitochondria and their organization under mitochondrial stresses. Int. J. Mol. Sci. 2021, 22, 9502. [Google Scholar] [CrossRef]
- Kline, D.; Kline, J.T. Repetitive calcium transients and the role of calcium in exocytosis and cell cycle activation in the mouse egg. Dev. Biol. 1992, 149, 80–89. [Google Scholar] [CrossRef]
- Whitaker, M. Calcium at fertilization and in early development. Physiol. Rev. 2006, 86, 25–88. [Google Scholar] [CrossRef]
- Liu, Y.; He, Q.-K.; Xu, Z.-R.; Xu, C.-L.; Zhao, S.-C.; Luo, Y.-S.; Sun, X.; Qi, Z.-Q.; Wang, H.-L. Thiamethoxam exposure induces endoplasmic reticulum stress and affects ovarian function and oocyte development in mice. J. Agric. Food Chem. 2021, 69, 1942–1952. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Li, Y. Ultrastructure of human oocytes of different maturity stages and the alteration during in vitro maturation. Fertil. Steril. 2009, 92, 396.e1–396.e6. [Google Scholar] [CrossRef]
- Coticchio, G.; Borini, A.; Distratis, V.; Maione, M.; Scaravelli, G.; Bianchi, V.; Macchiarelli, G.; Nottola, S.A. Qualitative and morphometric analysis of the ultrastructure of human oocytes cryopreserved by two alternative slow cooling protocols. J. Assist. Reprod. Genet. 2010, 27, 131–140. [Google Scholar] [CrossRef]
- Trebichalská, Z.; Kyjovská, D.; Kloudová, S.; Otevřel, P.; Hampl, A.; Holubcová, Z. Cytoplasmic maturation in human oocytes: An ultrastructural study †. Biol. Reprod. 2021, 104, 106–116. [Google Scholar] [CrossRef]
- Nottola, S.A.; Albani, E.; Coticchio, G.; Palmerini, M.G.; Lorenzo, C.; Scaravelli, G.; Borini, A.; Levi-Setti, P.E.; Macchiarelli, G. Freeze/thaw stress induces organelle remodeling and membrane recycling in cryopreserved human mature oocytes. J. Assist. Reprod. Genet. 2016, 33, 1559–1570. [Google Scholar] [CrossRef]
- Ghadially, F.N. Ultrastructural Pathology of the Cell and Matrix, 3rd ed.; Butterworths: Oxford, UK, 1997; Volume 2. [Google Scholar]
- Escobar Sánchez, M.L.; Echeverría Martínez, O.M.; Vázquez-Nin, G.H. Immunohistochemical and ultrastructural visualization of different routes of oocyte elimination in adult rats. Eur. J. Histochem. 2012, 56, 17. [Google Scholar] [CrossRef]
- Yi, J.; Tang, X.M. Functional implication of autophagy in steroid-secreting cells of the rat. Anat. Rec. 1995, 242, 137–146. [Google Scholar] [CrossRef]
- Perez, G.I. Fragmentation and death (a.k.a. apoptosis) of ovulated oocytes. Mol. Hum. Reprod. 1999, 5, 414–420. [Google Scholar] [CrossRef]
- Liu, M. The biology and dynamics of mammalian cortical granules. Reprod. Biol. Endocrinol. 2011, 9, 149. [Google Scholar] [CrossRef]
- Campagna, C.; Sirard, M.-A.; Ayotte, P.; Bailey, J.L. Impaired maturation, fertilization, and embryonic development of porcine oocytes following exposure to an environmentally relevant organochlorine mixture1. Biol. Reprod. 2001, 65, 554–560. [Google Scholar] [CrossRef]
- Campagna, C.; Bailey, J.L.; Sirard, M.-A.; Ayotte, P.; Maddox-Hyttel, P. An environmentally-relevant mixture of organochlorines and its vehicle control, dimethylsulfoxide, induce ultrastructural alterations in porcine oocytes. Mol. Reprod. Dev. 2006, 73, 83–91. [Google Scholar] [CrossRef]
- Pocar, P.; Brevini, T.; Fischer, B.; Gandolfi, F. The impact of endocrine disruptors on oocyte competence. Reproduction 2003, 125, 313–325. [Google Scholar] [CrossRef]
- Wilson, N.F.; Snell, W.J. Microvilli and cell-cell fusion during fertilization. Trends Cell Biol. 1998, 8, 93–96. [Google Scholar] [CrossRef]
- Runge, K.E.; Evans, J.E.; He, Z.-Y.; Gupta, S.; McDonald, K.L.; Stahlberg, H.; Primakoff, P.; Myles, D.G. Oocyte CD9 is enriched on the microvillar membrane and required for normal microvillar shape and distribution. Dev. Biol. 2007, 304, 317–325. [Google Scholar] [CrossRef]
- Benammar, A.; Ziyyat, A.; Lefèvre, B.; Wolf, J.-P. Tetraspanins and mouse oocyte microvilli related to fertilizing ability. Reprod. Sci. 2017, 24, 1062–1069. [Google Scholar] [CrossRef]
