The Impact of Grafted Larvae and Collection Day on Royal Jelly’s Production and Quality
Abstract
1. Introduction
2. Materials and Methods
2.1. Sampling and Experimental Design
2.1.1. Experimental Design for the Time of Collection
2.1.2. Experimental Design for Larval Age Study
2.1.3. Experimental Design for Larval Sex Study
2.2. Physicochemical Analysis
2.2.1. Moisture Content (%)
2.2.2. Protein Content (%)
2.2.3. Sugar Content (%)
2.2.4. 10-HDA Content (%)
2.3. Statistical Analysis
3. Results and Discussion
3.1. Effect of Harvesting Day on Physicochemical Characteristics and Yield of Royal Jelly
3.2. Effect of Larval Age at Grafting on Royal Jelly Composition and Yield
3.3. Effect of Larval Sex on Royal Jelly Production and Composition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buttstedt, A.; Moritz, R.F.; Erler, S. More than royal food-Major royal jelly protein genes in sexuals and workers of the honeybee Apis mellifera. Front. Zool. 2013, 10, 72. [Google Scholar] [CrossRef] [PubMed]
- Kamakura, M. Royalactin induces queen differentiation in honeybees. Nature 2011, 473, 478–483. [Google Scholar] [CrossRef] [PubMed]
- Ramadan, M.F.; Al-Ghamdi, A. Bioactive compounds and health-promoting properties of royal jelly: A review. J. Funct. Foods 2012, 4, 39–52. [Google Scholar] [CrossRef]
- Ahmad, S.; Campos, M.G.; Fratini, F.; Altaye, S.Z.; Li, J.; Qi, Y. New insights into the biological and pharmaceutical properties of royal jelly. Int. J. Mol. Sci. 2020, 21, 382. [Google Scholar] [CrossRef] [PubMed]
- Fratini, F.; Cilia, G.; Mancini, S.; Felicioli, A. Royal Jelly: An ancient remedy with remarkable antibacterial properties. Microbiol. Res. 2016, 192, 130–141. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, S.; Ming, H.; Yu, W.; Luo, L. Identification of freshness and metabolite changes of royal jelly during storage using Nano-ESI-MS and UPLC-Q/TOF-MS. J. Food Compos. Anal. 2025, 139, 107092. [Google Scholar] [CrossRef]
- Bărnuţiu, L.I.; Mărghitaș, L.A.; Dezmirean, D.S.; Mihai, C.M.; Bobiș, O. Chemical composition and antimicrobial activity of Royal Jelly-REVIEW. Sci. Pap. Anim. Sci. Biotechnol. 2011, 44, 67. [Google Scholar]
- Kanelis, D.; Liolios, V.; Rodopoulou, M.A.; Papadopoulou, F.; Tananaki, C. Production and Quality Characteristics of Royal Jelly in Relation to Available Natural Food Resources. Resources 2024, 13, 55. [Google Scholar] [CrossRef]
- Eshbah, H.M.; Mohamed, A.A.; Zedan, O.A.; Ghanem, A.T. Nutritional effects of some pollen types on hypopharyngeal and acid glands in honeybee workers (Apis mellifera L.). J. Mod. Res. 2021, 3, 71–77. [Google Scholar] [CrossRef]
- Human, H.; Nicolson, S.W.; Strauss, K.; Pirk, C.W.W.; Dietemann, V. Influence of pollen quality on ovarian development in honeybee workers (Apis mellifera scutellata). J. Insect Physiol. 2007, 53, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Di Pasquale, G.; Salignon, M.; Le Conte, Y.; Belzunces, L.P.; Decourtye, A.; Kretzschmar, A.; Suchail, S.; Alaux, C. Influence of pollen nutrition on honeybee health: Do pollen quality and diversity matter? PLoS ONE 2013, 8, e72016. [Google Scholar] [CrossRef] [PubMed]
- Pattamayutanon, P.; Peng, C.C.; Sinpoo, C.; Chantawannakul, P. Effects of pollen feeding on quality of royal jelly. J. Econ. Entomol. 2018, 111, 2974–2978. [Google Scholar] [CrossRef] [PubMed]
- Chan, Q.W.; Foster, L.J. Changes in protein expression during honey bee larval development. Genome Biol. 2008, 9, R156. Available online: https://link.springer.com/article/10.1186/gb-2008-9-10-r156 (accessed on 30 May 2025). [CrossRef] [PubMed]
- Wang, Y.; Ma, L.; Zhang, W.; Cui, X.; Wang, H.; Xu, B. Comparison of the nutrient composition of royal jelly and worker jelly of honey bees (Apis mellifera). Apidologie 2016, 47, 48–56. [Google Scholar] [CrossRef]
- Collazo, N.; Carpena, M.; Nuñez-Estevez, B.; Otero, P.; Simal-Gandara, J.; Prieto, M.A. Health promoting properties of bee royal jelly: Food of the queens. Nutrients 2021, 13, 543. [Google Scholar] [CrossRef] [PubMed]
- Mantzourani, C.; Kokotou, M.G. Targeted and Suspect Fatty Acid Profiling of Royal Jelly by Liquid Chromatography—High Resolution Mass Spectrometry. Biomolecules 2023, 13, 424. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.R.; Yang, Y.C.; Shi, L.S.; Peng, C.C. Antioxidant properties of royal jelly associated with larval age and time of harvest. J. Agric. Food Chem. 2008, 56, 11447–11452. [Google Scholar] [CrossRef] [PubMed]
- Botezan, S.; Baci, G.M.; Bagameri, L.; Pașca, C.; Dezmirean, D.S. Current status of the bioactive properties of royal jelly: A comprehensive review with a focus on its anticancer, anti-inflammatory, and antioxidant effects. Molecules 2023, 28, 1510. [Google Scholar] [CrossRef] [PubMed]
- Milone, J.P.; Chakrabarti, P.; Sagili, R.R.; Tarpy, D.R. Colony-level pesticide exposure affects honey bee (Apis mellifera L.) royal jelly production and nutritional composition. Chemosphere 2021, 263, 128183. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Hung, Y.T.; Cheng, Q. A review of sub-lethal neonicotinoid insecticides exposure and effects on pollinators. Curr. Pollut. Rep. 2023, 6, 137–151. [Google Scholar] [CrossRef]
- De Toledo, V.D.A.A.; Neves, C.A.; Alves, E.M.; de Oliveira, J.R.; Ruvolo-Takasusuki, M.C.C.; Faquinello, P. Royal jelly production in Africanized honeybee colonies considering different protein supplements and the influence of environmental factors. Acta Scientiarum. Anim. Sci. 2010, 32, 101–109. [Google Scholar]
- Alkindi, F.K.S.A.; El–Keblawy, A.; Ridouane, F.L.; Mirza, S.B. Factors influencing the quality of Royal jelly and its components: A review. Cogent Food Agric. 2024, 10, 2348253. [Google Scholar] [CrossRef]
- Virgiliou, C.; Kanelis, D.; Pina, A.; Gika, H.; Tananaki, C.; Zotou, A.; Theodoridis, G. A targeted approach for studying the effect of sugar bee feeding on the metabolic profile of Royal Jelly. J. Chromatogr. A 2020, 1616, 460783. [Google Scholar] [CrossRef] [PubMed]
- Sesta, G.; Lusco, L. Refractometric determination of water content in royal jelly. Apidologie 2008, 39, 225–232. [Google Scholar] [CrossRef]