- Zhou, C.-J.; Wu, S.-N.; Shen, J.-P.; Wang, D.-H.; Kong, X.-W.; Lu, A.; Li, Y.-J.; Zhou, H.-X.; Zhao, Y.-F.; Liang, C.-G. The Beneficial Effects of cumulus cells and oocyte-cumulus cell gap junctions depends on oocyte maturation and fertilization methods in mice. PeerJ 2016, 4, e1761. [Google Scholar] [CrossRef]
- Xie, J.; Xu, X.; Liu, S. Intercellular communication in the cumulus-oocyte complex during folliculogenesis: A review. Front. Cell Dev. Biol. 2023, 11, 1087612. [Google Scholar] [CrossRef]
- Campen, K.A.; McNatty, K.P.; Pitman, J.L. A protective role of cumulus cells after short-term exposure of rat cumulus cell-oocyte complexes to lifestyle or environmental contaminants. Reprod. Toxicol. 2017, 69, 19–33. [Google Scholar] [CrossRef]
- Martinez, C.A.; Rizos, D.; Rodriguez-Martinez, H.; Funahashi, H. Oocyte-cumulus cells crosstalk: New comparative insights. Theriogenology 2023, 205, 87–93. [Google Scholar] [CrossRef]
- Defamie, N. Disruption of gap junctional intercellular communication by Lindane is associated with aberrant localization of connexin43 and zonula occludens-1 in 42gpa9 Sertoli cells. Carcinogenesis 2001, 22, 1537–1542. [Google Scholar] [CrossRef]
- Pratticò, D.; Laganà, F.; Oliva, G.; Fiorillo, A.S.; Pullano, S.A.; Calcagno, S.; De Carlo, D.; La Foresta, F. Integration of lstm and u-net models for monitoring electrical absorption with a system of sensors and electronic circuits. IEEE Trans. Instrum. Meas. 2025, 74, 2533311. [Google Scholar] [CrossRef]
Control | Lindane 1 μM | Lindane 10 μM | Lindane 100 μM | |
---|---|---|---|---|
Mitochondria | Abundant, round-to-ovoid shape, electron-dense cristae | Numerous, round-to-ovoid shape, electron-pale cristae | Less numerous, round-to-ovoid shape, electron-pale cristae | Few, round-to-ovoid shape, electron-pale cristae, electron-pale matrix |
Cortical Granules | Numerous, uniformly distributed, round, electron-dense | Less numerous, irregularly distributed, round, electron-dense | Less numerous, irregularly distributed, round, electron-dense | Rare, round, electron-dense |
Microvilli | Numerous, long and thin | Less numerous, short and thick | Rare, short and thick | Rare, short and thick |
Zona Pellucida | Dense | Thin and dense | Thick and dense | Thick and dense |
Control | Lindane 1 μM | Lindane 10 μM | Lindane 100 μM | |
---|---|---|---|---|
N° of mitochondria/50 μm2 | 20.6 ± 5.1 a | 19.8 ± 3.7 a,c | 17 ± 5.6 a,c,d | 8.2 ± 2.4 b |
N° of large SER vesicles/50 μm2 (dilated vesicle diameter ≥ 0.5 µm) | 5.6 ± 1.7 a | 6.8 ± 3.2 a | 7 ± 1.6 a | 9.8 ± 2.4 a |
N° of MVBs and dense lamellar bodies/50 μm2 | 3.6 ± 0.5 a | 4.4 ± 0.9 a,b | 6 ± 1 b | 9.2 ± 1.3 c |
N° of CGs/10 μm | 2.6 ± 1.1 a | 2 ± 1.6 a | 1.6 ± 1.5 a | 1 ± 0.7 a |
N° of microvilli/10 μm | 13 ± 2.7 a | 11.4 ± 2.8 a,b | 8.2± 1.5 b | 8.6 ± 1.1 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gatti, M.; Belli, M.; De Rubeis, M.; Nottola, S.A.; Macchiarelli, G.; Tatone, C.; Di Emidio, G.; Palmerini, M.G. Concentration-Related Ultrastructural Alterations in Mouse Oocytes Following In Vitro Lindane Exposure. Appl. Sci. 2025, 15, 8320. https://doi.org/10.3390/app15158320
Gatti M, Belli M, De Rubeis M, Nottola SA, Macchiarelli G, Tatone C, Di Emidio G, Palmerini MG. Concentration-Related Ultrastructural Alterations in Mouse Oocytes Following In Vitro Lindane Exposure. Applied Sciences. 2025; 15(15):8320. https://doi.org/10.3390/app15158320
Chicago/Turabian StyleGatti, Marta, Manuel Belli, Mariacarla De Rubeis, Stefania Annarita Nottola, Guido Macchiarelli, Carla Tatone, Giovanna Di Emidio, and Maria Grazia Palmerini. 2025. "Concentration-Related Ultrastructural Alterations in Mouse Oocytes Following In Vitro Lindane Exposure" Applied Sciences 15, no. 15: 8320. https://doi.org/10.3390/app15158320
APA StyleGatti, M., Belli, M., De Rubeis, M., Nottola, S. A., Macchiarelli, G., Tatone, C., Di Emidio, G., & Palmerini, M. G. (2025). Concentration-Related Ultrastructural Alterations in Mouse Oocytes Following In Vitro Lindane Exposure. Applied Sciences, 15(15), 8320. https://doi.org/10.3390/app15158320