- Popescu, O.; Mărghitaş, L.A.; Dezmirean, D. A study about physicochemical composition of fresh and lyophilized royal jelly. Sci. Pap. Anim. Sci. Biotechnol. 2008, 41, 328. [Google Scholar]
- Balkanska, R.; Zhelyazkova, I.; Ignatova, M.; Kashamov, B. Effect of supplementary honey and artificial sugar feeding of bees on the composition of royal jelly. Agric. Sci. Technol. 2013, 5, 335–338. [Google Scholar]
- Altaye, S.Z.; Meng, L.; Li, J. Molecular insights into the enhanced performance of royal jelly secretion by a stock of honeybee (Apis mellifera ligustica) selected for increasing royal jelly production. Apidologie 2019, 50, 436–453. [Google Scholar] [CrossRef]
- Hu, F.L.; Bíliková, K.; Casabianca, H.; Daniele, G.; Salmen Espindola, F.; Feng, M.; Zhou, J.H. Standard methods for Apis mellifera royal jelly research. J. Apic. Res. 2019, 58, 1–68. [Google Scholar] [CrossRef]
- Zheng, H.Q.; Hu, F.L.; Dietemann, V. Changes in composition of royal jelly harvested at different times: Consequences for quality standards. Apidologie 2011, 42, 39–47. [Google Scholar] [CrossRef]
- Crailsheim, K.; Brodschneider, R.; Aupinel, P.; Behrens, D.; Genersch, E.; Vollmann, J.; Riessberger-Gallé, U. Standard methods for artificial rearing of Apis mellifera larvae. J. Apic. Res. 2013, 52, 1–16. [Google Scholar] [CrossRef]
- Chen, S.; Su, S.; Lin, X. An introduction to high-yielding royal jelly production methods in China. Bee World 2002, 83, 69–77. [Google Scholar] [CrossRef]
- Kanelis, D.; Tananaki, C.; Liolios, V.; Dimou, M.; Goras, G.; Rodopoulou, M.A.; Karazafiris, E.; Thrasyvoulou, A. A suggestion for royal jelly specifications. Arch. Ind. Hyg. Toxicol. 2015, 66, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Hamledari, A.; Hasibi, F.; Hajibabaei, K. Physicochemical characterization of Persian fresh royal jelly samples. J. Apic. Res. 2025, 64, 217–225. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, L.; Wang, H.; Liu, Z.; Chi, X.; Xu, B. Effects of Sucrose Feeding on the Quality of Royal Jelly Produced by Honeybee Apis mellifera L. Insects 2023, 14, 742. Insects 2023, 14, 742. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Jang, H.; Sun, S.; Jung, C. Nutrient Composition and Quality Assessment of Royal Jelly Samples Relative to Feed Supplements. Foods 2024, 13, 1942. [Google Scholar] [CrossRef] [PubMed]
- Goras, G.; Tananaki, C.; Gounari, S.; Lazaridou, E.; Kanelis, D.; Liolios, V.; Karazafiris, E.; Thrasyvoulou, A. Rearing Drones in Queen Cells of Apis mellifera Honey Bees. J. Apic. Sci. 2016, 60, 119. [Google Scholar] [CrossRef]
- Lazaridou, E.; Gounari, S.; Xonis, K.; Aidinoglou, M. Factors affecting the production of royal jelly. In Proceedings of the XXXVIIIth Apimondia International Apicultural Congress, Ljubjana, Slovenia, 24–29 August 2003; p. 368. [Google Scholar]
- Sidor, E.; Miłek, M.; Zaguła, G.; Bocian, A.; Dżugan, M. Searching for differences in chemical composition and biological activity of crude drone brood and royal jelly useful for their authentication. Foods 2021, 10, 2233. [Google Scholar] [CrossRef] [PubMed]
Parameter | Group A1 (n = 9) | Group Β1 (n = 18) | Group C1 (n = 12) |
---|---|---|---|
Moisture (%) | 48.3 ± 1.05 c (46.5–49.9) | 58.1 ± 1.95 b (54.9–61.1) | 67.8 ± 1.73 a (64.8–70.5) |
Protein Content (%) | 18.6 ± 0.56 a (17.8–19.3) | 16.2 ± 0.78 b (15.2–17.7) | 12.3 ± 0.82 c (11.3–13.6) |
Fructose (%) | 2.99 ± 0.32 a (2.28–3.31) | 3.32 ± 0.70 a (2.24–5.54) | 3.00 ± 0.41 a (2.24–3.64) |
Glucose (%) | 2.92 ± 0.43 a (2.26–3.44) | 3.13 ± 0.29 a (2.66–3.61) | 3.07 ± 0.37 a (2.26–3.51) |
Sucrose (%) | 1.24 ± 0.36 b (0.75–1.92) | 1.69 ± 0.49 a (1.03–2.55) | 1.88 ± 0.44 a (1.12–2.89) |
10-HDA (%) | 2.45 ± 0.27 a (2.01–2.83) | 2.33 ± 0.42 a (1.77–3.02) | 2.29 ± 0.39 a (1.61–2.80) |
Parameter | Group A2 (n = 12) | Group B2 (n = 12) | Group C2 (n = 12) |
---|---|---|---|
Yield per Royal Cell (g) | 0.193 ± 0.06 c (0.144–0.228) | 0.332 ± 0.10 a (0.296–0.426) | 0.241 ± 0.09 b (0.151–0.310) |
Moisture (%) | 66.6 ± 1.97 a (60.5–69.7) | 68.2 ± 2.00 a (64.8–71.8) | 67.7 ± 1.74 a (64.9–69.8) |
Protein Content (%) | 12.4 ± 0.72 a (11.5–13.7) | 12.2 ± 0.86 a (11.3–13.6) | 12.5 ± 0.43 a (11.8–13.1) |
Fructose (%) | 3.74 ± 0.70 a (2.85–4.89) | 3.62 ± 0.63 a (2.80–4.85) | 3.65 ± 0.66 a (2.81–4.90) |
Glucose (%) | 3.88 ± 0.81 a (3.00–5.23) | 3.75 ± 0.69 a (3.16–5.51) | 3.19 ± 0.32 a (2.70–3.52) |
Sucrose (%) | 2.99 ± 0.70 a (2.09–4.00) | 3.12 ± 0.86 a (1.99–4.28) | 2.85 ± 0.60 a (1.76–3.64) |
10-HDA (%) | 3.21 ± 0.40 a (2.33–3.85) | 3.37 ± 0.28 a (3.01–3.94) | 3.41 ± 0.27 a (3.05–3.81) |
Parameter | Group A3 (Worker) (n = 12) | Group B3 (Drone) (n = 12) |
---|---|---|
Total yield per grafting (g) | 5.6 ± 0.8 a (4.7–6.8) | 4.1 ± 1.9 a (1.2–6.3) |
Moisture (%) | 69.3 ± 1.10 a (67.3–69.7) | 68.3 ± 1.63 a (66.8–71.8) |
Protein Content (%) | 14.54 ± 0.92 a (12.3–15.9) | 14.12 ± 1.06 a (11.3–16.8) |
Fructose (%) | 3.16 ± 0.20 a (2.35–4.29) | 2.84 ± 0.68 a (2.40–3.43) |
Glucose (%) | 4.66 ± 0.31 a (3.12–5.47) | 4.00 ± 0.89 a (3.14–5.34) |
Sucrose (%) | 1.94 ± 1.00 a (1.21–4.10) | 1.53 ± 0.91 a (1.29–4.18) |
10-HDA (%) | 3.51 ± 0.20 a (2.81–4.23) | 3.42 ± 0.18 a (3.01–4.17) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanelis, D.; Liolios, V.; Rodopoulou, M.A.; Papadopoulou, F.; Tananaki, C. The Impact of Grafted Larvae and Collection Day on Royal Jelly’s Production and Quality. Appl. Sci. 2025, 15, 8200. https://doi.org/10.3390/app15158200
Kanelis D, Liolios V, Rodopoulou MA, Papadopoulou F, Tananaki C. The Impact of Grafted Larvae and Collection Day on Royal Jelly’s Production and Quality. Applied Sciences. 2025; 15(15):8200. https://doi.org/10.3390/app15158200
Chicago/Turabian StyleKanelis, Dimitrios, Vasilios Liolios, Maria Anna Rodopoulou, Fotini Papadopoulou, and Chrysoula Tananaki. 2025. "The Impact of Grafted Larvae and Collection Day on Royal Jelly’s Production and Quality" Applied Sciences 15, no. 15: 8200. https://doi.org/10.3390/app15158200
APA StyleKanelis, D., Liolios, V., Rodopoulou, M. A., Papadopoulou, F., & Tananaki, C. (2025). The Impact of Grafted Larvae and Collection Day on Royal Jelly’s Production and Quality. Applied Sciences, 15(15), 8200. https://doi.org/10.3390/app15158200